Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Conductive fullerene surfactants, FPPI, Bis-FPPI, Bis-FIMG and Bis-FITG, are developed as electron transporting materials for achieving efficient organic and perovskite solar cells (OSCs and PVSCs) under mild solution-fabrication. One common structural feature of these fullerenes is a quaternary ammonium halide moiety, which enables electron transfer from constituent Lewis basic halides to adjacent π-acidic fullerene, resulting in anion-induced n-doping of the derived fullerenes. These polar fullerenes, herein with suitable conductivities, work-function tunability and orthogonal solution-process abilities (to common organic semiconductors and perovskites), possess advantages as interlayers not only enabling good photovoltaic performance of OSCs and PVSCs, with over 19% power conversion efficiency made from mild fabrication, but also showing device performance insensitive to the interlayer thickness.

Graphical abstract: Conductive fullerene surfactants via anion doping as cathode interlayers for efficient organic and perovskite solar cells

Page: ^ Top