Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Luminescence thermal sensing and deep-tissue imaging using nanomaterials operating within the first biological window (ca. 700–980 nm) are of great interest, prompted by the ever-growing demands in the fields of nanotechnology and nanomedicine. Here, we show that (Gd1−xNdx)2O3 (x = 0.009, 0.024 and 0.049) nanorods exhibit one of the highest thermal sensitivity and temperature uncertainty reported so far (1.75 ± 0.04% K−1 and 0.14 ± 0.05 K, respectively) for a nanothermometer operating in the first transparent near infrared window at temperatures in the physiological range. This sensitivity value is achieved using a common R928 photomultiplier tube that allows defining the thermometric parameter as the integrated intensity ratio between the 4F5/24I9/2 and 4F3/24I9/2 transitions (with an energy difference between the barycentres of the two transitions >1000 cm−1). Moreover, the measured sensitivity is one order of magnitude higher than the values reported so far for Nd3+-based nanothermometers enlarging, therefore, the potential of using Nd3+ ions in luminescence thermal sensing and deep-tissue imaging.

Graphical abstract: Boosting the sensitivity of Nd3+-based luminescent nanothermometers

Page: ^ Top