Issue 14, 2024

Sensitive detection of herbicide residues using field-amplified sample injection coupled with electrokinetic supercharging in flow-gated capillary electrophoresis

Abstract

Residues of glyphosate (GlyP) and its major degradation product, aminomethylphosphonic acid (AMPA), widely exist in the water system and plant products and thus are also present in the bodies of animals and humans. Although no solid evidence has been obtained, the concern about the cancer risk of GlyP is persistent. The measurement of GlyP and AMPA in trace levels is often needed but lacks readily available analytical approaches with detection sensitivity, accuracy and speed. This study aims to develop a simple and robust technique for the sensitive detection of GlyP and AMPA residues in a surface water system with flow-gated capillary electrophoresis (CE). Experimentally, water samples were first fluorogenically derivatized with 4-fluoro-7-nitrobenzofurazan (NBD-F) in a low-conductivity buffer at room temperature, and the mixture was injected and concentrated in the capillary based on field-amplified sample injection (FASI) coupled with electrokinetic supercharging (EKS). This scheme included a step of sample buffer injection upon electroosmotic pumping, where negatively charged analytes were electrophoretically rejected, followed by automatic voltage reversal for FASI-EKS. The detection sensitivity was improved by 296, 444, and 861 times for glufosinate (GluF), AMPA, and GlyP, respectively. The proposed method was validated in terms of accuracy, precision, limits of detection (LODs), and linearity. The LODs were estimated to be 50.0 pM, 5.0 pM, and 10.0 pM for GluF, AMPA, and GlyP, respectively. Its application was demonstrated by measuring GluF and AMPA in water samples collected from a local water system. This study provides an effective approach for the online preconcentration of negatively charged analytes, thus enabling the sensitive detection of herbicide residues in water samples. The method can also be applied to analyze other samples, including biological fluids and plant products, upon appropriate sample preparation such as solid phase extraction of analytes.

Graphical abstract: Sensitive detection of herbicide residues using field-amplified sample injection coupled with electrokinetic supercharging in flow-gated capillary electrophoresis

Article information

Article type
Paper
Submitted
03 Xim 2023
Accepted
05 Cig 2024
First published
05 Cig 2024

Anal. Methods, 2024,16, 2025-2032

Sensitive detection of herbicide residues using field-amplified sample injection coupled with electrokinetic supercharging in flow-gated capillary electrophoresis

Y. Gong and M. Gong, Anal. Methods, 2024, 16, 2025 DOI: 10.1039/D3AY01950K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements