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Using steric bulk for selective recognition;

blocking the binding site to differentiate guestsy
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Selectivity is demonstrated in a supramolecular host:guest system using
a receptor with a non-linear binding site. For the “open” receptor 1
strong binding for both flexible and rigid guests was observed.
Receptor 2, with a “blocked” binding site, also bound flexible guests
effectively but its affinity for rigid guests was 50 fold lower.

The concepts of preorganisation and complementarity are central
to supramolecular chemistry."” It is accepted that through the
careful application of these concepts that a host can be constructed
with high selectivity for a specific guest.>

In Nature recognition is also achieved using non-linear
binding sites, for example, the well-known thiazolidinedione
insulin sensitizer rosiglitazone (marketed as Avandia) adopts a
“U” shape when bound to its target the peroxisome proliferator-
activated receptor (PPARY).? As long as the guest can adopt a low
energy conformation to accommodate a “twisted” or “hindered”
binding site then strong interactions, and in turn biological
activity, can be achieved. The pharmaceutical guest rosiglitazone
can assume the required non-linear conformation due to
judiciously placed flexible methylene and ethylene links. Not
all ligands, substrates, and even pharmaceutical guests can
adopt such a conformation and in this way enhanced selectivity
can be achieved.

In supramolecular chemistry a great deal of attention has
been devoted to designing and synthesising perfectly matched
(preorganised and complementary) host:guest systems. The use
of hosts with non-linear binding sites/clefts to elicit selectivity
amongst guests is as yet not well explored.

Herein we report two new hosts 1 and 2 (Fig. 1) for the binding
of dicarboxylates. Host 2 was designed to favour the binding of
flexible guests and its structure comprises a bisurea cleft that is
centrally functionalised with a blocking unit that prevents
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Fig. 1 Structure of fused polynorbornane hosts 1 and 2 highlighting the
sterically restricted cleft of host 2. Also shown are the four dicarboxylate
guests used in this study.
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linear “end-to-end” binding. While the synthesis of both 1 and
2 was broadly based on previous polynorbornyl bis-thiourea
systems,” a unique central unit was required that could be
further functionalised. Hedaya diene 3 (Scheme 1), a diester
synthesised by a tandem Diels-Alder reaction,” was identified as
ideally suited for further modification.®

Saponification of diene 3 to the diacid was followed by
dehydration (using Ac,O) to the corresponding anhydride.
Reaction of the anhydride with 4-methoxyaniline gave the desired
centrally functionalised imide 4 in 21% yield (Scheme 1, see ESL ¥
for a detailed description of all synthetic procedures). The micro-
wave mediated 1,3 dipolar cycloaddition” between either 3 or 4
and the carbonyl ylide generated from cyclobutane epoxide 5°
afforded the fused polynorbornane frameworks 6 and 7 (65% and
71% yield respectively). A two-step protocol involving removal of
the protecting groups (TFA/CH,Cl,) then immediate reaction with
4-fluorophenylisothiocyanate gave the new thiourea hosts 1 and 2
in 77% and 73% yield respectively. The new compounds were fully
characterised using "H, **C and "°F NMR spectroscopy and for 2
the appearance of two sets of AB pairs in the 'H spectrum clearly
indicated the central and end functionalised para substituted
aromatics. Due to the primarily aliphatic nature of the frameworks
the region of the spectrum containing the urea N-H resonances
(0=9.53 & 7.67 ppm for 1 and J = 9.58 & 7.71 ppm for 2) was free
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Scheme 1 Synthesis of new hosts 1 and 2. Reagents and conditions:
(i) KOH, CH3OH, 60 °C, 4 h, 89% (i) Ac,O, CH,Cl,, 40 °C, 4 h, 99%
(iii) 4-methoxyaniline, PhCHs, 150 °C (uw), 30 min, 21% (iv) 5 (2 equiv.),
150 °C (uw), 10 min, 65% for 6, 71% for 7 (v) 20% TFA in CH,Cl,, 4 h
(vi) 4-fluorophenylisothiocyanate, NEt(Pr),, CHCls, 24 h, 77% for 1, 73% for 2.
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from other resonances making them ideally suited for 'H NMR
titration experiments to evaluate binding.

Binding studies were performed using both the rigid dicar-
boxylates (2,6-naphthalate and 4,4’-biphenylate, Fig. 1) as well
as flexible dicarboxylates of similar length (azelate (C9) and
dodecanedioate (C12), Fig. 1). All "H NMR titrations were performed
in de-DMSO at a host concentration of 2.5 uM. Binding constants
(see Table 1) were determined using global fitting (Bindfit software).’
All isotherms with fitplots are provided in the ESLY

For new bisurea host 1 binding of both the rigid and flexible
guests was comparable (Table 1). For example host 1 bound
both naphthalate and azelate (C9) in a strong 1:1 fashion
(logK = 3.7 and 4.3 respectively, Table 1). The results clearly
indicate that the new bisurea host is well suited to the binding
of larger dicarboxylates. These results also clearly reinforce the
fact that for preorganised bisurea clefts that do not possess
some form of additional means of binding site discrimination
little selectivity is achievable between guests of similar length.

The binding behaviour of the new hosts 1 and 2 to both
flexible guests was near identical. Indeed, both 1 and 2 bound
azelate (C9) equally effectively and the binding isotherms
(Fig. 2) and in turn the binding constants (logK = 4.3 and

Table 1 Binding constants (log K;.1)? for hosts 1 and 2 with both rigid and
flexible guests

Host Dicarboxylate guest

Naphthalate Biphenylate Azelate C9 Dodecanedioate C12
1 3.7 (6%) 5 (4%) 3(14%) 4.4 (13%)
2 2.8 (1%) 7 (1%) 5(12%) 4.1 (14%)

“ Log Ky, as determined from the titration isotherm with associated
fitting error (%).°
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Fig. 2 lIsotherms resulting from the H NMR titrations of hosts 1 and 2
with azelate (C9).

logK = 4.5 respectively) for this anion were near identical
indicating that strong binding was taking place regardless of
the central methoxyphenyl group (Fig. 3).

While the central methoxyphenyl group in 2 had little influence
on the binding of flexible guests it had significant influence on the
binding of rigid dicarboxylates of similar length. Indeed, compared
to host 1 the binding of the same guest was an order of magnitude
less potent; for example the binding of 2 to 2,6-naphthalate was
modest (log K = 2.8) whereas the unencumbered host 1 bound
this guest much more effectively (log K = 3.7).

For host 2 the discrimination of flexible versus rigid guests
was highlighted in the binding of azelate (C9) versus the
similarly sized 2,6-naphthalate (logK = 4.5 versus logK = 2.8,
Fig. 4). The difference in binding constants amounts to 50 fold
selectivity for the flexible guest over the rigid.
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Fig. 3 Proposed binding conformation of hosts 1 and 2 with azelate (C9).
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Fig. 4 Isotherms resulting from the *H NMR titrations of hosts 2 with
azelate (C9) (top) and naphthalate (bottom) showing the clear difference in
binding behaviour.
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Fig. 5 Proposed binding of host 2 with azelate (C9) and naphthalate.

Features of both host 2 and the guest make this possible.
First, for the host, with ethylene linkers to the thiourea groups,
a reorientation of the H bond donors to face away from the
central cleft is possible and as such a non-linear binding site is
readily created. Second and most importantly, guests such as
azelate are highly flexible and as such can adopt a low energy
“U” shape conformation that can interact with the host regard-
less of the central unit. Due to the central group of 2, the rigid
guests, despite their appropriate size, cannot form strong linear
hydrogen bonds with the thiourea groups (Fig. 5).
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In conclusion we have successfully demonstrated that selec-
tivity in supramolecular recognition can be achieved using a
steric block to discriminate against guests that cannot adopt
the “U” shape geometry required for strong binding. Such a
general strategy is likely to be particularly useful in the binding
of larger, typically more challenging substrates.
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