Issue 2, 2024

Understanding trends in conductivity in four isostructural multifunctional crystals of Se substituted bis-dithiazolyl radicals

Abstract

Materials based on stable organic radicals are very promising for the development of single-component organic conductors. However, the lack of studies addressing the quantitative calculation of the parameters defining their conductivity hampers progress. To contribute to this field, we computationally study four isostructural compounds with different Se-contents belonging to the key pyridine-bridged bisdithiazolyl family (namely, (S,S)-bisdithiazolyl, (S,Se) and (Se,S) mixed-thiaselenazolyl, and (Se,Se)-bisdiselenazolyl) with remarkable variation in the electrical conductivity (σSS < σSeS < σSSe < σSeSe) that cannot be explained on simple grounds. This trend here is explained by analyses of the local microscopic parameters playing the leading role in charge transport mediated by the molecular hopping mechanism: reorganization energy (λ), electronic couplings (HDA), electron-transfer rate constants (kDA), and charge-carrier density (ρc). Our results reveal the preference for hole conduction. The lowest conductivity of (S,S) arises from its largest λ, and smallest HDA's and ρc, resulting in a 1D conductor along the π-stack. Instead, the largest conductivity of (Se,Se) originates in its smallest λ, largest ρc and a set of HDA electronic couplings that not only are the largest but also define a 3D topology of conduction pathways along both lateral contacts and π-stacking. Comparison of (Se,S) and (S,Se) shows that although (Se,S) features the largest kDA and the smallest λ values, (S,Se) exhibits the largest electrical conductivity since it shows a 3D conduction topology because of lateral contacts and has a larger ρc value. Our take-home message is that one needs to master a holistic view of the parameters governing the charge transport process (namely, λ, HDA, topology of conduction paths, and ρc) to understand the trends in conductivity in radical-based molecular materials.

Graphical abstract: Understanding trends in conductivity in four isostructural multifunctional crystals of Se substituted bis-dithiazolyl radicals

Supplementary files

Article information

Article type
Paper
Submitted
11 Dit 2023
Accepted
27 Xim 2023
First published
28 Xim 2023
This article is Open Access
Creative Commons BY license

J. Mater. Chem. C, 2024,12, 468-480

Understanding trends in conductivity in four isostructural multifunctional crystals of Se substituted bis-dithiazolyl radicals

C. Roncero-Barrero, M. A. Carvajal, J. Ribas-Ariño, I. de P. R. Moreira and M. Deumal, J. Mater. Chem. C, 2024, 12, 468 DOI: 10.1039/D3TC03710J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements