Lite Version|Standard version

To gain access to this content please
Log in with your free Royal Society of Chemistry publishing personal account.
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

The performance of a variety of theoretical methods in computing stabilization energies of the substituted methyl and vinyl radicals ˙CH2F, ˙CH2CN, ˙CH2CH[double bond, length half m-dash]CH2, ˙CH2CH[double bond, length half m-dash]O, CH2[double bond, length half m-dash]C˙F and CH2[double bond, length half m-dash]C˙CN is examined. The influence of electron correlation (UHF, UMP2, PMP2, RMP2, UB3-LYP, UQCISD, UQCISD(T), UCCSD(T), URCCSD(T) and RRCCSD(T)) and basis set size (from 6-31G(d) to 6-311++G(3df,3pd)) on stabilization energies is evaluated, as well as the performance of compound methods such as G2, G3, CBS-Q and CBS-APNO and their variants. The results indicate that generally reliable radical stabilization energies can be obtained at modest cost using RMP2/6-311+G(2df,p)//RMP2/6-31G(d) energies. A slightly less accurate but more economical procedure is RMP2/6-311+G(d)//B3-LYP/6-31G(d). UMP2 and PMP2 are unsuitable for obtaining radical stabilization energies for spin-contaminated radicals, while UB3-LYP appears generally to overestimate stabilization energies.


Page: ^ Top