Recent progress in block copolymer soft-template-assisted synthesis of versatile mesoporous materials for energy storage systems
Abstract
Soft-templating methods, which utilize the block copolymer (BCP)-derived self-assembly with inorganic precursors, have been extensively applied to synthesize a wide range of mesoporous materials. Compared with other synthetic approaches including template-free and hard templating methods, the soft-templating method offers significant advantages for customizing various compositions, particle morphologies, and pore sizes/structures of mesoporous materials. During the last decade, various soft templating approaches have been developed to synthesize functional mesoporous materials for a variety of applications. In this review, we outline recent developments in synthetic approaches for mesoporous materials and their potential applications, particularly in energy storage systems (ESSs) such as batteries and supercapacitors. In addition, this review provides general information about soft-templating methods which can be applied to the tailored synthesis for the specific requirements of various applications.
- This article is part of the themed collections: Journal of Materials Chemistry A Recent Review Articles and Honorary themed collection for Thomas P. Russell