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Isolation and structural characterisation of
rhodium(III) η2-fluoroarene complexes: experi-
mental verification of predicted regioselectivity†
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The isolation and solid-state characterisation of complexes featur-

ing partially coordinated benzene, fluorobenzene and all three

isomers of difluorobenzene are described. Supported by a DFT

analysis, this well-defined homologous series demonstrates the

preference for η2-coordination of fluoroarenes via the HCvCH

sites adjacent to a fluorine substituent.

Partially fluorinated benzenes are chemically robust and
weakly coordinating substrates, for which there is a paucity of
late transition metal π-complexes.1 Whilst well-defined
examples can be found in the literature they are almost
exclusively limited to half sandwich formulations, where the
arene adopts an η6-coordination mode.1,2 The formation of
η2-arene complexes is notably invoked in C–H bond oxidative
addition of partially fluorinated benzenes to late transition
metals (Scheme 1),3,4 but to the best of our knowledge iso-
lation of mononuclear species of this nature is limited to
coinage metal examples.5 Computational studies indicate a
coordination site preference in the order HCvCH > HCvCF
> FCvCF, with the strongest η2-arene complexes formed at
the HCvCH positions adjacent to a fluorine substituent.6

Building on our work employing the high trans-influence
2,2′-biphenyl (biph) ancillary ligand,7,8 we herein present the
synthesis and solid-state characterisation of rhodium(III)
pincer complexes [Rh(CNC-Me)(biph)(η2-arene)]+ (Scheme 1;
arene = C6H6, 1a; FC6H5, 1b; 1,2-F2C6H4, 1c; 1,3-F2C6H4, 1d;
1,4-F2C6H4, 1e) that corroborate this conclusion
experimentally.

To enable systematic synthesis of the target complexes,
[Rh(CNC-Me)(biph)(κ1-ClCH2Cl)]

+ 2 was ultimately identified

as the most convenient well-defined precursor and prepared
using a silver-based transmetallation procedure involving
reaction of [Ag(CNC-Me)]+ with [Rh(biph)Cl(tBu2PCH2PtBu2)]
and halide abstraction in CH2Cl2 (80% yield; see ESI† for
solid-state structure, Rh–Cl = 2.5932(7) Å).† Dichloromethane
is labile and not retained on dissolution of 2 in CD2Cl2 or
neat fluoroarene, with the organometallic displaying time
averaged C2v symmetry at 298 K consistent with formulation
as a five-coordinate complex in solution and rapid pseudoro-
tation of the biphenyl ligand on the NMR time scale (ΔH‡ =
75 ± 1 kJ mol−1, ΔS‡ = +80 ± 5 J K−1 mol−1, ΔG‡

298K = 52 ±
3 kJ mol−1 in CD2Cl2).

6 In the latter case, selective removal of
CH2Cl2 in vacuo and subsequent recrystallisation from the
neat fluoroarene enabled isolation of the corresponding η2-
arene complexes 1b–e in 61–81% yield. Benzene is a poor
solvent for cationic species of this nature, but 1a was pre-
pared in a similar manner using a 1 : 1 molar mixture of
benzene – 1,2-difluorobenzene in 77% yield. Crystals suitable
for analysis by X-ray diffraction were obtained in all cases
(Fig. 1), with bulk purity confirmed using a combination of
combustion analysis, solid-state 19F MAS NMR spectroscopy
and dissolution in CD2Cl2; with one equivalent of the respect-
ive free arene observed by 1H and 19F NMR spectroscopy
(see ESI).†

Scheme 1 Intermediacy of η2-adducts in the C–H bond activation of
fluoroarenes. [B(3,5-(CF3)2C6H3)4]

− anion omitted for clarity.

†Electronic supplementary information (ESI) available: Full experimental and
computational details, including NMR and IR spectra and ETS-NOCV defor-
mation density plots (PDF), and optimised geometries (XYZ). CCDC
1988128–1988133. For ESI and crystallographic data in CIF or other electronic
format see DOI: 10.1039/d0dt01137a
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The rigid chelates of the biph and CNC pincer ligands
provide a framework for pseudo-octahedral metal geometries
in 1a–e, where η2-arene coordination [Rh–(CvC) = 2.622(2)–
2.643(2) Å] completes the coordination sphere and enables
attainment of 18 VE configurations. The observed selectivity
for coordination of the fluoroarenes via the HCvCH sites adja-
cent to a fluorine substituent, notably vindicates compu-
tational trends in binding energy previously established for
neutral rhenium cyclopentadienyl fragments6 and those
determined as part of this study for 1a–e at the ωB97X-D3/
def2-TZVP(-f ) level of theory (Fig. 1). The absolute magnitudes
of the calculated arene binding energies are considerably
lower than the corresponding rhenium systems (69.0–73.8 vs.
87.0–99.3 kJ mol−1 for the lowest energy regioisomers), con-
sistent with the cationic nature of 1 and reconciling the
entropically unfavourable coordination inferred in solution.
Moreover, the relative binding energies of 1a/c are supported
by the aforementioned (competition) experiment involving dis-
solution of 2 in a 1 : 1 molar mixture of benzene – 1,2-difluoro-
benzene, yielding exclusively 1a. DFT-based energy decompo-
sition analysis of the metal-arene bonding interactions using
the ETS-NOCV method, as implemented in ORCA 4.1.2,9

suggests these interactions are dominated by arene to metal
σ-donation with only minor metal to arene π-backbonding con-
tributions (see ESI).† The former are sufficient to explain the
observed regioselectivity for all but 1c, where subtle differences
in π-backbonding are decisive.

In summary, we have exploited a planar NHC-based pincer
ligand and the high trans-influence 2,2′-biphenyl ancillary to
prepare an unprecedented homologous series of rhodium(III)
complexes featuring η2-coordinated benzene and fluoroarenes.
Supported by a DFT analysis, these complexes provide evi-
dence for preferential η2-coordination of fluoroarenes via the
HCvCH sites adjacent to a fluorine substituent; an important
finding relevant to the selective C–H activation of these valu-
able fluoroaryl synthons.
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