Issue 4, 1993

2,2′:6′,2″-Terpyridine (terpy) acting as a fluxional bidentate ligand. Part 2. Rhenium carbonyl halide complexes, fac-[ReX(CO)3(terpy)](X = Cl, Br or I): NMR studies of their solution dynamics, synthesis of cis-[ReBr(CO)2(terpy)] and the crystal structure of [ReBr(CO)3(terpy)]

Abstract

Under mild conditions pentacarbonylhalogenorhenium(I) complexes react with 2,2′:6′,2″-terpyridine (terpy) to form stable octahedral tricarbonyl complexes fac-[ReX(CO)3(terpy)](X = Cl, Br or I) in which the terpyridine acts as a bidentate chelate ligand. Under more severe reaction conditions fac-[ReBr(CO)3(terpy)] can be converted to cis-[ReBr(CO)2(terpy)]. In solution the tricarbonyl complexes are fluxional with the terpyridine oscillating between equivalent bidentate bonding modes. At low temperatures rotation of the unco-ordinated pyridine ring is restricted and in CD2Cl2 solution two preferred rotamers exist in approximately equal abundances. Rotational energy barriers have been estimated for the X = Cl and I complexes. The X-ray crystal structure of fac-[ReBr(CO)3(terpy)] confirms the bidentate chelate bonding of terpy with a N–Re–N angle of 74.3°. The pendant pyridine ring is inclined at an angle of 52.9° to the adjacent co-ordinated ring and the unco-ordinated nitrogen is directed towards the axial carbonyl and trans to Br.

Article information

Article type
Paper

J. Chem. Soc., Dalton Trans., 1993, 597-603

2,2′:6′,2″-Terpyridine (terpy) acting as a fluxional bidentate ligand. Part 2. Rhenium carbonyl halide complexes, fac-[ReX(CO)3(terpy)](X = Cl, Br or I): NMR studies of their solution dynamics, synthesis of cis-[ReBr(CO)2(terpy)] and the crystal structure of [ReBr(CO)3(terpy)]

E. W. Abel, V. S. Dimitrov, N. J. Long, K. G. Orrell, A. G. Osborne, H. M. Pain, V. Šik, M. B. Hursthouse and M. A. Mazid, J. Chem. Soc., Dalton Trans., 1993, 597 DOI: 10.1039/DT9930000597

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements