Themed collection Bioinspired Functional Supramolecular Systems

17 items
Open Access Review Article

Engineering disease analyte response in peptide self-assembly

The need to enhance the precision and specificity of therapeutic nanocarriers has led to the development of nanoscale peptide assemblies capable of sensing and responding to disease-related analytes.

Graphical abstract: Engineering disease analyte response in peptide self-assembly
From the themed collection: Bioinspired Functional Supramolecular Systems
Communication

The blue shift of fluorescence emission reveals the dsRNA-loading capacity of cationic nanocarriers

The loading capacity of dsRNA by cationic nanocarriers can be simply and sustainably detected by the variation of the DAPI fluorescence emission. This method will significantly benefit the commercialisation of RNA interference.

Graphical abstract: The blue shift of fluorescence emission reveals the dsRNA-loading capacity of cationic nanocarriers
From the themed collection: Bioinspired Functional Supramolecular Systems
Accepted Manuscript - Communication

A unimolecular artificial cation channel based on cascaded hydrated acid groups

From the themed collection: Bioinspired Functional Supramolecular Systems
Communication

Cooling rate uncovers epimer-dependent supramolecular organization of carbohydrate amphiphiles

The stereochemistry of carbohydrate amphiphiles can influence their self-assembling pathway and the helicity of the generated nanofibres.

Graphical abstract: Cooling rate uncovers epimer-dependent supramolecular organization of carbohydrate amphiphiles
From the themed collection: Bioinspired Functional Supramolecular Systems
Open Access Paper

Enzymatically-induced dynamic assemblies from surface functional stomatocyte nanoreactors

Pursuing collective behaviors, we present enzyme-loaded polymersome stomatocytes with stigmergy-based communication capable of signal production, reception, and response by transiently clustering with surface complementary artificial species.

Graphical abstract: Enzymatically-induced dynamic assemblies from surface functional stomatocyte nanoreactors
From the themed collection: Bioinspired Functional Supramolecular Systems
Accepted Manuscript - Paper

Enzyme/pH-Sensitive nanoparticle based on Poly (β-L-malic acid) for drug delivery with enhanced endocytosis

From the themed collection: Bioinspired Functional Supramolecular Systems
Paper

Spontaneous assembly of a class of small molecule prodrugs directed by SN38

Conjugating SN38 with small hydrophilic molecules via a biodegradable linker results in small molecule self-assembling prodrugs that form well-defined nanofibers with varying surface charges in water.

Graphical abstract: Spontaneous assembly of a class of small molecule prodrugs directed by SN38
From the themed collection: Bioinspired Functional Supramolecular Systems
Open Access Paper

Enzymatic self-assembly of short peptides for cell spheroid formation

Biphenyl-capped phosphopeptides instruct cell aggregation into spheroids, with minimal effective concentrations below 10 μM. Key factors driving morphogenesis include the self-assembly ability and dynamic shapeshifting of the peptide assemblies.

Graphical abstract: Enzymatic self-assembly of short peptides for cell spheroid formation
From the themed collection: Bioinspired Functional Supramolecular Systems
Open Access Paper

Liquid–liquid phase transition as a basis for novel materials for skin repair and regeneration

Polyphosphate (polyP) is a physiologically significant polymer with regenerative properties, crucial for supplying the metabolic fuel (ATP) essential for various regeneration processes in humans, including wound healing.

Graphical abstract: Liquid–liquid phase transition as a basis for novel materials for skin repair and regeneration
From the themed collection: Bioinspired Functional Supramolecular Systems
Open Access Paper

In situ biocatalytic ATP regulated, transient supramolecular polymerization

This work shows the biocatalytic ATP regulation induced self-assembly of one-dimensional nanostructures akin to the self-assembly process of actin. Coupled ATP generation and ATP hydrolysis render the supramolecular aggregates transient.

Graphical abstract: In situ biocatalytic ATP regulated, transient supramolecular polymerization
From the themed collection: Bioinspired Functional Supramolecular Systems
Open Access Paper

Harnessing multifunctional collagen mimetic peptides to create bioinspired stimuli responsive hydrogels for controlled cell culture

Hybrid polymer–peptide hydrogels utilize fibrillary-assembled collagen mimetic peptides to create materials with physical and covalent crosslinks. These tunable hydrogels exhibit strain and temperature responsiveness and promote cell motility.

Graphical abstract: Harnessing multifunctional collagen mimetic peptides to create bioinspired stimuli responsive hydrogels for controlled cell culture
From the themed collection: Bioinspired Functional Supramolecular Systems
Open Access Paper

Nanocellulose-short peptide self-assembly for improved mechanical strength and barrier performance

A simple route to bio-based cellulose nanofibers (CNF) functionalization is here proposed via noncovalent incorporation of short peptides, enhancing rheology, hydrophobicity, and water vapor barrier properties in CNF-based hydrogels and films.

Graphical abstract: Nanocellulose-short peptide self-assembly for improved mechanical strength and barrier performance
From the themed collection: Bioinspired Functional Supramolecular Systems
Open Access Paper

Investigating the self-assembly of 2NapFF and ureido-pyrimidinone multicomponent systems for cell culture

Low molecular weight gelators have mechanical properties ideal for regenerative medicine. This study explores the combination of a known UPy-system with a dipeptide gelator, 2NapFF, examining each system across multiple length scales.

Graphical abstract: Investigating the self-assembly of 2NapFF and ureido-pyrimidinone multicomponent systems for cell culture
From the themed collection: Bioinspired Functional Supramolecular Systems
Paper

RNA-binding peptide and endosomal escape-assisting peptide (L2) improved siRNA delivery by the hexahistidine–metal assembly

The RNA-binding functional peptide L2-NTD is complexed with HmA (siRNA+L2-NTD@HmA), providing efficient siRNA delivery into cells with minimal cytotoxicity and degradation.

Graphical abstract: RNA-binding peptide and endosomal escape-assisting peptide (L2) improved siRNA delivery by the hexahistidine–metal assembly
From the themed collection: Bioinspired Functional Supramolecular Systems
Paper

Purpose-built multicomponent supramolecular silver(I)-hydrogels as membrane-targeting broad-spectrum antibacterial agents against multidrug-resistant pathogens

Design of supramolecular Ag(I)-hydrogels and their application as membrane-targeting materials to counter complicated multi-drug resistant infections.

Graphical abstract: Purpose-built multicomponent supramolecular silver(i)-hydrogels as membrane-targeting broad-spectrum antibacterial agents against multidrug-resistant pathogens
From the themed collection: Bioinspired Functional Supramolecular Systems
Paper

Maneuvering the mineralization of self-assembled peptide nanofibers for designing mechanically-stiffened self-healable composites toward bone-mimetic ECM

A bioinspired approach develops bone-ECM mimetic hybrids with nonlinear mechanical properties by templating bioactive glass on nanofibers derived from amyloid-inspired peptide amphiphiles, resembling collagen-bridged hydroxyapatite.

Graphical abstract: Maneuvering the mineralization of self-assembled peptide nanofibers for designing mechanically-stiffened self-healable composites toward bone-mimetic ECM
From the themed collection: Bioinspired Functional Supramolecular Systems
Open Access Paper

Modelling methacrylated chitosan hydrogel properties through an experimental design approach: from composition to material properties

Methacrylated chitosan hydrogels properties are modelled using a statistical approach. The obtained empirical equations allow to fine tune the properties by changing the hydrogel composition and the fabrication variables.

Graphical abstract: Modelling methacrylated chitosan hydrogel properties through an experimental design approach: from composition to material properties
From the themed collection: Bioinspired Functional Supramolecular Systems
17 items

About this collection

Nature provides us with an unparalleled variety of supramolecular systems that are formed via dynamic non-covalent interactions. Those include the molecular motor proteins, the cell membrane, the DNA double-helix structure, or the native extracellular matrices of tissues and organs, to name just a few. Such complex and dynamic supramolecular biological landscapes have inspired the design and development of bioinspired supramolecular materials and systems that could recreate their structural composition and complexity, dynamic and adaptive nature, functional features, and properties to address a myriad of applications in the biological and biomedical fields.

This themed collection in Journal of Materials Chemistry B, Guest Edited by Dr. João Borges (University of Aveiro, Portugal), Prof. Patricia Y. W. Dankers (Eindhoven University of Technology, the Netherlands), Prof. João F. Mano (University of Aveiro, Portugal) and Prof. Sébastien Lecommandoux (University of Bordeaux, France), aims to provide an up-to-date platform for sharing latest developments in the field of bioinspired functional supramolecular systems. From the fundamental concepts on the supramolecular design and synthesis to the application of the bioinspired supramolecular (bio)materials in drug/gene/protein/therapeutics/cell delivery, biosensing, diagnostics, theranostics, tissue engineering, regenerative medicine, among others. This collection also aims to encourage more interdisciplinary research and collaborative efforts at the intersection of supramolecular chemistry, (bio)materials science, and biology to inspire breakthrough research in the fascinating field of bioinspired supramolecular systems aimed at more closely emulating the complexity and dynamics of natural biological systems and creating life-like material systems.

Spotlight

Advertisements