Issue 36, 2021

Influence of the choice of precursors on the synthesis of two-dimensional transition metal dichalcogenides

Abstract

The interest in transition metal dichalcogenides (TMDCs; MEy/2; M = transition metal; E = chalcogenide, y = valence of the metal) has grown exponentially across various science and engineering disciplines due to their unique structural chemistry manifested in a two-dimensional lattice that results in extraordinary electronic and transport properties desired for applications in sensors, energy storage and optoelectronic devices. Since the properties of TMDCs can be tailored by changing the stacking sequence of 2D monolayers with similar or dis-similar materials, a number of synthetic routes essentially based on the disintegration of bulk (e.g., chemical exfoliation) or the integration of atomic constituents (e.g., vapor phase growth) have been explored. Despite a large body of data available on the chemical synthesis of TMDCs, experimental strategies with high repeatability of control over film thickness, phase and compositional purity remain elusive, which calls for innovative synthetic concepts offering, for instance, self-limited growth in the z-direction and homogeneous lateral topography. This review summarizes the recent conceptual advancements in the growth of layered van der Waals TMDCs from both mixtures of metal and chalcogen sources (multi-source precursors; MSPs) and from molecular compounds containing metals and chalcogens in one starting material (single-source precursor; SSPs). The critical evaluation of the strengths, limitations and opportunities of MSP and SSP approaches is provided as a guideline for the fabrication of TMDCs from commercial and customized molecular precursors. For example, alternative synthetic pathways using tailored molecular precursors circumvent the challenges of differential nucleation and crystal growth kinetics that are invariably associated with conventional gas phase chemical vapor transport (CVT) and chemical vapor deposition (CVD) of a mixture of components. The aspects of achieving high compositional purity and alternatives to minimize competing reactions or side products are discussed in the context of efficient chemical synthesis of TMDCs. Moreover, a critical analysis of the potential opportunities and existing bottlenecks in the synthesis of TMDCs and their intrinsic properties is provided.

Graphical abstract: Influence of the choice of precursors on the synthesis of two-dimensional transition metal dichalcogenides

Article information

Article type
Perspective
Submitted
27 Agd 2021
Accepted
01 Qad 2021
First published
01 Qad 2021

Dalton Trans., 2021,50, 12365-12385

Influence of the choice of precursors on the synthesis of two-dimensional transition metal dichalcogenides

V. Brune, M. Grosch, R. Weißing, F. Hartl, M. Frank, S. Mishra and S. Mathur, Dalton Trans., 2021, 50, 12365 DOI: 10.1039/D1DT01397A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements