Issue 43, 2025

Effect of the pH value on compression and array structures of highly charged microgels at the air/water interface

Abstract

Understanding the interfacial behavior of stimuli-responsive microgels is critical for applications such as foam and emulsion stabilization, as well as for the fabrication of two-dimensional colloidal crystals using the interfaces. In this study, the pH-dependent compression behavior and array structures of micron-sized poly(N-isopropylacrylamide-co-acrylic acid) microgels at the air/water interface was investigated. By combining a Langmuir trough with fluorescence microscopy, microgel arrays under compression and acidic (pH = 3) or basic (pH = 9) conditions were directly visualized. At pH = 9, the carboxyl groups within the microgels are deprotonated, resulting in significant swelling and the formation of ordered hexagonal arrays with high crystallinity (Ψ6 > 0.84) upon compression. In contrast, at pH = 3, the carboxyl groups within the microgels are protonated, leading to a suppression of the electrostatic repulsion between neighboring microgels and a reduction in crystallinity (Ψ6 ∼ 0.70) of the microgel arrays before and after compression. Furthermore, the calculated surface-compression modulus using the compression isotherms indicated higher interfacial elasticity for charged microgels, demonstrating that electrostatic repulsion governs both array ordering and mechanical robustness. These findings provide fundamental insights into the role of charge in controlling the microgel structure and mechanics at interfaces, thus offering further guidelines for the design of stimuli-responsive materials and stabilizers for foams and emulsions.

Graphical abstract: Effect of the pH value on compression and array structures of highly charged microgels at the air/water interface

Supplementary files

Article information

Article type
Communication
Submitted
02 Sep 2025
Accepted
13 Oct 2025
First published
22 Oct 2025
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2025,21, 8323-8333

Effect of the pH value on compression and array structures of highly charged microgels at the air/water interface

T. Kawamoto, H. Minato and D. Suzuki, Soft Matter, 2025, 21, 8323 DOI: 10.1039/D5SM00892A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements