Issue 9, 2018

Soft-Pillared@Magadiite: influence of the interlayer space and amine type on CO2 adsorption

Abstract

Layered silicates are versatile materials that can be grafted with different organosilanes for several applications. Despite this, there are few studies on the use of layered silicate-based materials in CO2 adsorption. In this regard, the present study describes the synthesis of organo-magadiite followed by simultaneous grafting with two organosilanes ((3-glycidyloxypropyl)trimethoxysilane (GPTS) and N1-(3-trimethoxysilylpropyl)diethylenetriamine (TMSPETA)) to prepare an adsorbent labeled Soft-Pillared@Magadiite. The adsorbents were characterized through XRD, 13C- and 29Si-NMR, TGA/DTG, and elemental analyses of carbon, hydrogen, and nitrogen (CHN). The results suggest that this adsorbent has an expanded interlayer space (3.05 nm) that is larger than the interlayer space when the layered material is grafted with the organosilanes separately, and it may display improved CO2 adsorption. The CO2 adsorption was evaluated by TGA, CO2-TPD, and DSC. Moreover, the adsorption isotherms were fitted using a pseudo-second order, a fractional order, and Avrami models. The optimum adsorption temperature of Soft-Pillared@Magadiite was 25 °C, and the adsorption capacity and efficiency were 0.36 mmol g−1 and 0.15, respectively, obtained using 5 vol% CO2 in He for 3 h. The CO2-TPD shows that the desorption of CO2 occurs below 90 °C, and from DSC, it is found that thermodynamic parameters, specifically sensible heat and heat of regeneration, are low as compared to those of aqueous MEA solution; the current technology indicates that Soft-Pillared@Magadiite has a good potential for CO2 adsorption.

Graphical abstract: Soft-Pillared@Magadiite: influence of the interlayer space and amine type on CO2 adsorption

Supplementary files

Article information

Article type
Paper
Submitted
04 Dit 2017
Accepted
12 Kax 2017
First published
12 Kax 2017

Dalton Trans., 2018,47, 3102-3111

Soft-Pillared@Magadiite: influence of the interlayer space and amine type on CO2 adsorption

R. B. Vieira and H. O. Pastore, Dalton Trans., 2018, 47, 3102 DOI: 10.1039/C7DT03732E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements