Issue 1, 2018

Bioconcentration, bioaccumulation, biomagnification and trophic magnification: a modelling perspective

Abstract

We present a modelling perspective on quantifying metrics of bio-uptake of organic chemicals in fish. The models can be in concentration, partition ratio, rate constant (CKk) format or fugacity, Z and D value (fZD) format that are shown to be exactly equivalent, each having it merits. For most purposes a simple, parameter-parsimonious one compartment steady-state model containing some 13 parameters is adequate for obtaining an appreciation of the uptake equilibria and kinetics for scientific and regulatory purposes. Such a model is first applied to the bioaccumulation of a series of hypothetical, non-biotransforming chemicals with log KOW (octanol–water partition ratio) values of 4 to 8 in 10 g fish ranging in lipid contents to deduce wet-weight and lipid normalized concentrations, bioaccumulation and biomagnification factors. The sensitivity of biomagnification factors to relative lipid contents is discussed. Second, a hypothetical 5 species linear food chain is simulated to evaluate trophic magnification factors (TMFs) showing the critical roles of KOW and biotransformation rate. It is shown that lipid normalization of concentrations is most insightful for less hydrophobic chemicals (log KOW < 5) when bio-uptake is largely controlled by respiratory intake and equilibrium (equi-fugacity) is approached. For more hydrophobic chemicals when dietary uptake kinetics dominate, wet weight concentrations and BMFs are more insightful. Finally, a preferred strategy is proposed to advance the science of bioaccumulation using a combination of well-designed ecosystem monitoring, laboratory determinations and modelling to confirm that the perceived state of the science contained in the models is consistent with observations.

Graphical abstract: Bioconcentration, bioaccumulation, biomagnification and trophic magnification: a modelling perspective

Article information

Article type
Paper
Submitted
15 Dit 2017
Accepted
08 Kax 2017
First published
08 Kax 2017
This article is Open Access
Creative Commons BY license

Environ. Sci.: Processes Impacts, 2018,20, 72-85

Bioconcentration, bioaccumulation, biomagnification and trophic magnification: a modelling perspective

D. Mackay, A. K. D. Celsie, D. E. Powell and J. M. Parnis, Environ. Sci.: Processes Impacts, 2018, 20, 72 DOI: 10.1039/C7EM00485K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements