Lite Version|Standard version

To gain access to this content please
Log in with your free Royal Society of Chemistry publishing personal account.
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

A series of new Co–Ln heterometallic clusters formulated as [Co2Ln43-OH)2(piv)4(hmmp)4(ae)2]·(NO3)2·2H2O (Ln = Eu (1), Gd (2), Tb (3), Dy (4), H2hmmp = 2-[(2-hydroxyethylimino)methyl]-6-methoxyphenol, Hae = 2-aminoethanol, Hpiv = pivalic acid) were synthesized and characterized. X-ray crystallography reveals that each of them contains a heterometallic {Ln4Co2} core, which is supported by two μ3-hydroxide, four piv, four hmmp2− and two ae ligands. The magnetic investigation indicates that 2 exhibits weak antiferromagnetic interactions between GdIII ions, and a large MCE value of 24.9 J kg−1 K−1, while 4 shows a fast relaxation of magnetization. The TGA and VT-PXRD measurements suggest that all the compounds show good thermal stability and can be stable up to about 220 °C. In addition, to address the influence of the Gd–O–Gd angles on the magnetic properties, compound 2 was compared with a series of compounds involving different bridges between GdIII ions. The comparison reveals that the tiny difference in the Gd–O–Gd angles favors different magnetic coupling.

Graphical abstract: Synthesis, structures, and magnetic properties of a series of new heterometallic hexanuclear Co2Ln4 (Ln = Eu, Gd, Tb and Dy) clusters

Page: ^ Top