Issue 18, 2022

A review on non-noble metal catalysts for glycerol hydrodeoxygenation to 1,2-propanediol with and without external hydrogen

Abstract

The depleting petroleum oil resources, political embargos, and global warming dilemma have made it mandatory to develop alternative green technologies for energy and chemical production. Glycerol is one of the top-12 building block chemicals that can be mainly obtained as a coproduct of biodiesel production. The value addition of glycerol is only possible through its conversion to commodity and fine chemicals. Glycerol hydrogenolysis is one of the crucial pathways to produce several value-added products, among which 1,2-propanediol (1,2-PDO), 1,3-propanediol (1,3-PDO), ethylene glycol (EG) and 1-and/or 2-propanols are hydrogenolysis products. Selective glycerol hydrogenolysis to the desired product 1,2-PDO is only possible through the catalyst having an optimum combination of acid/base and metal sites (metallic and mixed oxides). The present review mainly focuses on the critical assessment of the influence of different supports, catalyst preparation methods, and/or pretreatment on structural, and electronic properties and simultaneously on the activity and product selectivity of non-noble metal catalysts. The role of reaction parameters in this industrially important reaction on catalyst performance will also be presented. A rigorous survey of patented literature on non-noble metal-catalyzed glycerol hydrogenolysis to 1,2-PDO is also discussed. Further, the review covers recent progress on non-noble metal-catalyzed autogenous glycerol hydrogenolysis through glycerol aqueous phase reforming (APR) and/or catalytic transfer hydrogenolysis (CTH), to overcome the cost and handling issues of external hydrogen. Finally, techno-economic analysis is also presented which compares the glycerol hydrogenolysis with and without external hydrogen with the conventional process of 1,2-PDO production. This analysis indicated that CTH and glycerol hydrogenolysis under ambient hydrogen pressure have the potential for commercialization, however catalyst stability and elimination of co-product formation at higher glycerol concentration need to be considered critically.

Graphical abstract: A review on non-noble metal catalysts for glycerol hydrodeoxygenation to 1,2-propanediol with and without external hydrogen

Article information

Article type
Critical Review
Submitted
18 Cax 2022
Accepted
10 Leq 2022
First published
17 Leq 2022

Green Chem., 2022,24, 6751-6781

A review on non-noble metal catalysts for glycerol hydrodeoxygenation to 1,2-propanediol with and without external hydrogen

R. Mane, Y. Jeon and C. Rode, Green Chem., 2022, 24, 6751 DOI: 10.1039/D2GC01879A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements