An air cathode with high catalytic activity and reversibility toward the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is designed using an engineered Fe d-orbital strategy through the typical coordinations of iron phthalocyanine molecule (FeMc) crystals on delaminated MoAl1−xB MBene sheets (FeMc–MoAl1−xB). The hybridization induces unique electronic guest–host interactions with significant charge donation by MoAl1−xB, resulting in remarkable regulation of the Fe3d charge delocalization and spin-state Fe(II) ion transition, thereby optimizing the adsorption/desorption of oxygenated intermediates with a balanced *OOH–*O transformation for simultaneously boosting both ORR and OER kinetics with high reversibility. FeMc–MoAl1−xB achieves a remarkable OER overpotential of 0.356 V at 10 mA cm−2 while exhibiting a favorable half-wave potential of 0.862 V for the ORR in an alkaline electrolyte. An aqueous Zn–air battery (ZAB) assembled with an FeMc–MoAl1−xB air cathode demonstrates a high peak power density of 168.2 mW cm−2 and a long cycling durability of 800 h, overperforming the (Pt/C + RuO2) counterpart. These findings highlight the significance of such novel efficient air–cathode catalysts by performing electronic structure engineering of FeMc with MoAl1−xB to develop rechargeable ZAB devices with enhanced performance and cost effectiveness.