Underlying physics and chemistry of ferroic-photocatalysis: a critical review
Abstract
Photocatalysis involving ferroic materials (hereafter ferroic-photocatalysis for simplicity) is emerging as an effective strategy to counter the recombination loss of photogenerated charge carriers. The built-in electric field, or exotic polarization profile, associated with domain walls (DWs) in ferroic-photocatalysts can inherently separate and drift the photogenerated electrons and holes to desired oxidation and reduction sites, and drive efficiently the photocatalytic reactions. Despite some initial exciting reports, only limited attempts have been made towards understanding the underlying physico-chemistry of ferroic-photocatalysis. Herein, we provide a fundamental overview of ferro-photocatalysis with emphasis on recent progress in the field. Specifically, we aim to bridge ferroelectric physics and photocatalytic chemistry by introducing the built-in electric field, anomalous photovoltaic effect, polar nano regions and surface active sites. Our objective is to stress the importance of the underlying dynamics at play in ferroic-photocatalysis and discuss the possibility of advancing this cross-disciplinary field.
- This article is part of the themed collection: Journal of Materials Chemistry A Recent Review Articles