Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

The high cost of vacuum thermal evaporation and the challenging fabrication of multilayer devices by the solution processing method restrict the commercialization of organic light-emitting diodes (OLEDs). Herein, we introduce a flash evaporation method where an organic film pre-coated on a silicon wafer is re-deposited by sudden exposure to high temperature (∼1000 °C) in a rough vacuum to fabricate small molecule-based multilayer OLEDs. The flash-evaporated organic films maintain the original molecular structure after flash evaporation. Compared with the random molecular orientation of spin-coated small molecule films, flash-evaporated films have a high degree of molecular orientation perpendicular to the substrate surface. As a result, flash-evaporated OLEDs exhibit improved efficiency with low roll-off compared with spin-coated devices. The successful fabrication of a flexible, large-area (20 × 20 mm2) OLED suggests the great potential of the flash evaporation method for fabricating flexible and large area OLEDs with low cost in the future.

Graphical abstract: Flash-evaporated small molecule films toward low-cost and flexible organic light-emitting diodes

Page: ^ Top