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The dinucleating fulvalenyl ligand [1,1',3,3'-(Cs'BusH2)512~ (FV'™) was used to synthesize the dimetallic
dysprosocenium cation {Dy(m>-Cp*)}a(u-BH4)Mm>m>-Fv" ] (3) as the salt of [B(CgFs)sl™ (Cp* = CsMes).
Compound [3][B(CeFs)4] was obtained using a method in which the double half-sandwich complex
KDy(BH4)(THF)}L(FV'™)] (1) was reacted with KCp* to give the double metallocene [Dy(Cp*)(u-
BHL(FV'™)] (2), followed by removal of a bridging borohydride ligand upon addition of [(EtsSi),(u-H)]
[B(CeFs)4l. The dimetallic fulvalenyl complexes 1-3 give rise to single-molecule magnet (SMM) behaviour
in zero applied field, with the effective energy barriers of 154(15) cm™, 252(4) cm™ and 384(18) cm™,
respectively, revealing a significant improvement in performance across the series. The magnetic
properties are interpreted with the aid of ab initio calculations, which show substantial increases in the

axiality of the crystal field from 1 to 2 to 3 as a consequence of the increasingly dominant role of the
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Accepted 15th May 2020 Fv*™ and Cp* ligands, with the barrier height and hysteresis properties being attenuated by the equatorial

borohydride ligands. The experimental and theoretical results described in this study furnish a blueprint

DOI: 10.1039/d0sc02033h for the design and synthesis of poly-cationic dysprosocenium SMMs with properties that may surpass
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Introduction

Observations of magnetic bistability in structurally well-
defined, monodisperse nanomaterials have stimulated consid-
erable interest in technology based on the quantum properties
of atoms and molecules. For example, the demonstration of
magnetic memory in single holmium atoms on surfaces has
introduced potential for the fabrication of data storage devices
with capacities surpassing those of conventional technology.?
Molecule-based magnetic materials offer similar opportunities,
accompanied by the advantage that their electronic structure
can be tuned using imaginative synthetic chemistry. Recent
advances include magnetic molecules incorporated into spin-
tronic devices or used as the basis of quantum algorithm
operations.>
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The magnetic hysteresis properties of single-molecule
magnets (SMMs) have also been acclaimed as a possible
source of novel data storage materials and, while such appli-
cations may eventually be possible, certain obstacles must first
be overcome.®'® Challenges to the implementation of SMM-
based technology include that: (1) all known systems require
cooling with cryogens in order to show hysteresis; (2) uniform
nano-structuring of SMMs on surfaces is difficult, and; (3) the
chemical stability of SMMs throughout surface deposition
processes and, subsequently, in a device environment is not
guaranteed, regardless of whether or not the bulk material itself
is air-sensitive. However, encouraging progress has been made,
such as the discovery of magnetic hysteresis in an SMM at 80
K, i.e. above the boiling point of liquid nitrogen, and elegant
surface studies of some SMMs have demonstrated the single-
molecule origins of the hysteresis.”

The advances made to date strengthen the motivation for
further research into SMMs, particularly the exploration of new
synthetic strategies that aim to increase the temperatures at
which these materials function. Considerable effort has been
invested into maximizing the effective energy barrier to reversal
of the magnetization (Ueg) and the magnetic blocking temper-
ature (T3). A few highly anisotropic metal ions have proven to be
important as the basic ingredient in an SMM, with dysprosium
being the most popular and terbium, erbium and cobalt(i) also
playing prominent roles.**?! In the case of Dy*", a 4f° ion with
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oblate spheroidal electron density, successful SMM synthesis
strategies tend to produce compounds in which the metal
occupies a coordination environment with a strong and highly
axial crystal field.>*?>* This approach partly explains why the
highest-performing SMMs are based on metallocene cations of
the type [Dy(n’-Cp~),]’, where the bulky cyclopentadienyl
ligands [Cp®]~ provide the strong, axial crystal field whilst also
blocking the formation of any deleterious equatorial crystal
ﬁeld‘6,11,25729

Previous work on sandwich SMMs constructed with erbium-
COT (COT = cyclo-octatetraenyl)**** and terbium-phthalocya-
nine*>*® building blocks has shown that the parameters U, and
T increase when two or more blocks are linked to form multi-
decker sandwich complexes. We therefore reasoned that
improvements in the SMM properties of dysprosocenium
cations might be possible if closely related polymetallic versions
could be synthesized. To investigate this idea, we targeted the
synthesis of a dimetallic dysprosocenium cation by replacing
a cyclopentadienyl ligand with a bicyclopentadienyl ligand, also
known as fulvalenyl or pentafulvalenyl, in which two cyclo-
pentadienyl rings share an exocyclic carbon-carbon bond.**
Dinucleating fulvalenyl ligands have been used extensively in
transition metal sandwich chemistry,® with recent examples
including macrocyclic poly(ferrocenyl) compounds with poten-
tial applications as molecular electronic materials.***” In
contrast, the use of such ligands in f-element chemistry is
uncommon, and in the case of the lanthanides was, hitherto,
limited to the dimetallic divalent compounds [M(THF)(n’:n>-
Fv*™)], with M = Sm, Eu or Yb.*

Results and discussion

The reaction of the di-sodium salt of 1,1',3,3'-tetra-tert-butylpen-
tafulvalenyl, Na,Fv"™, with two equivalents of [Dy(BH,);(THF),]
produced the dimetallic complex [{Dy(BH,),(THF)},(n’n>Fv*)]
(1), with the two half-sandwich units linked via the fulvalenyl
ligand, as shown in Scheme 1. Subsequently, compound 1 was
reacted with two equivalents of potassium pentam-
ethylcyclopentadienide (KCp*) to give the double metallocene
[{Dy(m’-Cp*)(u-BH,)}o(n*m>-Fv*™)] (2) in which the dysprosium
centres are bridged by both borohydride ligands. Finally, addition

2 [Dy(BH)(THF)s] + [(HB(s-H):] [(u-H)BH]
- . —D -l Lo,
Na Na -2 NaBH, [HB(u-H)s]—bY Dy ~[(u-H)3BH]
-4 THF 1 «
=C'Bu 2 KCp*
NagFv'™ -2 KBH,, -2 THF
B &
Y B(C4Fs)
Dy~ %-Dy [BCeFs)l ﬁ * %
5\57_@ -2 HSiEt;
b o 05BHs
[31B(CeFs5)al [B(C6Fs5)al 2

Scheme 1 Synthesis of compounds 1, 2 and [3][B(CeFs)4] (L = THF).
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of one equivalent of the super-electrophile [(Et;Si),(n-H)]
[B(CeF5)s] to compound 2 produced the separated ion-pair
[{Dy(n’-Cp*)}o(1-BH,)(n* ™ Fv*“)[B(CeFs)s] ([3][B(CeFs)a)),
taining the target dimetallic dysprosocenium cation 3, with the
two sandwich units bridged by a single borohydride ligand.

The molecular structures of all three compounds were
determined by single-crystal X-ray diffraction (Fig. 1 and Table
S1t). The structure of 1 consists of two similar half-sandwich
units in which each dysprosium is ligated by one cyclo-
pentadienyl unit of the Fv*** ligand in an m®-manner, with
additional coordination by two k>-borohydride ligands and
a THF ligand (Fig. 1). The Dy1-C distances are in the range
2.607(4)-2.698(4) A and the distance from Dy1 to the fulvalenyl
Cs centroid is 2.361(1) A; the analogous distances for Dy2 are
essentially the same (Table S21). Appreciable twisting of the two
halves of the molecule about the central Fv** carbon-carbon
bond is evident from the C2-C1-C6-C7 torsional angle of
95.3(6)°, resulting in an intramolecular Dy---Dy separation of
5.443(1) A. Diagnostic absorptions in the FTIR spectrum of
compound 1 occur at i = 2127-2467 cm ™ * for the terminal and
bridging B-H groups (Fig. S17).

In compound 2, the two unique halves of the molecule each
consist of a dysprosium centre sandwiched between an n>-Cp*
ligand and an n’-Fv"™ ligand, with bridges between the metal
atoms occurring via both borohydride ligands. The change in
the bonding mode of the borohydride ligands in 2 as compared
to those in 1 is presumably a consequence of the spatial
demands of the Cp* ligands. For Dy1, the bond distances to the
Cp* ligand are in the range 2.643(3)-2.667(2) A and those to the
fulvalenyl ligand are 2.630(2)-2.704(4) A, with associated Dy1-
centroid distances of 2.362(1) A and 2.378(1) A, respectively; the
corresponding distances involving Dy2 are not significantly
different (Table S31). The metallocene bending angles sub-
tended at Dyl and Dy2 are 137.913(1)° and 139.143(1)°,
respectively. The bridging borohydride ligands in 2 greatly
reduce the extent of twisting between the two halves of the Fv"™*
ligand relative to 1, as shown in the C2-C1-C6-C7 torsional
angle of 30.0(4)°. The Dy---Dy separation is, at 4.148(1) A, also
markedly shorter than that in 1. The IR absorptions for the
borohydride ligands occur in the range i = 2124-2473 cm™
(Fig. S27).

In the structure of compound 3, the bonding modes of the
Cp*, Fv""* and borohydride ligands are similar to those in 2.
Thus, the Dy1-C distances to the Cp* and Fv'"™ ligands are in
the range 2.594(7)-2.650(8) A and 2.578(7)-2.742(8) A, respec-
tively, with associated Dy1-centroid distances of 2.348(1) A and
2.355(1) A, respectively. As in compounds 1 and 2, the geometric
parameters for Dy2 are similar to those of Dyl in compound 3
(Table S4t). However, the two metallocene components of 3 are
markedly less bent than those in 2, with bending angles of
145.727(1)° and 146.246(1)° for Dyl and Dy2, respectively. The
fulvalene twist angle is 55.0(9)° and the Dy---Dy separation is
4.701(1) A. The borohydride ligand adopts a k%> bonding
mode, with associated IR frequencies occurring as broad
absorptions around © = 2230 cm™ " (Fig. S31).

The synthesis of 1, 2 and [3][B(CeFs),] demonstrates that
fulvalenyl ligands can indeed form the structural basis of linked

con-
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Fig.1 Thermalellipsoid representations (30% probability) of the structures of: (a) 1, (b) 2 and (c) 3. For clarity, hydrogen atoms are omitted except

those in the [BH,4] ™ ligands.

dysprosium metallocenes. In the next stage, our aim was to
investigate how the changes in the crystal field environment
experienced by the Dy** centres impact upon the SMM
properties.

Magnetic properties

The magnetic properties of 1, 2 and [3][B(C¢F5),] were studied in
static (DC) and dynamic (AC) magnetic fields using a Magnetic
Property Measurement System. The temperature dependence of
the product of the molar magnetic susceptibility and tempera-
ture, i.e. xmT(7T), is consistent with the dimetallic composition
of the three compounds. The values of x\T at 300 K are 27.3,
27.2 and 27.5 cm® K mol " for 1, 2 and [3][B(C4Fs)4], respec-
tively, are close to the theoretical value of 28.2 cm® K mol ™" for
a complex containing two weakly interacting Dy*" ions with
®H,5/, ground multiplets (Fig. S4, S6 and S87).* The decreases
in xMT with temperature for 1 and [3][B(CeFs)4] are similar and
gradual without featuring a sharp drop at lower temperatures,
reaching values of 22.2 and 21.9 cm® K mol ™" at 2.0 K. The
decrease in yyT with temperature for 2 is similar in the high-
temperature regime, however a much more pronounced
decrease was observed below 20 K such that a value of 17.5 cm®
K mol " is reached at 2.0 K. The decrease in yyT(T) with
decreasing temperature for all three compounds can be
accounted for by gradual depopulation of the excited crystal
field levels of the Dy** ions, which may occur concomitantly
with antiferromagnetic exchange coupling becoming more
prominent as thermal randomization effects diminish, partic-
ularly in compound 2. The isothermal field-dependence of the
magnetization, M(H), for each compound also reflects the
presence of two Dy*" ions per complex, reaching values of 9.89,
10.11 and 9.60 N§ at 7 T and 1.9 K for 1, 2 and [3][B(CeFs)],
respectively (Fig. S5, S7 and S97).

The real (x') and imaginary (x”) components of the AC
magnetic susceptibility were measured for each compound as
functions of temperature and AC frequency (v) (Fig. 2, S10-S12,
S15-S17, S20-S221), using zero DC field and a small AC field of 3
Oe. The observation of well-defined maxima in the x”(7) and
x"(v) plots for 1, 2 and [3][B(C¢F5),4] indicate slow relaxation of
the magnetization without the need for an external DC field. For
compound 1, maxima were observed in the x”(v) plot from 1.9-
14 K before the upper frequency limit of the measurement

This journal is © The Royal Society of Chemistry 2020

system is reached (Fig. 2). Up to 6 K, the position of the
frequency maximum and, hence, the relaxation time (z), varies
only slightly with temperature, suggesting that relaxation via
quantum tunnelling of the magnetization (QTM) is dominant in
this regime. At higher temperatures, the frequency maximum
becomes strongly temperature dependent, which is likely to
reflect thermally activated relaxation becoming dominant. The
relaxation times for each temperature were extracted and
plotted as a function of T, revealing that the change from
QTM to activated regimes is abrupt (Fig. 2). Fitting the data with
the equation v * = 1, ‘e """ + CT" + 17 !, where 7, * and
Ue¢r denote the Orbach parameters, C and n denote the Raman
parameters, and the rate of QTM is rQTM’l, gives an energy
barrier of Ueg = 154(15) em ™' with 7, = 3.93(6) x 10~ ' s, the
Raman parameters are C = 8.16(3) x 107 * s™' K", n = 5.87(1)
and tgmv = 2.31(1) x 107 s.

The AC susceptibility measurements on compounds 2 and
[3][B(CeFs)4] revealed that slow relaxation of the magnetization
occur across wider temperatures ranges of 1.9-55 K and 1.9-72
K, respectively, relative to 1 (Fig. 2). In the case of 2, the x”(v)
plot consists of well-defined maxima from 1.9 K up to 40 K, and
for [3][B(CeFs),] the maxima were observed from 1.9 K up to 60
K. The temperature dependence of the relaxation times for 2
revealed that the system does not cross to a purely temperature-
independent regime even at the lowest measurement tempera-
ture (Fig. 2). Hence, it was possible to fit the In 7 vs. T~ " data for
2 without a QTM term, which produced Orbach parameters of
Uege = 252(4) cm ™, 7o = 1.94(3) x 10 ® s and Raman parameters
of C = 4.56 (2) x 107" s7" K", n = 4.12(1). For [3][B(C4F5)a],
after a strong dependence of Int on T ' in the high-
temperature regime, the relaxation time is only weakly
temperature-dependent below 5 K. A fit of the data for this
compound gave U = 384(18) cm™ ", 1o = 1.37(6) x 10 °s, C =
6.55(4) x 10 "s 'K ", n=2.03(2) and tqrm = 1.39 (6) x 10" s.

Comparing the Uy parameters for 1, 2 and [3][B(CeFs)a]
reveals substantial increases on moving through the series. This
trend can be understood in a qualitative sense by considering
how the composition and geometry of the crystal field experi-
enced by each Dy** centre varies. Whilst the Dy*" ions in all
three compounds must experience a dominant axial crystal field
to show any slow relaxation properties in zero DC field, this is
clearly relatively weak in 1 and stronger in 3. The presence of

Chem. Sci., 2020, M, 5745-5752 | 5747
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Fig.2 Frequency dependence of the imaginary component of the AC susceptibility, x” versus v, in zero DC field for (a) 1, (b) 2 and (c) [3][B(CgFs)4]
at the temperatures indicated, and the temperature dependence of the relaxation time as In t versus T-* for 1 (d), 2 (e) and (f) [3]1[B(CgFs)a].

only one cyclopentadienyl group per Dy*" in 1 is sufficient to
induce SMM behaviour by providing a relatively strong axial
crystal field, but the two borohydride ligands and the THF
ligand provide a competing equatorial field that limits the
barrier height. In 2, the additional [Cp*]™ ligands strengthen
the axial component of the crystal field whilst simultaneously
reducing the number of equatorial ligands, resulting in an
increase in the barrier by approximately 100 cm™" (60%) relative
to 1. Upon forming 3, not only is another equatorial borohy-
dride ligand removed from the coordination environment of
both Dy*" ions, the two metallocene units are also less bent by
approximately 7°-8° and the individual cyclopentadienyl donor
groups are slightly closer to the metal centres than in 2.
Consequently, the barrier height in 3 is approximately 130 cm™*
(50%) greater than that in 2. Furthermore, the In t versus T~ "
data are also consistent with the single-ion QTM being reduced
by intramolecular exchange interactions between the Dy** ions.
The Dy---Dy distances decrease in the order 1 > 3 > 2, hence the
QTM should be slowest in 2, as observed.

Compounds 1, 2 and [3][B(CeFs),] further illustrate the
magneto-structural correlation developed for dysprosium and
terbium metallocene SMMs, in which the cyclopentadienyl
ligands provide dominant axial crystal fields and the properties
are attenuated by the equatorial ligands.*®***** In addition to
accounting for the variation in energy barrier across the series,
their hysteresis properties can also be interpreted in terms of
the molecular structure. Thus, although the cyclopentadienyl
ligands dominate the crystal field, the borohydride and THF
ligands provide non-negligible equatorial components, which
result in the magnetization versus field hysteresis occurring as
narrow S-shaped curves at 1.9 K and various field in the range
+5 T with an average scan rate of 23 Oe s~ for each compound
(Fig. S14, S19 and S24t). There is essentially no hysteresis for 1,

5748 | Chem. Sci, 2020, 1, 5745-5752

however the hysteresis for 2 displays narrow loops centred on
field values of approximately £1.3 kOe and £5.0 kOe, respec-
tively, and [3][B(CsFs)4] shows a loop around +1.7 kOe. These
subtle effects are presumably a consequence of exchange bias
between the Dy’" centres affecting the rate of relaxation via
QTM, suggesting that the borohydride ligands are effective at
transmitting exchange interactions.”” This proposal is consis-
tent with a recent study of magnetic exchange in [Ln(BH,);] (Ln
= Gd-Tm), in which it was found that {HBH} bridges between
the metal centres allow antiferro- or ferro-magnetic exchange,
albeit with very small coupling constants.*

Theoretical analysis

The local magnetic properties of each individual Dy** ion in 1-3
were first studied. State-averaged complete active space self-
consistent field (SA-CASSCF) -calculations**** followed by
restricted active space state interaction treatment of spin-orbit
coupling (SO-RASSI)* and calculation of local magnetic prop-
erties using the SINGLE_ANISO_OPEN module®** were carried
out on each ion while the other Dy** ion in the complex was
replaced by diamagnetic yttrium. The properties of the eight
lowest Kramers doublets (KDs) of each ion are listed in Tables
S8-513.7 In each case the ground Kramers doublet (KD) is
characterized by a strongly axial g-tensor with small but non-
vanishing transverse components. The direction of the prin-
cipal magnetic axis of each ground KD is determined by an
axial-type interaction with the Fv* and Cp* ligands (Fig. 3).
The first-excited local KDs of the two Dy** ions in 1 lie
176 cm ' and 181 cm ' above the ground KD. The angles
between the principal magnetic axes of the ground and first
excited states are 41.3° and 43.0°, respectively. These relatively
large angles should lead to an efficient Orbach mechanism via
the first-excited KD, and an effective barrier corresponding to

This journal is © The Royal Society of Chemistry 2020
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Fig. 3 The principal magnetic axes of the ground KDs of the Dy** ions in (a) 1, (b) 2 and (c) 3. Calculated effective ab initio barriers for the
relaxation of magnetization at the Dyl ions (d) 1, (e) 2 and (f) 3. Stronger arrows indicate larger absolute value of the transition magnetic moment
matrix elements between the respective states. Transitions involving higher-energy states not involved in the relaxation are omitted for clarity.
The barriers for the Dy2 ions, which are similar to those of the Dyl ions, are shown in ESI Fig. S25-S27.}

the energies of the first excited states. Indeed, the effective
barrier height determined from the fits is 154 cm™" which
agrees well with the calculated values. A qualitative ab initio
barrier for the relaxation of magnetization was constructed
using a well-established methodology,* where the relaxation
pathway is traced by following large magnitudes of transition
magnetic moment matrix elements between different states.
The barriers for 1 are shown in Fig. 3 and the quantitative
transition magnetic moment matrix elements are listed in Table
S14.1 Based on the calculated values, the barrier should be
crossed earliest at the first-excited KD and latest at the fifth-
excited KD. Based on the experimental barrier height, the
most likely relaxation takes place via the first-excited KD.

In 2, the lowest four KDs on each Dy** ion have roughly
collinear principal magnetic axes. The calculated transition
magnetic moments (Fig. 3 and Table S15t) predict that the
barrier becomes crossed either at the second- (364 cm ™" and
362 cm ™) or third-excited (452 cm™ ' and 457 ecm ™) local KDs.
The experimentally determined barrier height (252 cm ™) is,
however, closest to the energies of the first-excited local KD
(214 cm™" and 208 cm™ ). The transition matrix elements for an
Orbach process via the first excited KD are, however, not
vanishingly small and this mechanism remains plausible. The
first four KDs of Dy1 and the first three KDs of Dy2 in 3 are also
roughly collinear. Based on the transition dipole moments
(Fig. 3 and Table S16t) the barrier is most likely crossed at the
second (546 cm™ ' and 551 cm™ ') or third excited KD (667 cm ™"
and 666 cm™'). The experimentally determined barrier height
(384 cm™") is again closest to the energy of the first excited KD
(336 cm ™" and 339 cm ') and, again, an Orbach mechanism via
the first excited KD has non-vanishing transition magnetic
moment matrix elements and remains plausible.

This journal is © The Royal Society of Chemistry 2020

Based on the energy of the first excited KD (which in all cases
corresponds to the experimentally determined barrier height),
the axiality of the crystal-field (CF) environments of the Dy’
ions clearly increases from 1 to 3. Further to the qualitative
analysis of this trend (see above), quantitative insight was ob-
tained by calculating the ab initio CF parameters® for each Dy>*
ion and the results are listed in Tables S17-S191 using the
Iwahara-Chibotaru notation.** The effect of the CF can be
understood qualitatively by considering the second-rank
parameters, summarized in Table 1. The axial B,, parameters
clearly increase from 1 to 2 to 3, which is consistent with the
increased axiality of the CF. The parameters should be
compared to those calculated for the current benchmark SMM,
i.e. the [(CsMes5)Dy(C5'Prs)]" cation, which has an energy barrier
of 1540 cm ™~ * and a blocking temperature of 80 K, also listed in
Table 1. It is immediately clear that the axiality falls short of that
in [(CsMe;)Dy(Cs'Prs)]" and the off-diagonal |B,.,| parameters
of 1-3 are much larger. Thus, the equatorial borohydride

Table1 Rank two ab initio CF parameters (in cm™Y calculated for the
Dy** ions in 1-3 and the [(CsMes)Dy(Cs'Prs)]* cation™ using Iwahara—
Chibotaru notation

By |Bzi1| |BZ:{:2|

1 Dyl —217.86 15.85 58.77
Dy2 —221.95 18.45 56.36

2 Dyl —375.17 18.19 81.70
Dy2 —384.52 21.80 57.93

3 Dyl —608.51 7.83 178.31
Dy2 —615.72 8.76 203.13

[(CsMes)Dy(Cs'Prs)]" —1195.31 17.70 30.23
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ligands in 1-3, and the lack of axial Cp* ligands in 1, clearly lead
to much reduced axiality.

The non-negligible off-diagonal CF parameters lead to
significant mixing of the different local angular momentum
eigenstates defined by some definite angular momentum
projection M. This is evident from Tables S20-S25,T which give
the projections of the ab initio CF eigenstates on angular
momentum eigenstates. The states in the ground KDs have
a large contribution from a state with some definite M, but in all
cases even the states in the ground KD are significantly mixed.
This is consistent with the effective barrier being crossed at the
first excited local KD in each case.

The effect of intramolecular interaction between the two
Dy" ions was studied by the Lines model®® and the magnetic
point-dipole approximation as implemented in the POLY._-
ANISO module.>***” The Lines model describes the exchange
interaction in terms of a single phenomenological scalar
parameter which was determined by minimizing the standard
deviation between the measured and calculated magnetic
susceptibilities. Due to the general lack of low-temperature
features in the susceptibility of 1 and 3 (Fig. S4, S8 and S287),
the parameter could only be only reliably determined for 2. The
eigenvalues of the Lines exchange operator and the dipolar
coupling operator where mapped to an effective Ising-type
Hamiltonian of the form:

1_2 = 7(Jex + Jdipolar)gz,lgz,z = 7Jlol§z,l‘§z,2 (1)

In eqn (1), the S = 1/2 pseudospin operators act on the
ground KDs of the two Dy’" ions. The dipolar coupling
parameters Jaipolar are —0.9 cm™ ', —2.5 cm™ ' and —1.4 cm ™! for
1-3, respectively, which are consistent with variations in the
Dy---Dy distance between the two ions. The exchange parameter
Jex determined for 2 is —1.2 em™*, hence the total exchange
interaction is Jio = —3.7 cm™ . The absence of bridging boro-
hydride ligands in 1 is likely to result in a vanishingly small Je.
parameter relative to 2, which, combined with the smaller
Jaipolar parameter, provides further support for the idea that the
steps in the M(H) hysteresis in 2 and 3 occur as a consequence of
exchange-bias effects.

Conclusions

In developing a stepwise route from the fulvalenyl double half-
sandwich complex [{Dy(BH,),(THF)},(Fv*)] (1) via the double
metallocene [{Dy(n>-Cp*)(n-BH,)}(Fv™)] (2) to ion-separated
[{Dy(m-Cp*)}2(n-BH4)(Fv"“)|[B(CsFs)a] ([3][B(CFs)a]), we have
shown that a dimetallic dysprosocenium complex can be
synthesized. All three fulvalenyl-supported compounds are
SMMs in zero applied field and show appreciable increases in
the effective energy barrier to reversal of the magnetization
across the series, which more than doubles from 154(15) cm™*
in 1 to 384(18) cm™ ' in 3. The improvements in the energy
barrier are attributable to the increasingly dominant axial
crystal field provided by the Fv*** and Cp* ligands balanced
against the influence of the equatorial borohydride ligands.
Quantitative support for this magneto-structural correlation

5750 | Chem. Sci,, 2020, N, 5745-5752

View Article Online

Edge Article

was obtained from ab initio calculations, which revealed
marked increases in the axial B,, parameter across the series
but also with appreciable non-axial parameters.

It is instructive to consider these results in light of the SMM
properties of [(CsMes)Dy(Cs'Prs)]" and its precursors, ie. the
monometallic metallocene [(CsMes)Dy(Cs'Prs)(BH,)] and the
half-sandwich [(Cs'Prs)Dy(BH,),(THF)]. In the case of [(CsMes)
Dy(Cs'Prs)(BH,)], there many structural features in common
with 2 and 3 and yet the energy barrier is a miniscule 7(1) cm ™"
in zero field." This comparison further highlights how the
strategy of combining metallocene building blocks to give
a dimetallic dysprosocenium cation may improve SMM perfor-
mance. In contrast, the barrier determined for [(Cs'Prs)
Dy(BH,4),(THF)] in zero field is 241(7) cm ™", which is markedly
larger than the barrier of 154(15) cm ™" in 1. However, since the
Dy-Cpcent distances in the two half-sandwich complexes are very
similar, the different barriers are likely to originate from the
influence of the THF ligands. The Dy-O distances in 1 are
approximately 0.03-0.08 A shorter than those in its mono-
metallic counterpart, pointing towards a stronger equatorial
component of the crystal field and, therefore, relaxation via an
Orbach process with a lower barrier.

Looking forward, if a dimetallic dicationic dysprosocenium
complex such as [{Dy(n°>-Cp*)},(n*n’>-Fv*)]*" could be synthe-
sized, substantial increases in the axial crystal field parameters
and decreases in the non-axial parameters should combine with
the beneficial effects of exchange coupling in a dimetallic
complex. Whilst substituent-dependent geometric factors will
clearly play an important role in determining the properties,
a dimetallic dysprosocenium dication can reasonably be antic-
ipated to display enhancements in the energy barrier and
blocking temperature relative to the current benchmark SMM.
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