Issue 14, 2025

Hollow Au nanoparticles for single-molecule Raman spectroscopy via a synergistic electromagnetic and chemical enhancement strategy

Abstract

Raman spectroscopy has demonstrated significant potential in molecular detection, analysis, and identification, particularly when it adopts single-molecule surface-enhanced Raman scattering (SM-SERS) substrates. A recent SM-SERS scheme incorporates two-fold Raman enhancement mechanisms: the electromagnetic enhancement enabled by a plasmonic nanogap hotspot formed from gold sphere nanoparticles sitting on a gold mirror and the chemical enhancement enabled by a two-dimensional material, WS2, inserted into the nanogap. In this work we integrate multiple advanced concepts and techniques to achieve remarkable performance improvements of SM-SERS. We have used hollow gold nanoparticles to form plasmonic nanogaps, which better match the wavelength of near-infrared pump lasers, thus maximizing the electromagnetic field enhancement within the nanogap and creating a more effective hotspot. Notably, our strategy has achieved universal, robust, fast, and uniform SM-SERS detection of three dye molecules (Rhodamine B, Rhodamine 6G and Crystal Violet) with a detection limit of 10 mol L−1. This innovative approach opens up new possibilities for bringing state-of-the-art optical imaging, monitoring, and spectroscopy technologies into the single-molecule science arena for disclosing more unknown physical, chemical, and biological properties and principles.

Graphical abstract: Hollow Au nanoparticles for single-molecule Raman spectroscopy via a synergistic electromagnetic and chemical enhancement strategy

Associated articles

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
20 Kax 2024
Accepted
28 Nah 2025
First published
28 Nah 2025

Nanoscale, 2025,17, 8741-8751

Hollow Au nanoparticles for single-molecule Raman spectroscopy via a synergistic electromagnetic and chemical enhancement strategy

Z. Gao, H. Yang, J. Zhang, J. Yang, L. Hong and Z. Li, Nanoscale, 2025, 17, 8741 DOI: 10.1039/D4NR05311G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements