Zhaohui
Liu
a,
Yingjie
Hua
b,
Jianjian
Wang
a,
Xinglong
Dong
a,
Qiwei
Tian
c and
Yu
Han
*ad
aAdvanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. E-mail: yu.han@kaust.edu.sa
bHainan Normal University, School of Chemistry and Chemical Engineering, Haikou, China
cThe Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of MolecularImaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China
dKAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
First published on 16th June 2017
Hierarchically structured zeolites combine the merits of microporous zeolites and mesoporous materials to offer enhanced molecular diffusion and mass transfer without compromising the inherent catalytic activities and selectivity of zeolites. This short review gives an introduction to the synthesis strategies for hierarchically structured zeolites with emphasis on the latest progress in the route of ‘direct synthesis’ using various templates. Several characterization methods that allow us to evaluate the ‘quality’ of complex porous structures are also introduced. At the end of this review, an outlook is given to discuss some critical issues and challenges regarding the development of novel hierarchically structured zeolites as well as their applications.
Ordered mesoporous silicas (OMSs), which are synthesized through a supramolecular self-assembly route by using surfactant molecules as templates, constitute another class of materials with regular porous structures.11–14 Different from microporous zeolites, OMSs possess much larger and tunable pores that reside in the range of “mesopores” (2–50 nm). Since the first report of OMSs in 1992,11 significant efforts have been made to explore their potential as catalysts for large molecule reactions, but unfortunately their amorphous nature results in low catalytic activity and weak hydrothermal stability, making them not as useful as zeolites.12–15
It is natural to think that integrating mesopores and zeolitic micropores in one single material (namely, fabricating hierarchically structured zeolites) may provide a solution to the problems associated with zeolites and OMSs alone. An ideal material is schematically illustrated in Fig. 1, which has ordered mesoporous channels encompassed by zeolitic structures.16 Such a material can be considered as a zeolite with intra-crystalline mesopores, or alternatively, as a mesoporous material with crystalline zeolitic walls, in which the mesopores allow fast diffusion and enhanced accessibility for bulky molecules, while the zeolitic structure can provide catalytic activity and selectivity.16–18 From the perspective of material synthesis, it is extremely difficult, if not impossible, to synthesize a material with ordered pores at both atomic and mesoscopic scales as shown in Fig. 1, because it requires the crystalline wall to be highly curved and strained. Note that for most practical applications, whether the material has ordered mesopores (mesoscopic structural ordering) is not crucial, but instead it is the size, concentration, and connectivity of mesopores in zeolite crystals that determine the molecular diffusion and catalytic properties.19,20 Therefore, it is a fundamental challenge but not a practical concern to generate ordered mesopores in zeolites. In fact, the large majority of hierarchically structured zeolites (simply referred to as “hierarchical zeolites” hereafter) reported in the literature have either lamellar (without curved pore walls)17,21,22 or disordered mesostructures.23–25
Fig. 1 Schematic illustration of an ideal hierarchically structured zeolite that has ordered mesoporous channels encompassed by microporous zeolitic walls (courtesy of Dr Ryoo Ryong). |
The direct effects of introducing mesopores in zeolites are (i) the increase of accessible surface area to bulky molecules and (ii) the reduction of intra-crystalline diffusion length.26–28 Although these two effects can in principle be realized by synthesizing ultra-fine zeolite crystals, it is difficult in practice to synthesize zeolites with sub 100 nm crystal sizes, and even if the synthesis is successful, such small particles are difficult to handle in practical applications.29–31 In contrast, the incorporation of mesopores into zeolite crystals can significantly reduce the intra-crystalline diffusion length down to as short as a few nanometers while maintaining the large particle sizes.32–34 In the context of catalysis, as compared to conventional bulk zeolites, hierarchical zeolites usually show higher activities for bulky reactants,8,35 modulated selectivity,36,37 and reduced coke formation and thus longer catalyst lifetime.38–40 All of these properties are associated with the increased accessibility to the active sites, promoted molecular transport, and shortened intra-crystalline contact time. Likewise, hierarchical zeolites exhibit enhanced adsorption kinetics compared to conventional zeolites when used as adsorbents or separation media.41–44
In the last decade, significant efforts have been devoted to the preparation of hierarchical zeolites, which has spawned a vast amount of literature including many nicely written review papers.1,10,27,45–49 Post-treatment methods, such as steaming, acid (or base) leaching, and chemical treatment, have been used to create mesopores in zeolites.33,50–57 These processes are eco-unfriendly and only produce poorly defined mesopores. By comparison, direct synthesis of hierarchical zeolites through a “templating route” allows more precise control of the mesoporosity and also better integrity of the zeolite structures by avoiding desilication or dealumination. In this review, we will focus on various templating routes, giving special attention to the most recently developed synthetic strategies (e.g., polymer-based two-in-one templates) that were not covered in previous reviews. Meanwhile, we will discuss how to evaluate the “quality” of the produced hierarchically porous structure by different characterization methods including electron microscopy tomography, gas adsorption/desorption, positron annihilation, and kinetic uptake of probe molecules.
Fig. 2 (a) Schematic illustration of “hard-templating” synthesis of hierarchical zeolites using carbon nanoparticles. (b) TEM image of a hierarchical zeolite ZSM-5 crystal synthesized from the route illustrated in (a).59 (c) Schematic illustration of “hard-templating” synthesis of hierarchical zeolites using the confined spaces of porous materials.62 (d) TEM images of hierarchical zeolite LTA (left) and BEA (right).62 Reprinted with permission from ref. 60 and 63. Copyright 2000 and 2011, American Chemical Society. |
In addition to carbon materials, CaCO3,65 silica66 and polystyrene (PS) spheres67 have also been used as hard templates to prepare hierarchical zeolites. In general, the hard-templating route usually only gives rise to limited mesoporosity and the low yield of the hierarchical zeolite is another issue associated with this method.
Fig. 3 Typical examples of hierarchical zeolites synthesized using mixed templates: (left) SEM image of hierarchical zeolite LTA;18 (right) TEM image of hierarchical zeolite SAPO-34.72 The corresponding co-templates that are used to generate mesoporosity are shown on top of the images. Reprinted with permission from ref. 18 (Copyright 2006, Nature publishing group) and ref. 73 (Copyright 2014, Royal Society of Chemistry). |
Xiao et al.71 reported the use of a polymer, polydiallyldimethylammonium chloride (PDADMA), combined with tetraethylammonium (TEAOH), which is the conventional SDA for zeolite BEA to synthesize hierarchical zeolite Beta. Interestingly, it was found several years later by the same group that PDADMA alone can act as a dual-function template to generate mesopores in zeolite Beta (refer to the section on ‘polymer-based dual-function templates’ for more discussions).24 Therefore, the earlier system is likely a single-template rather than a mixed-template system, namely, it is the polymer PDADMA instead of the mixture of PDADMA and TEAOH that is responsible for the hierarchical structure. In addition, hierarchical SAPO-34 was synthesized by using polyethyleneimine (PEI) dendrimer and triethylamine (TEA) to direct the formation of mesopores and micropores respectively.72 We notice that the successful examples of the mixed-template route (without phase separation) involve the use of either organosilane surfactant18,69,70,72–78 or non-surfactant polymers71,79–82 as the co-template. This is possibly because the former maximizes the interaction between the co-template and the zeolite framework, while the latter minimizes the interaction between the co-template molecules. Both of these two effects help to avoid phase separation. In contrast, using conventional surfactants as co-templates always results in separation between the mesostructure and the zeolitic structure due to their strong self-assembly tendency. This point will be further discussed in the section on ‘polymer-based dual-function templates’.
Fig. 4 (a) The dual-function surfactant template used for the fabrication of zeolite MFI nanosheets, in which the head group can act as a SDA for the formation of the zeolite structure. (b) Proposed structure model for the single MFI nanosheet. Surfactant molecules are aligned along the straight channel of the MFI framework. Two quaternary ammonium groups (indicated as red spheres) are located at the channel intersections; one is inside the framework, and the other is at the pore mouth of the external surface. (c) Assembly of MFI nanosheets in the form of either multilamellar stacking along the b-axis, or in a random way of unilamellar structure. (d) (left) TEM image of multilamellar MFI nanosheets, revealing alternating layers of zeolite and surfactant micelles. TEM image of a unilamellar MFI nanosheet.83 Reprinted with permission from ref. 84. Copyright 2009, Nature Publishing Group. |
On the basis of this creative idea, Ryoo's group synthesized a series of hierarchical zeolites by varying the SDA groups on the surfactant templates.83–93 Their work well demonstrates the feasibility of directing a zeolite structure with local functional groups of a large molecule. The most representative example was reported in 2009 (Fig. 4),83 in which a specially designed surfactant, C22H45–N+(CH3)2–C6H12–N+(CH3)2–C6H13 (Fig. 4a), was used as a dual-function template to fabricate hierarchical MFI zeolites. The surfactant molecules assemble into lamellar micelles, while two-dimensional (2-D) zeolite MFI sheets are formed between the micelle layers as directed by the –N+(CH3)2–C6H12–N+(CH3)2–C6H13 head groups (Fig. 4b). As such, alternating organic and zeolite layers are generated through one-pot synthesis. Interestingly, the zeolite layer grown in the a–c plane is as thin as 2 nm in the b-axis direction, corresponding to one single unit cell thickness (Fig. 4b). By controlling the dimension of the MFI sheet in the a–c plane, the sheets can form a multi-lamellar or uni-lamellar configuration (Fig. 4c), and the latter gives rise to higher mesoporosity upon the removal of the organic template by calcination. The same group later reported that the thickness of the MFI sheets can be precisely tuned by modifying the head group of the surfactant, with a direct correlation between the number of ammonium groups in the surfactant and the thickness of the MFI sheets.85
Fig. 5a shows some examples of the dual-function surfactant templates that have been used to fabricate hierarchical zeolites with different framework types.83–93 Besides the well-defined lamellar mesostructure achieved for the case of zeolite MFI, disordered (random sponge-like) mesoporous structures were obtained for other framework types of zeolite including BEA, MTW, MRE, and ATO.88,91 In these cases, the materials are essentially composed of ultra-small (<10 nm) zeolite crystals that are agglomerated with random orientations, in which mesoporosity is generated by disordered surfactant micelles among the agglomerated crystals (Fig. 5b and c). These results suggest that it is difficult to achieve 3-D (non-lamellar) long-range structural ordering at the mesoscale and atomic scale simultaneously in hierarchical zeolites, as illustrated in Fig. 1. This is because, as discussed earlier, a 3-D non-lamellar mesoporous structure requires the zeolitic wall to be curved, which would produce significant strain and is therefore unfavorable. The first and thus far only hierarchical zeolite with an ordered, non-lamellar mesostructure was also reported by Ryoo's group in 2011.85 In this work, the use of the surfactant C18H37–N+(CH3)2–C6H12–N+(CH3)2–C6H12–N+(CH3)2–C18H37 led to the formation of hexagonally ordered mesoporous channels and crystallinity was observed on the pore walls. However, this material only possesses short-range ordering of the zeolite structure in this material, as revealed by few broad peaks in the X-ray diffraction pattern and intermittent lattice fringes in the HRTEM image (Fig. 5d and e). The very short-range ordering makes it impossible to assign the zeolitic structure with a framework type. This result is also a testament to the existence of a trade-off between the zeolitic framework and mesoporous structure in the degree of their structure ordering.85
Fig. 5 (a) Some dual-function surfactant-based templates that have been used to fabricate hierarchical zeolites. TEM images of (b) hierarchical zeolite MRE and (c) hierarchical zeolite MTW.91 HRTEM images of a hierarchical zeolite with hexagonally ordered mesoporous channels acquired (d) along and (e) perpendicular to the channels.85 The inset of (d) is the XRD pattern of this material, in which the low-angle reflections indicate the ordering of the mesostructures while the high-angle broad reflections suggest the presence of zeolite-like structures in the pore wall. Reprinted with permission from ref. 92 (Copyright 2014, American Chemical Society) and ref. 86 (Copyright 2011, American Association for the Advancement of Science). |
It was believed that multiple quaternary ammonium groups in the surfactant template are required to direct the formation of the zeolite structure. However, a recent study by Che et al.21,22,94 showed that a single quaternary ammonium head surfactant can also act as a dual-function template to form mesostructured zeolite MFI nanosheets. The key to success is the incorporation of aromatic (biphenyl and naphthyl) groups into the surfactant molecules to induce strong self-assembly through π–π stacking so as to stabilize the structure.21 The obtained structure is microscopically similar to the multilamellar MFI nanosheets shown in Fig. 4, but macroscopically different, because it involves the 90° rotational intergrowth of MFI nanosheets, leading to a 3-D interconnected “house-of-cards-like” network. A similar hierarchical structure, which is also based on zeolite MFI, had been synthesized through a template-free process by Tsapatsis's group (refer to the section on ‘template-free synthesis’).32,95
Given the inherent trade-off between the zeolitic framework and the mesoporous structure in structure ordering, two opposing scenarios can be expected. The first has been discussed above, where the self-assembly ability of the surfactant template favors the formation of an ordered mesostructure at the expense of losing the long-range structural ordering in the zeolitic framework (Fig. 6a). The other is that large zeolite single crystals containing disordered mesopores can be made (Fig. 6b), if the interaction between the template molecules is minimized, for example, by using non-surfactant macromolecules as a template.24 In the latter case, the macromolecules are not a ‘template’ in a traditional sense, because they don't have the function of directing the formation of a well-defined mesostructure, but instead they simply act as a ‘porogen’ to generate mesoporosity. In the context that mesoporous zeolites are potential heterogeneous catalysts for oil conversion and refinery, where the ordering of the mesostructure is inessential but the stability of the catalyst is a crucial criterion, the second scenario may be more desirable because better structural integrity at the atomic scale would bring greater stability to the material.
Based on these considerations, Xiao and Han et al.24 first proposed that non-surfactant polymers containing quaternary ammonium groups can be used to prepare mesoporous zeolite single crystals. To verify this hypothesis, they used a commercial cationic polymer, polydiallyldimethylammonium chloride (PDADMA) (Fig. 7a) for the synthesis of hierarchical zeolite Beta (BEA framework type). The obtained material (denoted as Beta-MS) consists of relatively uniform particles (700–800 nm) with remarkable mesoporosity, as revealed by the SEM image (Fig. 7b), which is further confirmed by the Ar adsorption isotherms (Fig. 7d). In comparison with the conventional bulk zeolite Beta, Beta-MS has more than three times higher total pore volume (up to ∼0.9 cm3 g−1).24 Disordered mesopores and periodically arranged zeolitic 12-ring channels can be simultaneously observed in the HRTEM images (Fig. 7c). The presence of intra-crystalline mesopores breaks the zeolite framework into small yet continuous domains, and the thinnest domain is ∼3 nm in diameter, containing only two 12-ring channel layers (Fig. 7c).24 This result indicates that a polymer-based template can produce hierarchical zeolites with diffusion length as short as that of 2-D zeolite nanosheets from the surfactant-based template.16 Interestingly, despite the existence of a large number of mesopores, each particle proved to be a single crystal, as evidenced by electron diffraction, electron diffraction tomography, and high-resolution TEM (Fig. 7c). The single crystalline nature of Beta-MS has been attributed to the use of a non-surfactant polymer template for the synthesis. The abundant quaternary ammonium groups on the polymer play the role of SDA for the zeolite, which is similar to the cases of surfactant-based dual-function templates. Unlike surfactants, however, PDADMA molecules do not self-assemble to form regular micelles or ordered structures due to the absence of hydrophobic segments, but instead they are incorporated into zeolite crystals in a random manner to give rise to disordered mesopores. As such, the crystallization of the zeolite is not disturbed by the self-assembly of the template, while the high flexibility of PDADMA molecules allows the zeolite to crystallize into a thermodynamically more stable form, i.e., into a single crystal. Simply, because non-surfactant polymers impose little interference to the crystallization of zeolites, they favor the formation of 3-D continuous zeolite frameworks with a long-range order (single crystals), which are different from the 2-D zeolite nanosheets or agglomeration of randomly-oriented zeolite grains obtained from the surfactant templates.24
Fig. 7 (a) Dual-function polymer template (PDADMA) used for the synthesis of hierarchical zeolite Beta (Beta-MS), in comparison with conventional small-molecule SDA (TEAOH) used for the synthesis of bulk zeolite Beta (Beta-C). (b) SEM image of Beta-MS. (c) STEM images, selected-area ED patterns, and HRTEM images of Beta-MS acquired along the [100] and [001] zone axes.24 (d) STEM image, XRD pattern, and Ar sorption isotherm of Beta-MS in comparison with those of Beta-C.37 Reprinted with permission from ref. 24 (Copyright 2014, American Chemical Society) and ref. 37 (Copyright 2015, American Chemical Society). |
A tomography technique based on scanning transmission electron microscopy (STEM) revealed that Beta-MS possesses a disordered yet three-dimensionally interconnected mesoporous system with crystals. The diameter of the mesopores can be tuned in the range of 4 nm to 10 nm by simply varying the molecular weight of PDADMA from 50 K to 500 K.24 Thanks to its single crystalline nature, Beta-MS shows excellent stability under hydrothermal conditions, with negligible structural degradation after being exposed to 100% steam flow at 973 K for 2 h.24 Beta-MS also exhibits higher catalytic activities in reactions involving large molecules, such as the alkylation of benzene with benzyl alcohol and the condensation of benzaldehyde with hydroxyacetophenone, as compared to bulk zeolite Beta with the same Si/Al ratio.24 It was later demonstrated that Beta-MS is a superior catalyst for the conversion of methanol to hydrocarbons, exhibiting a 2.7-fold larger conversion capacity, a 2.0-fold faster reaction rate, and a remarkably longer lifetime than conventional zeolite Beta.37
Han's group further developed the polymer-based dual-function templating strategy.25 They first demonstrated that this strategy can be generalized by using polymers grafted with different SDA groups to fabricate hierarchical zeolites. Specifically, they designed two cationic non-surfactant polymers, poly(N1,N1-diallyl-N1-methyl-N6,N6,N6-tripropylhexane-1,6-diamonium bromide) (PDAMAB-TPHAB) and poly(N1,N1-diallyl-N1-methyl-N6,N6,N6-trimethylhexane-1,6-diamonium bromide) (PDAMAB-TMHAB) (see Fig. 8a), to synthesize MFI- and BEA-type hierarchical zeolites, respectively. The obtained materials also exhibit single crystalline or approximate single-crystal (each particle is composed of a few single crystals) properties, corroborating their hypothesis proposed in the previous work of Beta-MS.24 With PDAMAB-TPHAB, hierarchical zeolite MFI materials with different compositions have been synthesized, including silicate (Silicalite-I), aluminosilicate (ZSM-5), and titanosilicate (TS-1), and this synthetic system shows a large tolerance for variation in composition (Si/Al: ∞ – 30; Si/Ti: ∞ – 60). All these materials have smaller crystal domains as evidenced by the broadened XRD peaks and much higher pore volumes (due to the remarkable mesoporosity), as compared to the bulk zeolite MFI (Fig. 8b and c). The hierarchical MFI materials show an interesting “fibrous” structure, having ultra-thin “fibers” around the particle periphery protruding along the c-axis direction, of which the thinnest region is about 3.5 nm, containing only three 10-ring channel layers (Fig. 8d). The “fibers” have been proven not to be lateral projections of 2D nanosheets by electron tomography but a unique one-dimensional (1-D) structural feature (see the next section for more discussion). The hierarchical ZSM-5 exhibits superior catalytic properties for reactions that easily produce cokes (conversion of methanol to aromatics) or involve large molecules (cracking of canola oil to produce light olefins).25
Fig. 8 (a) Non-surfactant polymers used for the synthesis of MFI- and BEA-type hierarchical zeolites. (b) XRD patterns and N2 sorption isotherms of MFI-type hierarchical zeolites (meso-Silicalite-I, meso-ZSM-5 and meso-TS-1), in comparison with those of bulk MFI-type zeolite (ZSM-5). (c) TEM images of bulk ZSM-5, meso-TS-1, meso-ZSM-5 and meso-Silicalite-1 (from left to right). (d) HRTEM of image taken along the [010] direction at the periphery of a meso-ZSM-5 particle, showing the fibrous structure. The structure model of the MFI-type framework projected along [010] direction is placed beside a “fiber” for comparison. The inset at the left lower corner is a low-magnification TEM image highlighting where the HRTEM image was acquired. (e) TEM image of a core–shell structured ZSM-5@meso-ZSM-5 material, which has bulk ZSM-5 crystals as the core and hierarchical ZSM-5 as the shell. (f) TEM image of a “dimer” structure, formed by the intergrowth of mesoporous ZSM-5 on a bulk zeolite Beta crystal.25 Reprinted with permission from ref. 25. Copyright 2016, Wiley-VCH. |
In the same report, the authors demonstrated extra merits of using polymer-based templates to synthesize hierarchical zeolites, in addition to the generation of a 3-D mesoporous system and a single-crystalline zeolite framework.25
First, polymer chains can easily be grafted with functional groups. Thus, different functionalities (e.g., adsorption capacity, catalytic activity, molecular recognition ability, and/or fluorescence) can be “carried” into hierarchical zeolites to produce multifunctional materials by modifying the polymer template with the corresponding functional groups. To prove this concept, they simply utilized the redundant quaternary ammonium groups in PDAMAB-TPHAB to adsorb tetrachloroplatinate(II) anions ([PtCl4]2−), achieving a high loading (∼2.5 wt%) of ultrafine Pt nanoparticles (1–2 nm) uniformly dispersed in hierarchical ZSM-5. By conventional wet impregnation methods, it is difficult to prepare such small, well-dispersed Pt nanocrystals on a zeolite support at such a high level of loading.25
Second, and more interestingly, unlike conventional SDAs of zeolites that are free cations in solution, polymer-based templates can anchor to an existing surface to induce heterogeneous nucleation of zeolites therein. Taking this advantage, it is in principle possible to fabricate a continuous mesoporous zeolite layer on the surfaces of various materials, provided that a material can survive in the hydrothermal conditions used for the zeolite synthesis. This idea has been validated by the successful synthesis of unprecedented core–shell-structured hierarchical zeolites, including ZSM-5@meso-ZSM-5 and Beta@meso-Beta, through seeded-growth, in which a mesoporous zeolite shell is homogeneously coated on the surface of pre-synthesized bulk zeolite crystals in the presence of a polymer template (Fig. 8e). Different from the amorphous silica shells in common silica-coated nanocrystals, the zeolitic shell fabricated by this means is porous and crystalline with greater functionalities. However, it is worth noting that the results of this initial study also implied that epitaxial growth (i.e., lattice matching between the core and the shell) is a prerequisite for the formation of a core–shell structure, namely, the core and the shell need to have the same zeolite structure. When zeolite Beta crystals were used as seeds to grow meso-ZSM-5, meso-ZSM-5 grew only from the defective sites of the seed crystal, forming a “dimer” structure (Fig. 8f). This result suggests that it is inorganic aluminosilicates rather than polymer molecules that first deposit on the seed surface, otherwise lattice matching would not be necessary for continuous shell growth. The feasibility of coating hierarchical zeolites on an arbitrary surface needs to be further explored, probably by modifying the polymer with groups that have specific interactions with the targeted surface.
Ryoo's group independently reported the use of polymers as dual-function templates to synthesize hierarchical zeolites with disordered (sponge-like) mesopores.23 Different from the polymers discussed above, their polymers are linear polystyrenes randomly grafted with multi-ammonium SDA groups, containing both hydrophilic and hydrophobic segments. These polymers have two advantages: (i) the obtained mesopores are more uniform, and (ii) the mesoporosity can be adjusted by varying the percentage of the hydrophobic segments. On the other hand, however, the presence of hydrophobic segments in the polymer may induce interaction between template molecules, like the cases of surfactant-based templates, giving rise to polycrystalline instead of single-crystalline products.
Fig. 9 (a) Schematic illustration of the formation of template-free self-pillared hierarchical zeolites by rotational intergrowth.95 (b) TEM image of self-pillared zeolite MFI.32 Reprinted with permission from ref. 96 (Copyright 2014, Wiley-VCH) and ref. 32 (Copyright 2012, American Association for the Advancement of Science). |
Note that the reconstruction result of electron tomography is a 3-D “volume” that can be viewed as a set of slices through this volume to show the local structural features from free perspectives. As such, the propagating directions of mesoporous channels and the connectivity between different channels and cavities can be directly visualized. Rendering “surface” for the “volume” can also give morphological information of the crystals, such as crystal shapes and surface roughness.
Some examples of the application of electron tomography for characterization are presented in Fig. 10, and more examples and discussion can be found in a recent review paper by de Jong K. P. and co-workers.100Fig. 10a97 shows a single TEM image taken from a titling series of a hierarchical mesoporous zeolite Y material, and the corresponding 3D reconstructed “volume” from the area marked in the image. The volume clearly shows how the mesopores are distributed, i.e., the pore architecture and connectivity, throughout the zeolite crystal. In Fig. 10b,98 from left to right are a single TEM image, a cross-section slice cut out from the 3-D reconstructed volume, and the surface rendering of the volume, of an alkaline-treated ZSM-5 crystal. It is apparent that compared to the ordinary TEM projection image, the tomography results provide much more detail on the porous structure. For example, the cross-section slice shows the pore size in a local area inside the crystal, while the surface rendering shows how the zeolite framework (red) and the mesoporous system (blue) interpenetrate with each other. TEM tomography was also used to characterize meso-ZSM-5 synthesized from a dual-function polymer template. Fig. 10c25 presents a reconstructed electron tomographic volume of a meso-ZSM-5 particle with three slices (0.8 nm thick) intersected at different regions of the volume. In the central area of the particle, as shown in slice I, disordered mesopores are encompassed by a continuous zeolite framework. Meanwhile, zeolite exhibits highly branched fibrous structures to form larger and more open mesopores at the periphery of the particle, as demonstrated in slices II and III, where discrete dots represent cross-sections of the protruding fibers (Fig. 10c). These results in combination with HRTEM confirm the 1-D fiber nature of the zeolitic structure at the particle peripheries. Electron tomography has also been used to evaluate the “quality” (accessibility) of mesopores in hierarchical zeolites and to quantify the proportions of “open” and “closed” mesopores, where the former refers to the mesopores accessible from the outer surface of the crystal through the mesopore network and the latter refers to those that can be reached only through the micropores. For example, Fig. 10d99 depicts segmented mesopores within one hierarchical zeolite Y crystal, where, as can be visually inferred, open porosity (green) dominates over “closed” porosity (red). More detailed analysis based on image processing could even quantify the number of mesopores with a specific breakthrough (smallest pore opening) diameter.
Fig. 10 (a) A representative TEM image from a tilt series and the corresponding 3D “volume” reconstructed from the marked area in the image of a hierarchical zeolite Y sample.97 (b) From left to the right are a single TEM image, a cross-section slice cut out from the 3-D volume, and the rendering surface of the volume of an alkaline-treated ZSM-5 crystal.98 (c) Reconstructed electron tomographic volume of a meso-ZSM-5 particle and three slices intersected at different regions of the volume. The slices are rendered in a rainbow color scheme, where empty areas are deep blue. In slices II and III, the discrete dots, some of which are indicated by arrows, represent cross-sections of protruding fibers. Scale bars represent 50 nm.25 (d) Distribution of “open” (green) and ‘‘closed’’ mesopores (red) in a hierarchical zeolite Y crystal, as visualized by volume-rendered 3D representations.99 Reprinted with permission from ref. 98 (Copyright 2014, Wiley-VCH), ref. 99 (Copyright 2005, American Chemical Society), ref. 25 (Copyright 2016, Wiley-VCH), and ref. 100 (Copyright 2012, Wiley-VCH). |
Fig. 11 A full DHS measurement for a hierarchical zeolite sample, with 12 incremental desorption/desorption scanning isotherms. As illustrated for selected cycles (points 1–9), the latter selectively fill and empty pyramidal (pyr), constricted (con), and occluded (occ) mesopores of different size (dmeso) depending on the window size (dwin).104 Reprinted with permission from ref. 105. Copyright 2016, Wiley-VCH. |
The DHS method has been used to evaluate the “quality” of mesopores generated by various post-treatment routes.104 The results show that the steam-treated sample comprises primarily occluded or constricted mesopores, while mild acid treatment could moderately enhance the formation of pyramidal mesopores, because it preferentially removed the aluminum-rich debris. More severe acid treatment further increases the amount of occluded mesopores, which could be attributed to further framework dealumination. In contrast, the alkaline treatment could form a more open mesoporous system, in which the proportion of pyramidal mesopores increases with the harshness of the base treatment. These results suggest that the base treatment leads to a higher degree of mesopore connectivity as compared to the steam- and acid-treatment.104
Fig. 12 (a) Illustration of the pathway of ortho-positronium (o-Ps) in the hierarchical zeolites. The long-lived o-Ps can diffuse through interconnected mesopores to escape into the vacuum or decay with a lifetime proportional to the pore size. (b) Table of positron annihilation lifetime spectroscopy data. *, ± and # show the relative fractions of o-Ps decaying in micropores, mesopores and the vacuum respectively. (c) The decisive impact of the mesopore “quality” on the catalytic performance of hierarchical zeolites in the conversion of methanol to hydrocarbons.20 Reprinted with permission from ref. 20. Copyright 2014, Nature publishing group. |
(1) |
The amount of adsorbate adsorbed inside the zeolite can be obtained from eqn (1) by integrating C(r,t) from r = 0 to R,
(2) |
For a short contact time (t), eqn (2) can be simplified as follows:107
(3) |
Fig. 13 (a) Adsorption of 2,2-dimethylbutane on silylated MFI samples at 298 K and 20 kPa DMB pressure. (b) Amount of 2,2-dimethylbutane adsorbed on silylated MFI samples versus the square root of time at short times on stream. Transport restrictions were introduced externally in the 500 nm-MFI sample to increase the diffusion length by silylating the external surface using tetraethyl orthosilicate. Single-cycle silylation for Si-MFI-1× and 2 (or 3) times silylation for Si-MFI-2× (or Si-MFI-3×).108 Reprinted with permission from ref. 109. Copyright 2015, Elsevier. |
The molecular diffusion in hierarchical zeolites has been investigated with this method. Groen et al.109 compared the rate of neopentane uptake in a desilicated (hierarchical) ZSM-5 zeolite and conventional microporous ZSM-5. According to the time required to achieve 50% of the saturation uptake, which was 120 min for conventional ZSM-5 but only 2 min for desilicated ZSM-5, the diffusion rate of neopentane in hierarchical ZSM-5 is approximately 100 times faster than that in the pure microporous ZSM-5. Given that the two materials have the same intrinsic diffusivity, the effective diffusion length of ZSM-5 has been remarkably shortened by the incorporation of mesopores. Pérez-Ramírez et al.110 also compared the molecular transport properties of hierarchical ZSM-5 and conventional ZSM-5, and observed similar phenomena. Using 2,2-dimethylbutane as the probe molecule, Khare et al.108 calculated the diffusion path length of a series of MFI zeolites. Their results showed that the hierarchical self-pillared ZSM-532 has a diffusion length as short as ∼2 nm, which is in good accordance with the single-unit-cell nanosheet structure of this material as revealed by HRTEM. This consistency, in turn, indicates that the kinetic adsorption measurement is a reliable method to determine the transport properties and diffusion lengths of hierarchical zeolites.
Framework (zeolite) | Templates | Meso-structure | Meso-volume (cm3 g−1) | Reference (year) |
---|---|---|---|---|
a PDADMAC: polydiallyldimethylammonium chloride. b PEI: polyethyleneimine, and TEA: triethylamine. c PDAMAB-TPHAB: poly(N1,N1-diallyl-N1-methyl-N6,N6,N6-tripropylhexane-1,6-diamonium bromide). | ||||
Hard templates + SDAs | ||||
MFI (ZSM-5) | Carbon black + tetrapropylammonium hydroxide (TPAOH) | Disordered | 1.01 | 59 (1999) |
60 (2000) | ||||
MFI (ZSM-5) | Carbon aerogel + tetrapropylammonium bromide (TPABr) | Disordered | 0.2 | 62 (2003) |
MFI (Silicalite-1) | 3D ordered carbons + TPAOH | Disordered | 0.69–0.99 | 64 (2008) |
BEA (Beta) LTA | Tetraethylammonium hydroxide (TEAOH) | 0.55–0.75 | 63 (2011) | |
FAU | Tetramethylammonium hydroxide (TMAOH) | 0.44–0.75 | ||
LTL | TMAOH | 0.64 | ||
0.82 | ||||
MFI (ZSM-5) | CMK-3 carbon + TPAOH | Disordered | 0.17 | 61 (2012) |
Soft templates + SDAs | ||||
BEA (Beta) | PDADMACa + TEAOH | Disordered | NA | 72 (2006) |
MOR | Random cationic copolymer | Disordered | 0.37 | 81 (2013) |
MFI (ZSM-5) | F127, P123 or Brij series + TPAOH | Disordered | 0.56 | 82 (2011) |
MFI (ZSM-5) | Copolymers of C-PSt-co-P4VP + TPAOH | Disordered | 0.23 | 80 (2012) |
MFI (ZSM-5) | [(CH3O)3SiC3H6N(CH3)2C16H33]Cl (TPHAC) + TPABr | Disordered | NA | 18 (2006) |
AFI (AlPO-5) | [(CH3O)3SiC3H6N(CH3)2C16H33]Cl (TPHAC) | Disordered | 0.25 | 70 (2006) |
AEL (AlPO-11) | 0.26 | |||
FAU (X) | [(CH3O)3SiC3H6N(CH3)2C16H33]Cl (TPHAC) | Disordered | 0.20 | 74 (2012) |
MFI (ZSM-5) | Alkyltriethoxysilane (A = propyl, methyl or octyl) | Disordered | 0.307 | 75 (2008) |
MFI (ZSM-5) | Silane-fuctionalized polyethylenimine + TPAOH | Disordered | 0.07–0.11 | 71 (2006) |
MFI (TS-1)111 | Triton X-100 + TPAOH | Disordered | 0.09–0.17 | 111 (2016) |
MSU-MFI | Silylated polypropylene oxide diamine + TPAOH | Disordered | 0.38 | 77 (2009) |
CHA (SAPO-34) | [(CH3O)3SiC3H6N(CH3)2C18H37]Cl + diethylamine, PEI + PEA2 | Disordered | 0.26 | 73, 78 and 79 (2014, 2015) |
0.18 | ||||
Dual-function surfactants | ||||
MFI (ZSM-5) | C22H45–N+(CH3)2–C6H12–N+(CH3)2–C6H13 | 2D lamellar | 17, 85 and 88 (2009) | |
MFI (ZSM-5) | C18H37–N+(CH3)2–C6H12–N+(CH3)2–C6H12–N+(CH3)2–C18H37(Br−)3 | 2D hexagonal | 0.98–1.58 | 16 (2011) |
BEA (Beta) | C22H45–N+(CH3)2–C6H12–N+(CH3)2–CH2–(C6H4)–CH2–N+(CH3)2–C6H12–N+(CH3)2–[CH2–(C6H4)–CH2–N+(CH3)2–C6H12–N+(CH3)2–C22H45](Br−)2(Cl−)4 | Disordered | 1.49 | 92 (2013) |
MTW | 0.86 | |||
MRE | 0.47 | |||
EU-1 | C18H37–N+(CH3)2–C6H12–N+(CH3)2–C6H12–N+(CH3)2–C18H37(Br−)3 | Disordered | 0.407 | 94 (2016) |
AFI | C22H45–NH–C6H12–NH2 | 2D lamellar | NA | 93 (2013) |
AEL | C22H45–N(CH3)–C6H12–N(CH3)2 | 2D lamellar | ||
ATO | C22H45–N+(CH3)2–C6H12–N+(CH3)2–[CH2–(C6H4)–CH2–N+(CH3)2–C6H12–N+(CH3)2]x–C22H45(OH−)2+2x | Disordered | ||
MFI (ZSM-5) | C6H5–C6H4–O–C10H20–N+(CH3)2–C6H13(Br−)C6H4–C4H3–O–C10H20–N+(CH3)2–C6H13(Br−) | 2D lamellar | 0.30–0.51 | 21, 22 and 95 (2014) |
Dual-function polymers | ||||
BEA (Beta) | PDADMACa | Disordered | 0.76 | 24 (2014) |
MFI | PDAMAB-TPHABb | Disordered | 0.58 | 25 (2016) |
BEA (Beta) | PDAMAB-TMHABc | 0.86 | ||
MFI (ZSM-5)
BEA (Beta) ATO (AlPO4) |
Polystyrene functionalized with –N+(CH3)2–C6H12–N+(CH3)2–C6H12–N+(CH3)2–C6H13 | Disordered | NA | 23 (2014) |
Template-free (self-pillared) | ||||
MFI (ZSM-5) | Tetrabutylphosphonium hydroxide (TBPOH) | House-of-cards-like | 0.6–0.9 | 32 (2012) |
96 (2014) |
With the great success achieved over the past years and the recent advances in synthesis and characterization, we have reason to expect that in the near future, novel hierarchical zeolites will be designed and synthesized in a better-controlled manner and their complex architectures will be more thoroughly understood and utilized for a wider range of applications.
This journal is © the Partner Organisations 2017 |