Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Devising electrode materials with novel configurations and unique properties is a feasible strategy to boost the electrochemical properties of hybrid supercapacitors. This research demonstrates an effective two-step strategy to construct N,S co-doped porous carbon (NSC) sphere supported CoS nanoparticles with phosphate functionalization (P-NSC/CoS). Benefiting from the active multi-components, the electrochemical features of CoS can be remarkably modulated after the NSC and phosphate modifications. As the cathode material for the supercapacitor, the acquired P-NSC/CoS composite delivers a splendid capacity of 436.5 C g−1 at 1 A g−1 and a superb cycling property of 91.5% after 10 000 cycles at 10 A g−1 in 6 M KOH. Furthermore, the Fe2O3 nanocrystals with ultrafine size are in situ deposited on NSC via a solvothermal-calcination process. The NSC/Fe2O3 composite presents a sizeable capacitance of 433 F g−1 at 1 A g−1 with 100.6% capacitance retention after 10 000 cycles. More significantly, it is inspiring that the assembled P-NSC/CoS//NSC/Fe2O3 hybrid supercapacitor delivers an energy density of up to 64.3 W h kg−1 at 873.6 W kg−1 and a splendid cycling stability of 94.2% after 10 000 cycles at 5 A g−1 in 6 M KOH. The appreciable data demonstrate that the prepared advanced electrode materials and the hybrid supercapacitor display excellent application prospects in energy storage.

Graphical abstract: Phosphate functionalized CoS nanoparticles coupled with Fe2O3 nanocrystals decorated on N,S co-doped porous carbon spheres for advanced hybrid supercapacitors

Page: ^ Top