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Prediction of zwitterion hydration and ion
association properties using machine learning†

Daniel Christiansen, Gang Cheng and Shafigh Mehraeen *

Molecular dynamics simulations were performed to study the hydration and ion association properties of

a library of zwitterionic molecules with varying charged moieties and spacer chemistries in pure water

and with Na+ and Cl� ions. The structure and dynamics of associations were calculated using the radial

distribution and residence time correlation function. Resulting association properties are used as target

variables for a machine learning model, with cheminformatic descriptors of the molecule subunits used

as descriptors. Prediction of hydration properties revealed that steric and hydrogen bonding descriptors

were of greatest importance and there was influence from the cationic moiety on the anionic moiety

hydration properties. Ion association properties prediction performed poorly, which is attributed to the

role of hydration layers in ion association dynamics. This study is the first to quantitatively describe the

influence of subunit chemistry on hydration and ion association properties of zwitterions. These

quantitative descriptions supplement prior studies of zwitterion association and previously described

design principles.

Introduction

In recent years, zwitterions and zwitterionic polymers have
become a frequently studied class of materials due to their
strong antifouling,1,2 ion dissociation enhancement,3–6 and
tunable properties.7–10 These characteristics arise from the
electrostatic properties of the zwitterion’s dual-charged moi-
eties, enabling the molecules to form tight, highly ordered
water layers,10 and simultaneously push or pull ions in
solution.3

Careful design of the zwitterion can enable it to become
super-antifouling, resisting nonspecific protein adsorption and
biofilm formation indefinitely,7 and restrict undesired ion
motion,3 enabling more mobile counterions to move freely,
enhancing ionic conductivity of the system. These properties
have considerable market applications, ranging from coatings
for implantable biomedical devices11–13 to materials for
batteries.6,14,15 With such important potential applications, it
is imperative that structure-design principles are found to
enable the design of next-generation materials with improved
performance.

Current zwitterion design principles have primarily been
made from experimental3,6 and simulation10 studies by modi-
fying the molecular chemistry or polymer structure, as well as

changing system conditions, then observing the response
in properties such as hydration,16–18 ionic conductivity,6 and
mechanical strength,19,20 to name a few.

Among studies of zwitterion hydration and ion association
structure–property relationships, Shao et al. used molecular
dynamics (MD) simulations to thoroughly explore how modify-
ing the cationic, anionic, and nonionic zwitterion subunits will
affect hydration and ion association properties.10,17,18,21,22 In
their works, they suggested the partial charge of the ionic
moieties was a principal factor affecting the moieties ability
to associate with water or ions. These studies laid a foundation
for understanding the atomic-scale interactions, however their
work lacked quantitative evidence of how features of the
zwitterionic moieties, such as charge density, affected the
properties of interest.

Interest has considerably grown in applying machine learn-
ing (ML) and other data science techniques to produce design
principles and quantitative structure–property relationships of
materials.23,24 In this approach, the collected properties are
used as target variables and predictors typically consist of
molecular cheminformatics or fingerprints. Presently, there
have been few applications of ML for the prediction or under-
standing of zwitterionic materials properties due to limited
quantity and lack of uniformity of existing data.25–28

Here, we present a ML study of the structure–property
relationships of zwitterion hydration and ion association.
A library of common zwitterion chemistries is generated using
MD simulations to provide the training and test datasets
of hydration and ion association properties, which can be
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predicted by cheminformatic descriptors to produce quantitative
and understandable design principles.

Methods
Library of zwitterion chemistries

We consider a library of zwitterion chemistries, which consists
of molecular subunits that frequently appear in the literature,
as shown in Fig. 1. These subunits belong to one of three
categories: anionic, cationic, and nonionic. A zwitterion must
have anionic and cationic moieties, and some contain a non-
ionic intermediate separating these charged groups. It has been
shown that the presence of an intermediate (spacer) group can
considerably affect the hydration22,29 and ion association22

properties of zwitterions, though it can also lead to their self-
association, which can weaken both properties.30 Methylene is
a predominant spacer chemistry; however, methyl and hydroxyl
functional groups are sometimes included to provide additional
properties, such as mechanical stability,20 so these groups were
also included for consideration. The quantity of spacer groups,
also called the carbon spacer length (CSL), has been shown to
control the strength of associations between the charged groups
and water or ions, though the effect of the spacer groups
diminished as the CSL increased to 3 and beyond.22

With these observations in mind, the library of zwitterion
subunit chemistries was arranged to produce 240 unique
molecules, each having one of the three anionic moieties,
one of the five cationic moieties, and either no spacer or one
of the spacer groups with CSL between 1 and 5. For example,
a molecule containing carboxyl anion, trimethylamine cation,
and a methylene spacer with CSL equal to 2 would have the
following chemical formula, N(CH)3(CH2)2CO2. Despite the
previous observation showing a maximum practical CSL of 3,22

the maximum here is 5 to account for the unseen properties,
which may have greater sensitivity to the CSL.

Computational simulations

To model the atomic-scale hydration and ion association to the
individual atoms of the charged moieties of the zwitterions,
MD simulations were performed in GROMACS.31 The All-Atom
Optimized Potentials for Liquid Simulations (OPLS-AA)
forcefield32 was chosen to describe the intra- and interatomic
potentials between atoms during simulation, due to its historic
quality in simulating small organic molecules.

Molecular topologies

LigParGen33 was used to produce a molecular structure and
topology file describing the atoms, bonds, angles, etc. that is
compatible with OPLS-AA. This software uses SMILES strings as
input, so the subunit chemistries were translated into SMILES,
then assembled in the above description to create the mole-
cular SMILES. When executing LigPargen, the molecules were
not structurally optimized, and the 1.14*CM1A-LBCC34 charge
model was used. Further structural optimization and charge
calculation are described in the following section. Table S1
(ESI†) presents the 240 molecular SMILES strings used for
input to LigParGen.

Quantum chemical simulations

Shao et al.22 previously demonstrated the importance of an
accurate charge model when studying the hydration of zwitter-
ions. Therefore, we applied additional structure optimization
and partial charge calculation to the structures output from
LigParGen. To do so, quantum chemical simulations were
performed in Gaussian1635 at the B3LYP level with the 6-31G(d,p)
basis set for optimization, and the CHELP algorithm36 was used to
assign atomic partial charges from electrostatic potentials. The
optimized structure and corrected charges replaced those produced
by LigParGen. All other interactions remained the same. A sample
structure and topology are included in Tables S2 and S3 (ESI†),
respectively.

Molecular dynamics simulations

Using the molecule structure and topology files created as
mentioned above, we performed MD simulations to model
the motion of zwitterions, waters, and ions. Next, we will
present the overall workflow used for simulations. Specific
simulation parameters can be found in Tables S4–S6 (ESI†).
Each zwitterion is simulated with or without 0.2 M salt concen-
tration and the workflow is repeated 5 times.

For each zwitterion, a simulation box is generated with edge-
length of 4 nm, containing 3 of the zwitterion molecules
separated by at least 1.2 nm (see NPT/NVT simulation para-
meters in Tables S5 and S6, ESI†). Extended simple point
charge (SPC/E) water model37 is used to solvate the system.
Following solvation, energy minimization (see parameters in
Table S4, ESI†) is performed to relax the system, before a 500 ps
NPT equilibration step at 298 K and 1 bar (Table S5, ESI†).
A stability analysis of the molecules was determined by root
mean-squared displacement (RMSD) of the zwitterions during
NVT simulation to ensure the length of NVT simulation is

Fig. 1 Library of subunits used to construct zwitterionic molecules, each
having one cationic moiety, one anionic moiety, and between 0 and 5
nonionic intermediates.
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sufficient for the molecules to be stable. Samples of RMSD for
five selected zwitterions are shown in Fig. S1 (ESI†). Before
production simulation, half of the trials have 0.2 M Na+ and Cl�

ions inserted by randomly replacing water molecules. Ion
topologies are described by Aqvist’s parameters.38 Finally,
10 ns NVT simulations (see parameters in Table S6, ESI†) are
used for data-collection.

Target properties

To examine the structure and dynamics of hydration and
ion association to the charged moieties of the zwitterions,
the radial distribution function (RDF) and residence time
correlation function, %C(t), of water and ions (Na+ and Cl�)
with respect to the position of the moieties are calculated
during NVT simulations. From the RDF and residence time
correlation function, the coordination shell radius (rshell),
coordination number (N), and effective residence time (t)
are calculated. Fig. 2 shows a schematic of the associations
and measured properties. These three properties are calcu-
lated for four kinds of interactions: (i) cationic moiety-water,
(ii) anionic moiety-water, (iii) cationic moiety-Cl�, and (iv)
anionic moiety-Na+. These three properties will be used as
the target variables for training and evaluating the ML
algorithm.

Coordination shell radius

The RDF is calculated to study the change in density of water
molecules or ions from the reference atoms on the zwitterion
moieties. All RDF calculations were averaged over 5 trials.
For interactions involving zwitterion cationic moieties, the
carbon of the cationic methyl group(s) is used as the reference

except when no methyl group is present (i.e., NH3), where the
hydrogen is used for the reference. This was decided because
of the observed overlap between the hydration shells, where
99–100% of all water molecules are shared between the coordi-
nation shells of the carbon(s) and hydrogen(s). Nitrogen or
sulfur atoms were not selected, as the observed coordina-
tion shells were significantly influenced by the anionic moiety.
For interactions with anionic moieties, the oxygens of the
anionic moiety are used for reference. All interactions with
water use the water’s oxygen atom as the reference due to its
position in the molecule approximately representing the center-
of-mass.17

Coordination number

With rshell found, it is possible to calculate the coordination
number, N, which is the average number of a species (oxygen of
water or ion) within a distance r = rshell from the reference atom
in the zwitterionic moiety during the entire simulation.

Effective residence time

The effective residence time, t, is the averaged time during
which a species stays within the coordination shell around a
charged moiety before leaving. To calculate t, the residence
time correlation function, %C(t), is calculated for each inter-
action, which is then fitted to an exponential function of
the form f (t) = A exp(�t/t). %C(t) is found by normalizing the
autocorrelation function, C(t), of water or ions within their
respective coordination shell with radius rshell, to its initial
value, C(0).39 The autocorrelation function is described by

C tkð Þ ¼
Ptmax�k

j¼1

PNatoms

i¼1
vi tj
� �

viðtj þ tkÞ, where tk is the k th time

Fig. 2 (a) Graphic of water and ions associating to the charged moieties of a zwitterion and forming structured coordination shells. (b) Example RDF with
rshell and N indicated by the red vertical dashed line and hatched area, respectively. (c) Example of residence time correlation function, %C(t), expressing an
exponentially decaying relationship with time, t.
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interval and vi(t) is 1 when the ith water molecule or ion is
within the coordination shell radius at time t and 0 otherwise.

The following fitting process requires selecting an appro-
priate maximum lag time. Fig. S2 (ESI†) shows a sample of %C(t)
for four possible interactions for a selected zwitterion, where
the lag time varies from 0 to 300 ps to clearly represent the
effective residence time.

Cheminformatic descriptors

Prior studies have identified electrostatic interactions and
hydrogen bonding as dominating forces in the hydration and
ion association of zwitterions.17,22,30,40,41 To describe these
properties of the zwitterions, cheminformatics describing the
electrostatic, hydrogen bonding, and geometric characteristics
of the cationic and anionic moieties, and spacer groups were
calculated as shown in Table 1, and will be used as inputs for
the ML algorithm. Further explanation of descriptor calcula-
tions can be found in the ESI.†

Results and discussion
Role of molecular design in hydration and ion association

Both graphical and statistical methods are used to understand
how chemical design affects hydration and ion association
properties.

Distribution of association properties by chemistry in the
presence of salt

Fig. 3a–c show the distribution of rshell, N, and t, respectively,
color coded for five different zwitterion cation (ZwCation)
moieties and water interaction in the presence of salt.
Fig. 3d–f illustrate the same but for three different zwitterion
anion (ZwAnion) moieties and water interaction. The distribu-
tion of rshell, N, and t for interactions of other ZwCations and
ZwAnions with water and salt are provided in Fig. S3 in ESI.†
The most obvious trends from these Figures occur when the
changing subunit chemistry agrees with the association of
interest (e.g., changing cation for ZwCation–water interactions,
or changing anion for ZwAnion–water interactions). Addition-
ally, Table 2 shows the mean and standard deviation of
the distributions for each ZwCation and ZwAnion illustrated
in Fig. 3.

Fig. 3a–c, showing ZwCation–water interactions with chan-
ging cation group, are highly bimodal with notable peaks on
the left-hand side of rshell, N, and t distribution corresponding
to the NH3 cationic moiety chemistry. These lesser property
values are likely caused by the considerably smaller volume of
NH3 compared to the other cations where the methyl group(s)

Table 1 Cheminformatic descriptors calculated with gmx sasa built-in
function in GROMACS (*), and in-house software (†). Descriptors are
calculated for the zwitterion cation, anion, and spacer groups

Descriptor Description

Volume* Subunit van der Waals volume in nm3

Surface area* Subunit van der Waals surface area in nm2

Charge† Sum of subunit partial charges in Coulomb
HBondAcceptors Number of hydrogen-bond acceptor sites
HBondDonors Number of hydrogen-bond donor sites

Fig. 3 Distribution of rshell (a and d), N (b and e), and t (c and f) with changing subunit chemistries indicated in the legend for ZwCation–water (a–c) and
ZwAnion–water (d–f) associations.
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can sterically hinder water and ion associations. Beyond the left
peak belonging to NH3, it appears there is an inverse relation-
ship between the distribution of the properties and the number
of methyl groups in the cationic moieties, following N(CH3)3 o
NH(CH3)2 B S(CH3)2 o NH2(CH3). This trend is also supported
by the mean property values shown in Table 2. Additionally,
Pearson correlations between descriptors and subunit associa-
tion properties show the cation group association properties
are highly correlated with the steric and hydrogen bonding
descriptors, which will be discussed later in this section. Prior
literature has also demonstrated this trend.42

Fig. 3d–f, show ZwAnion–water interaction properties with
changing zwitterion anionic chemistry. Fig. 3d–f and Table 2
suggest patterns for all properties following OPO3H B SO3 o
CO2, though the effect is less pronounced than the trend for
ZwCation–water interactions. Property correlation data from
Fig. 4 would suggest steric (volume and surface area) and
hydrogen bonding effects (number of hydrogen bond donating
and accepting sites) again influence the anionic association
properties. However, there is also a strong correlation between
these properties and the charge of the cationic moiety. This is
indicative of a strong electrostatic influence from the cationic
moiety affecting the hydration and ion association of the
anionic moiety. This has been previously observed, where the

hydration shells of some cationic moieties can be overlapping
those of anionic moieties.42

Above trends are far less pronounced for interactions with
ions as shown in Fig. S3c and d (ESI†). There remains a notable
peak in Fig. S3c (top row) (ESI†) corresponding to the NH3

cationic moiety interaction with Cl�; however, this peak is far
less pronounced for N and t variables in ZwCation–Cl� inter-
actions than for those in ZwCation–water interactions in Fig.
S3a (top row) (ESI†). Furthermore, results in Fig. 4 suggest that
there is a strong correlation between the steric and hydrogen
bonding properties and ZwCation–Cl� association, but it is
less obvious what descriptors affect the anion association
properties.

Multivariate analysis of variance

To gain more detailed understanding of how zwitterion design
affects hydration (rshell, N, and t for interaction with water) and
ion association (rshell, N, and t for interaction with Na+ and Cl�)
properties before ML is applied, multivariate analysis of var-
iance (MANOVA) is performed. In this analysis, there are 5
design factors (cationic/anionic/spacer groups, CSL, presence
of salt) and 3 dependent variables (rshell, N, t) for 4 interactions
(ZwCation with water or Cl�, ZwAnion with water or Na+).
MANOVA is performed to investigate the effects of the above-
mentioned factors on the dependent variables while also con-
sidering the correlation between the dependent variables.

MANOVA is applied with Pillai’s trace with the formula for
each interaction following rshell + N + t as a dependent variable,
and cation, anion, spacer, CSL, and salt as independent variables,
except where the interaction is with respect to ions, where salt is
removed as a factor. MANOVA results are presented in Table S7
(ESI†). All factor p-values were less than a-level of 0.05 for all
interactions, suggesting the factors are statistically significant to
the combined dependent variable.

Cheminformatic descriptor–property correlation

The Pearson correlation between descriptors and target values
is shown in Fig. 4, which reveals the nature of the descriptor–
property relationships. In Fig. 4, there are clusters of similarly
shaded correlation properties corresponding to the type of the
association. In particular, the surface area and volume of
the zwitterion cationic moiety have similar correlations with
rshell, N, and t of ZwCation–water and ZwCation–anion (Cl�)
interactions. Other notable features are the inverse correlations
between the number of hydrogen bond donors of cationic
moieties and rshell, N, and t of ZwCation–water and ZwCation–
anion interactions. Similar inverse correlations are observed
between the number of hydrogen bond acceptors and the rshell,
N, and t of ZwAnion–water and ZwAnion–cation interactions
except for t of ZwAnion–cation interaction. On its own, this
data generally prescribes design principles for controlling the
association properties of the zwitterionic moieties. However,
once this data is combined with feature importances from the
ML algorithm, it will give more clear definitions for how
important a descriptor is to the rshell, N, and t of water and

Fig. 4 Heatmap of Pearson correlation between descriptors (y-axis) and
association properties (x-axis). Color indicates feature’s Pearson correla-
tion value to the corresponding target variable.

Table 2 Mean and standard deviation of hydration properties for ZwCa-
tion and ZwAnion subunits

Subunit rshell (nm) N t (ps)

ZwCation N(CH3)3 0.46 � 0.01 7.86 � 0.62 45.80 � 1.58
NH(CH3)2 0.48 � 0.01 10.63 � 0.95 49.20 � 1.99
NH2(CH3) 0.52 � 0.02 15.57 � 1.86 53.07 � 1.64
NH3 0.26 � 0.01 0.83 � 0.15 30.36 � 1.26
S(CH3)2 0.50 � 0.01 11.53 � 0.95 49.84 � 1.11

ZwAnion CO2 0.35 � 0.03 3.35 � 1.77 37.92 � 2.65
SO3 0.32 � 0.01 2.17 � 0.32 37.24 � 1.85
OPO3H 0.32 � 0.02 2.01 � 0.61 35.53 � 1.83

Soft Matter Paper

Pu
bl

is
he

d 
on

 1
2 

A
gd

a 
B

ax
is

 2
02

3.
 D

ow
nl

oa
de

d 
on

 1
1/

11
/2

02
4 

2:
43

:3
7 

PM
. 

View Article Online

https://doi.org/10.1039/d3sm00062a


3184 |  Soft Matter, 2023, 19, 3179–3189 This journal is © The Royal Society of Chemistry 2023

ion association, and whether it will positively or negatively
influence these association properties.

Machine learning structure–property
relationships

Before applying ML algorithms to reveal the desired relation-
ship between structure and property (rshell, N, and t) for
aforementioned zwitterionic molecules, it is important to dis-
cuss the limitations of the produced data. The controlled
factors, cation, anion, spacer groups, CSL, and presence of salt,
are a small representation of the complex chemistries and
systems which could be studied for zwitterions. For this reason,
all analysis to follow is performed with the expectation that the
information revealed may not be extended to other materials
and systems.

Preprocessing and model workflow

To prepare for training and evaluating the ML algorithm,
several preprocessing steps are required. Firstly, cheminfor-
matics describing the spacer groups are NaN-valued for all
cases where CSL is equal to zero, making the data unusable
for training the ML algorithm. To correct this, the missing data
is zero-imputed, which is reasonable given the cheminfor-
matics at-hand are all strictly positive and additive. The salt
value is one-hot encoded with a drop-first scheme to convert
the continuous salt concentration into a binary-valued variable.
The predictors are CSL, salt, and cheminformatics as indicated
in Table 1, and predicted variables are rshell, N, and t. Predictor
variables are min–max scaled. Finally, some predictor variables
have constant values or are correlated; thus, feature pruning is
necessary. Pruning is manually performed by removing
any constant-valued descriptors, as well as descriptors which
are explicitly used in the calculation of other descriptors
(e.g., subunit volume is used to calculate ovality).

Following preprocessing, the data is supplied to train and
evaluate a scikit-learn XGBoostRegressor algorithm43 with
5-fold cross-validation with shuffles and grid search hyperpara-
meter tuning, exploring number of iterations (i.e., number of

trees) between 50 and 500 in intervals of 50, with all other
hyperparameters left as default. The XGBoostRegressor algo-
rithm is selected as it is considered a highly interpretable
model and is capable of training model parameters on both
one-hot encoded (presence of salt) and continuous inputs (all
other variables) with no need for feature scaling. Additionally,
as will be further discussed later, it is possible to extract feature
importances from the models, which quantitatively describe
the impact a feature has on a model’s predictions. These
feature importances are useful independently to describe how
a model acts, but they may also be compared to one another to
demonstrate which features are more or less impactful. The
performance of the above-mentioned algorithm is scored by R2.

Model performance

As mentioned, there is a bimodal distribution of rshell, N, and t
caused by the NH3 cation moiety, which makes up approxi-
mately 20% of all data. To determine the impact of such
outliers on model performance, the ML algorithm was trained
with and without data containing this cation moiety, as well as
a model trained with this subset alone to evaluate the extensi-
bility of the model. It was hoped that the cheminformatic
descriptors would sufficiently describe the trends, and thus
be capable of describing outlier data.

Table 3 shows training and testing model performance as
determined by the coefficient of determination, R2. R2 values
for models not explicitly using NH3 data as the test set are
the mean cross-validated scores from the best-performing
hyperparameter-tuned model. Otherwise, R2 is the performance
on models using the NH3 in the test set after hyperparameter
tuning. Across all subsets, the models performed considerably
better on the training set than the test set, indicating over-
fitting, as could be expected for such a small dataset.

Comparing R2 values between the subsets with and without
NH3 data, we find that the inclusion of the data improved
model performance. However, when the NH3 subset is not used
in the training, but used in the test data, the model lacks any
meaningful predictive capabilities and cannot generalize to this
unseen data. For this reason, the subset excluding the NH3

from the training data is chosen for further analysis.

Table 3 XGBoostRegressor algorithm performance when trained with and without NH3 cation moiety to determine its impact on prediction of rshell, N,
and t

R2
Train/R2

Test

Property Train and test with NH3 Train and test without NH3 Train without, and test with NH3

ZwCation Water rshell 1.00/0.99 0.96/0.83 0.96/�0.09
N 1.00/0.97 0.99/0.91 0.98/0.50
t 1.00/0.97 1.00/0.80 0.93/0.02

Cl� rshell 0.99/0.95 0.88/0.36 0.87/�0.08
N 0.98/0.78 0.93/0.47 0.93/0.08
t 0.91/0.60 0.90/0.30 0.96/0.17

ZwAnion Water rshell 0.99/0.71 1.00/0.68 0.93/0.42
N 0.99/0.65 0.99/0.62 0.95/0.21
t 1.00/0.72 1.00/0.71 0.99/0.33

Na+ rshell 0.79/0.21 0.85/0.29 0.85/0.00
N 0.90/0.57 0.91/0.42 0.90/0.30
t 0.79/0.11 0.83/0.14 0.82/0.07
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Focusing solely on the model without NH3 data, reveals
interactions with the cationic moieties generally performed
better than those with the anionic moieties. This may be due
to the greater variation of cation-specific descriptors from 4
cationic moieties (excluding NH3) versus 3 for the anions and
corresponding diversity of descriptor values.

Feature importances are extracted from the ML algorithm
and are shown in Fig. 5, ranking the descriptors by their utility
in model predictions and colored by their correlation coefficients
with respect to target variables. ZwCation interactions have
descriptors predominantly related to steric properties (area and
volume), though electrostatics (charge) and hydrogen bonding
descriptors are frequently present. This result suggests that the
methyl groups of the cationic moiety are primarily affecting the
hydration layer and hydrogen bonding is a secondary influence.
Surprisingly, electrostatic properties are not among the highest
importances for interactions with water. However, these proper-
ties do rise in importance for ZwCation–Cl� models.

Top feature importances for ZwAnion interactions are
mostly steric and electrostatic descriptors. The ZwCation
charge is frequently one of the top descriptors for these inter-
actions. As mentioned, this result is likely due to the cationic
moiety hydration layer and charge cloud overlapping the anio-
nic moiety.42

Considering the correlation of important features, there is a
general positive correlation between steric features (e.g., area,
volume) and target variables for interactions between cationic
moieties and water or ions. Moiety area and volume depend
upon several lower-order features; thus, the meaning of this
correlation cannot be exactly determined here. The number of
hydrogen bond donors has relatively high importance for all
water-association models and a negative correlation, indicating
the number of hydrogen bond donors would be antithetical
to hydration. ZwAnion interactions depend more heavily on
electrostatics and have predominately negative correlations.
Generally, if cationic moiety feature properties increase, there
will be increases in hydration and ion association properties,
and the opposite will be true for anionic moieties.

These results are consistent with Table 3, which also indi-
cates that predictions of rshell, N, and t for ion (Cl� and Na+)
interactions are not as good as those for water interactions.
From prior studies, it is known that the hydration layers impact
the association abilities of ions.44 This result suggests it is
necessary to include hydration properties in predicting ion
association. Additionally, there are overlap effects demon-
strated by the presence of ZwCation descriptors in the top
feature importances of ZwAnion–water and ZwAnion–Na+ inter-
actions. The proximity of the oppositely charged moieties,

Fig. 5 Feature importances extracted from XGBoostRegressor algorithm. Features with an importance value greater than 0.01 are only included for
clarity. Color bar indicates feature’s Pearson correlation value to the corresponding target variable.
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dictated by the spacer volume and area, is also an important
feature, which is sometimes seen in ZwAnion–water and ZwA-
nion–Na+ interactions in Fig. 5.

Hydration-inclusive prediction of ion association

To explore the influence of the hydration layer on the ion
association abilities of the zwitterionic moieties, hydration rshell

and t were included in the descriptors of the ML algorithm.
Since there is a strong correlation between rshell and N for
interactions with water as shown in Fig. S4 (ESI†), only one of
the two properties is required to be included. We also included
hydration t as an approximate description of the thermo-
dynamics of hydration. Correlation analysis of features and
target properties is performed, as before, and results are pre-
sented in Fig. 6. There are strong correlations, both negative
and positive, across the feature-target matrix for both ZwCa-
tion–Anion and ZwAnion–Cation associations. Among each
interaction kind, there are mixed correlations for feature-
target relationships, such as the ZwCation Area feature
having strongly negative correlation with ZwCation–Anion
and rshell, while ZwCation–Water and rshell has a strong positive
correlation.

Table 4 and Fig. 7 show resulting model performance
and feature importances, respectively. There was no notable
improvement to model performance, though the hydration
descriptors are present as important features, suggesting

hydration is important to ion association. It should be noted
that generally the model quality is not sufficient to fully trust
importances, though this is true for ZwAnion–Cation associa-
tion. Taking model accuracy for what it’s worth, examining
the high-importance features and strength of correlation, a few
conclusions may be suggested. Interestingly, each of the target
properties, rshell, N, and t appear to have similar feature-kinds
despite the target ion. For rshell, there are primarily steric
features, such as the area or volume of like-charged features.
N sees the electrostatic properties become dominant, though
steric and hydration residence time influences still carry signi-
ficant importance. t deviates with less concise description
of its important features, likely due to its significantly lower
model accuracies, leaving the only interesting feature that the
ZwCation–Anion residence time has water residence time and
group charge as its most important features.

Conclusions

MD simulations and a ML algorithm have been used to
examine the hydration and ion association properties of a
library of zwitterionic molecules with varying cationic, anionic,
alkane spacer chemistries, and number of spacer groups.
Structural and dynamic properties of hydration and ion asso-
ciation were calculated from simulations. Cheminformatics
describing molecule’s steric, electrostatic, and hydrogen bond-
ing properties were used as descriptors for the ML prediction of
association properties.

The coordination shell radius, coordination number, and
effective residence time of waters and ions associating to
cationic and anionic moieties were calculated from simula-
tions. Results showed fully protonated amines had hydration
layers, which were distinct from all other cationic moiety
chemistries. This finding resulted in lower quality ML predic-
tions and it was decided to remove molecules with NH3 cationic
moiety from the final ML predictions. Correlation between
descriptors and target values revealed that the number of
hydrogen bonding sites and steric effects (areas and volumes)
significantly affect hydration shell radius, coordination num-
ber, and effective residence time of waters around the cationic
moieties. We found similar correlations between the three
hydration properties of anionic moieties and hydrogen bond-
ing and steric effects, although there was also meaningful
electrostatic influence from the cationic groups. Ion associa-
tion had less immediately recognizable trends, likely due to the
dependence of ion association on the hydration abilities of the
molecules.

XGBoostRegressor algorithm was trained using the chem-
informatic descriptors to predict three hydration and ion
association properties. The resulting model feature impor-
tances were used to rank the impact of the descriptors on the
target variables. The three hydration properties prediction out-
performed the three ion association properties prediction.
Furthermore, prediction of cationic association properties con-
sistently outperformed that of anionic association properties.

Fig. 6 Heatmap of Pearson correlation between descriptors (y-axis) and
ion association properties (x-axis). Color indicates feature’s Pearson cor-
relation value to the corresponding target variable.

Table 4 XGBoostRegressor algorithm performance with hydration rshell

included in the descriptors for prediction of ion association properties

Property R2
Train/R2

Test

ZwCation–Cl� rshell 0.89/0.44
N 0.95/0.54
t 0.93/0.39

ZwAnion–Na+ rshell 0.86/0.24
N 0.92/0.40
t 0.84/0.09
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The former was due to the influence of the zwitterion hydration
layers in ion association while the latter is expected to be due to
the cationic hydration layer overlapping the anionic moiety,
and significantly influencing the anionic association properties,
making distinct association property prediction of the anionic
moiety less feasible.

Feature importances generally concurred with correlation
data, where steric and hydrogen bonding properties were
frequently among the most important values in predicting
hydration properties. Surprisingly, electrostatics was not
among the top descriptors for ZwCation–water properties,
though it was important in predicting all other association
properties. It was found that the cationic moieties affect the
association properties of the anionic moieties, as reported
prior. The ML algorithm performed poorly when predicting
ion association properties. This result was hypothesized to be
due to the role of hydration in ion association, which was
not included in the descriptors. When hydration properties
(rshell and t) were included in the descriptors, there was no
notable improvement to prediction accuracy; however, the
hydration properties became some of the important descriptors
in the ML algorithm, indicating the hypothesis was correct.

The findings presented here quantitatively demonstrate the
influence of molecular design on the hydration and ion asso-
ciation abilities of zwitterions. Descriptor correlation and
feature importances concur with prior studies, identifying the
hydrogen bonding, steric, and electrostatic influences are
important to the association properties. It was found that there
is a more notable impact from steric effects on cationic group

hydration properties than what has been discussed in prior
literature. This result leaves room for further exploration of the
role of the methyl groups in the hydration properties of cationic
moieties.

Finally, there remain additional features, which are expected
to influence hydration and ion association, such as the mobility
of cationic methyl groups, hydration free energy of the charged
moieties, and self-association of the zwitterions. There also
remains the challenge of accurately defining the associations of
the cationic moiety, where there are heterogeneous associa-
tions due to the methyl and hydrogen groups.
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