In-depth analysis of kraft lignin epoxy thermosets†
Abstract
In this study, epoxidized lignins were prepared by reacting softwood (SW) and hardwood (HW) technical (kraft) lignins with a biobased epichlorohydrin. The chemical structures, rheological behaviors, and thermomechanical properties of the epoxidized lignins were measured and compared with those of petroleum-based (DGEBA) epoxy resin. First, the chemical and physical properties of the lignin samples were assessed using Fourier-transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), quantitative phosphorus nuclear magnetic resonance spectroscopy (31P NMR), and 2D-heteronuclear single quantum coherence (HSQC) NMR analyses. Subsequently, the unmodified lignins were epoxidized over a short period (3 hours), using ethyl lactate as a biobased co-solvent. The 31P NMR and HSQC analysis of the epoxidized lignins confirmed that phenolic hydroxyl and carboxylic acid groups in lignin were selectively epoxidized without any other significant changes to the chemical structure of lignin. Rheological multi-wave curing studies of both lignin-based and bisphenol A-based (DGEBA) resins cured with a biobased curing agent revealed that the lignin-based systems exhibited significantly shorter gelation times and lower activation energies. Further analyses, including gel fraction, swelling ratio, thermal gravimetric analysis (TGA), and dynamic mechanical analysis (DMA) results, demonstrated that lignin-based thermosets had comparable properties to the petroleum-based epoxy system when both were prepared with solvent (40 wt%) inclusion. Notably, the thermoset resin made with kraft hardwood lignin exhibited superior thermomechanical properties compared to the softwood system.
- This article is part of the themed collection: Frontiers in physical chemistry for lignin valorisation