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Abstract: 

Chemoresponsive liquid crystal (LC) sensors are promising platforms for the detection of vapor-
phase analytes. Understanding the transport of analyte molecules within LC films could guide the 
design of LC sensors with improved selectivity. In this work, we use molecular dynamics 
simulations to quantify the partitioning and diffusion of nine small-molecule analytes, including 
four common atmospheric pollutants, in model systems representative of LC sensors. We first 
parameterize all-atom models for 4-cyano-4'-pentylbiphenyl (5CB), a mesogen typically used for 
LC sensors, and all analytes. We validate these models by reproducing experimentally 
determined 5CB structural parameters, 5CB diffusivity, and analyte Henry’s law constants in 5CB. 
Using the all-atom models, we calculate analyte solvation free energies and diffusivities in bulk 
5CB. These simulation-derived quantities are then used to parameterize an analytical mass-
transport model to predict sensor activation times. These results demonstrate that differences in 
analyte-LC interactions can translate into distinct activation times to distinguish activation by 
different analytes. Finally, we quantify the effect of LC composition by calculating analyte solvation 
free energies in TL205, a proprietary LC mixture. These calculations indicate that varying the LC 
composition can modulate activation times to further improve sensor selectivity. These results 
thus provide a computational framework for guiding LC sensor design by using molecular 
simulations to predict analyte transport as a function of LC composition. 

Design, System, Application Paragraph:

Chemoresponsive liquid crystal (LC) sensors can detect the presence of atmospheric pollutants, 
chemical warfare agents, and other vapor-phase toxins at concentrations in the low ppm range. 
For LC sensors to be useful, they must rapidly, selectively activate in the presence of target 
analytes. LC sensors are composed of a thin LC film that is deposited on a reactive substrate, 
and thus sensor design requires the selection of both the LC and substrate material. Previous 
studies have primarily focused on tuning the substrate properties as a means of changing the 
sensor activation time and selectivity. However, analyte transport through the LC film, which 
depends on molecular-scale analyte-LC interactions, can also influence the activation time. In this 
work, we use molecular simulations to quantify the influence of LC sensor material properties on 
sensor activation times for common atmospheric pollutants. Based on calculations of analyte 
permeances and corresponding transport timescales, we suggest that tuning the composition of 
the LC film can modulate activation times to distinguish activation by different analytes. These 
findings indicate that molecular simulations can be used to select LC materials for improved 
sensor selectivity by predicting the effect of LC composition on analyte transport. 
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Introduction:

Human exposure to high concentrations of air contaminants is a significant problem associated 
with adverse health effects.1-3 For example, the U.S. Environmental Protection Agency and 
Occupational Safety and Health Administration recommend limiting personal exposure to 
common atmospheric pollutants such as ozone, sulfur dioxide, and nitrogen dioxide.4-6 Minimizing 
the risk of contaminant exposure requires the development of mobile chemical sensing platforms 
capable of monitoring the local concentration of environmental contaminants in real time.3 Such 
sensors must be sufficiently simple and small to facilitate mobile monitoring and must differentiate 
between pollutants and ambient species that do not pose a risk to human health (e.g., water and 
carbon dioxide). 

Recently, chemoresponsive liquid crystal (LC) sensors have been used to sense toxic analytes, 
such as hydrogen sulfide, chemical warfare agents, Cl2, and NO2 at concentrations in the low ppm 
range.7-14  These examples of chemoresponsive LC sensors are composed of a nematic LC film 
that is deposited on a substrate and undergoes a detectable change in its adsorption, orientation, 
and optical properties when exposed to a vapor stream containing the analyte.7-8 For example, 
previously developed sensors that detect the chemical warfare agent simulant dimethyl 
methylphosphonate (DMMP) consist of an 18 µm thick film of 4-cyano-4'-pentylbiphenyl (5CB) 
deposited on a substrate containing metal salts.13, 16-17 In the initial state of the sensor, 5CB 
molecules bind to the substrate due to interactions between their nitrile groups and the metal 
salts. Binding causes the LC director vector to align perpendicular to the substrate. Non-covalent 
interactions between 5CB molecules also cause the LC director vector to align perpendicular to 
the vapor-LC interface,18 leading to a mostly uniform director vector throughout the film. The 
sensor is then exposed to vapor-phase DMMP molecules that partition into the LC film and diffuse 
to the substrate. Interactions between the substrate and DMMP molecules outcompete 
interactions between the substrate and 5CB molecules, causing the displacement and 
reorientation of previously bound 5CB molecules.8, 17 Displacing a sufficient number of surface-
bound 5CB molecules leads to spatial variations in the LC director vector throughout the film that 
can be observed optically.19 This transition, driven by the presence of an analyte, is the response 
of the sensor that can be easily transduced optically. Similar chemoresponsive LC sensors that 
rely on the competition between mesogen-substrate and analyte-substrate interactions have also 
been developed to detect different analytes.12, 20

Recent sensor development has focused on improving sensor selectivity to different analytes.12, 

21 One mechanism for increasing selectivity is by modulating analyte binding to the substrate. In 
particular, Density Functional Theory (DFT) calculations have shown that the difference between 
the binding energy of DMMP and the binding energy of 5CB, which quantifies competitive binding 
at the substrate, correlates with the sensor activation time (i.e., the time required for an optical 
response to be measured).16-17 In addition, DFT calculations have been used to guide the 
development of water tolerant DMMP LC sensors by the use of a stronger binding mesogen, a 
pyrimidine containing mesogen, which can be displaced by DMMP but not water. However, these 
stronger binding mesogens still have the drawback of increasing response time.22  Alternatively, 
the time required for analyte transport through the LC film could also be used to distinguish sensor 
activation by specific analytes, particularly if the timescale for analyte transport is slower than the 
timescale for changes to mesogen reorientation at the substrate. For example, one study showed 
that the sensor activation time for DMMP depends on the timescale for analyte transport across 
the vapor-LC interface.23 Since analyte transport through the LC film does not depend on 
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interactions with the substrate, it may be possible to tune the timescale for analyte transport 
independently from substrate properties to improve sensor selectivity. 

Characterizing analyte transport across the LC film requires knowledge of both the 
thermodynamics of analyte partitioning into the film and the dynamics of analyte diffusion. 
Previous experimental measurements of analyte partitioning have used vapor pressure 
measurements to determine the Henry’s law constant for high pressures of carbon dioxide (CO2) 
and methane (CH4) in 5CB.24-25 Another study determined the partition coefficient of 
glutaraldehyde (GLU) in 5CB using chemically specific absorbance measurements.26 However, 
in general quantifying analyte partitioning in LCs is challenging, particularly for toxic species with 
the associated experimental hazards. Measuring analyte diffusivity is also challenging and has 
been limited to the study of larger species using fluorescent recovery after photo bleaching.27

Alternatively, molecular dynamics (MD) simulations can model the molecular-scale interactions 
needed to quantify analyte partitioning and diffusion. Significant work has characterized the 
structural and elastic properties of LCs using MD simulations that accurately reproduce 
experimental measurements, such as the 5CB nematic-isotropic transition temperature ( ) and 𝑇NI
the structure near a vapor-LC interface.28-33. Fewer studies have considered the transport of small 
molecules through LC films. One recent example investigated the transport of water through LC 
films to determine the influence of water flux on the LC director vector.34 However, studies of 
interactions between alternative small-molecule analytes and bulk LC are largely lacking. 
Moreover, simulation models have largely focused on 5CB due to the availability of an accurate 
united-atom (UA) force field for this material,30-32, 35 but extending this model to other possible 
mesogens is challenging. Utilizing MD simulations to guide the design of new LC sensors for 
selective analyte detection thus requires new simulation models and techniques.

Herein, we use atomistic MD simulations to quantify analyte partitioning and diffusion in LC films. 
We model nine analytes: GLU, DMMP, CH4, CO2, chlorine (Cl2), nitrogen dioxide (NO2), water 
(H2O), ozone (O3), and sulfur dioxide (SO2). GLU, DMMP, and CH4 are selected to validate the 
computational models against experiments, H2O and CO2 are ambient species in the atmosphere, 
and Cl2, NO2, O3, and SO2 are atmospheric pollutants. These latter six analytes are thus of 
particular interest for pollutant sensing applications. We assume that analyte-substrate 
interactions can be tuned to obtain chemoresponsive LC sensors that can detect these analytes 
and focus on the impact of analyte transport through the LC film on sensor activation times. We 
first develop atomistic models for 5CB-analyte interactions and show that the models reproduce 
5CB diffusivity measurements and Henry’s law constants in good agreement with experiments. 
We then calculate analyte solvation free energies and diffusivities and use this information to 
parameterize a mass transport model to predict sensor activation times. Finally, we show that 
changing the composition of the LC film to contain TL205, another commonly studied mesogen, 
leads to changes in analyte transport properties that can be used to tailor sensor selectivity. These 
results demonstrate the potential of MD simulations to guide the design of chemoresponsive LC 
sensors with improved selectivity by tuning analyte partitioning and diffusion.

Methods:

Classical MD simulations were performed to quantify the partitioning and transport of analytes in 
simulation systems designed to model a chemoresponsive LC sensor. The mesogen 5CB was 
simulated using both a united atom (UA) model and all-atom (AA) model with explicit hydrogen 
atoms (Figure 1a). The UA model used the force field developed by Tiberio et al.32 The AA model 
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was based on a reparameterization of the Generalized AMBER force field (GAFF)36 based on 
prior literature recommendations.37 We developed the 5CB model using GAFF LJ parameters and 
followed the parameterization strategy used by Cheung et al. to fit partial charges and dihedral 
potentials to DFT calculations.37-39 These DFT calculations were performed in Gaussian16 using 
the B3LYP40 functional with a 6-31g* basis set. Atomic partial charges were fit using CHELPG 
(CHarges from ELectrostatic Potentials using a Grid-based Method)41 with a constraint on the 
dipole. This approach ensures that the point charges used in the MD simulation reproduce the 
electrostatic potential calculated by DFT beyond the molecular surface.41 To determine dihedral 
potentials for the biphenyl dihedral and the first alkyl tail dihedral in 5CB, we performed a relaxed 
scan and fit the classical potentials to reproduce the DFT calculations (SI Figure S1). Additional 
details on this parameterization strategy and corresponding results are shown in the Supporting 
Information.

AA models were developed for the nine analytes shown in Figure 1b: GLU, DMMP, CH4, CO2, Cl2, 
NO2, H2O, O3, and SO2. All analytes, other than water, were parameterized using the same GAFF 
parameter assignment scheme and charge-fitting procedure that was used for 5CB. The SPC/E 
(Simple Point Charge/Extended)42 model was used for water, although parameterizing water 
using the same methods as the other analytes yielded similar results (SI Figure S2c). Complete 
details on all AA parameters are included in the Supporting Information. 

The bulk of the LC sensor and the vapor-LC interface were separately modeled to determine 
contributions of both regions of the system to analyte transport (Figure 1c). The bulk system 
consisted of 1020 molecules that were initially arranged in an evenly spaced grid using gmx 
genconf, a tool implemented in GROMACS 2016.43 The system was equilibrated using a 
simulated annealing protocol in which the temperature was initially set to 400 K and then reduced 
to the temperature of interest at a rate of 1 K/ns while maintaining a pressure of 1 bar. After 

Figure 1: Overview of simulation systems. a) Chemical structure of 5CB and snapshots of 
UA and AA simulation representations. b) Chemical structures of all analytes considered. c) 
Schematic of a chemoresponsive liquid crystal (LC) sensor prior to sensor activation. Blue 
ellipsoids indicate the mesogens in a nematic phase. Red circles illustrate the partitioning and 
diffusion of analytes toward the substrate. Snapshots of simulation systems representative of 
the vapor-LC interface and bulk nematic LC are shown at right.
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annealing, the system was simulated at constant temperature and pressure for 50 ns. The first 25 
ns were disregarded as further equilibration and the final 25 ns were used to measure the 
equilibrium bulk properties of the system. The final box size after equilibration at 1 bar and 300 K 
was 6.400×8.597×7.488 nm3.

Using the bulk system, we performed alchemical free energy calculations to calculate the 
solvation free energy of each analyte. A single analyte molecule was inserted into the system 
using gmx insert-molecule, a tool implemented in GROMACS 2016.43 The coupling parameters 

 and  were used to modify the magnitude of the Lennard-Jones (LJ) and electrostatic 𝜆𝐿𝐽 𝜆𝑒𝑙𝑒𝑐
interactions, respectively, between the analyte and mesogen molecules. Coupling parameters 
were varied between 1, corresponding to normal interactions between the analyte and mesogens, 
to 0, corresponding to no interactions between the analyte and mesogens, in 16 independent 
simulation windows: 6 in which  = 1.0 and  = 0.000, 0.167, 0.333, 0.500, 0.667, or 0.833, 𝜆𝐿𝐽 𝜆𝑒𝑙𝑒𝑐
and 10 in which  = 0 and  = 0.000, 0.100, 0.200, 0.300, 0.400, 0.500, 0.600, 0.700, 0.800, 𝜆𝑒𝑙𝑒𝑐 𝜆𝐿𝐽
or 0.900. The Multistate Bennett Acceptance Ratio (MBAR) method44 was used to compute the 
solvation free energy as the free energy difference between the solvated analyte state (𝜆𝐿𝐽 = 𝜆𝑒𝑙𝑒𝑐

) and an ideal gas reference state ( ). Each window consisted of 3 ns of = 1.0 𝜆𝐿𝐽 = 𝜆𝑒𝑙𝑒𝑐 = 0
equilibration at 300 K and 1 bar followed by 7 ns of production at 300 K and constant volume. 
This simulation time was sufficient to obtain convergence (SI Figure S5). The solvation free 
energy was calculated 3 times for each analyte using different initial insertion positions. All 
solvation free energy results report the average and standard error between these trials. 

The interfacial system consisted of a slab of 2500 molecules initially arranged within a 
7.5×7.5×24.0 nm3 volume using the PACKMOL program.45 The simulation box was then extended 
in the z-direction by 16.615 nm to create a vacuum layer between the two interfaces. This z-
dimension is large enough to allow the formation of smectic layers near the vapor-LC interface 
while achieving bulk nematic properties near the center of the LC slab.33 The system was 
equilibrated using a simulated annealing protocol in which the temperature was set to 420 K and 
decreased at a rate of 1 K/ns for 120 ns. The system was then equilibrated for a further 100 ns at 
300 K. All simulations of the interfacial system were performed at constant volume to maintain 
the vacuum layer. The thickness of the LC slab after equilibration was 19.495 nm.

Using the interfacial system, we performed umbrella sampling to measure the potential of mean 
force (PMF) for the transport of an analyte molecule across the vapor-LC interface. We used the 
z-component of the distance between the center-of-mass (COM) of the analyte and the COM of 
the LC slab as the reaction coordinate. Umbrella sampling was performed using 70 windows 
spaced by 0.1 nm along the reaction coordinate. The analyte was restrained to the desired value 
of the reaction coordinate using a harmonic potential with a spring constant of 500 kJ/mol/nm2. 
Each window consisted of 10 ns of equilibration followed by 45 ns of production at 300 K. This 
simulation time was sufficient to obtain convergence (SI Figure S5). The weighted histogram 
analysis method (WHAM) was used to compute the PMF.46 

All simulations used a 2-fs timestep. Verlet lists were generated every 20 timesteps using a 1.2 
nm cutoff. Electrostatic interactions were computed using the smooth Particle Mesh Ewald (PME) 
method with a 1.2 nm short-range cutoff, Fourier spacing of 0.14 nm, and PME order of 4. LJ 
interactions were smoothly shifted to zero between 1.0 nm and 1.2 nm with no dispersion 
correction. Temperature coupling was performed using a Nóse-Hoover thermostat with a time 
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constant of 2 ps and isotropic Parrinello-Rahman barostat with a compressibility of 3×10-5 bar-1. 
All simulations were performed using Gromacs 2016.43 

Finally, we also calculated the binding of water to benzonitrile (a surrogate molecule for 5CB) with 
DFT in the gas phase. For these calculations, we used Gaussian 09 version D.0147 with M06-2X-
D3/def2-TZVP48-50 level of theory. The value reported is corrected for calculated zero-point 
energies of the respective terms. 

Results and Discussion:

Validation of Force Field Parameters

Investigating analyte partitioning and transport through a nematic LC film using MD simulations 
requires analyte and mesogen force field parameters that can capture experimentally relevant 
structural and dynamic parameters. Extensive previous simulations have studied the behavior of 
5CB, a mesogen utilized experimentally in sensor operation,30-31, 51-52 using a UA force field that 
has been parameterized to reproduce the temperature at which the nematic-isotropic phase 
transition occurs ( ).32 These past simulations have largely focused on LC phase behavior and 𝑇NI
structural properties.30-32 However, the removal of explicit hydrogen atoms in UA models can lead 
to unphysically large diffusivities53-54, and moreover the UA model for 5CB cannot be easily 
generalized to other mesogens. Due to these considerations, we instead parameterized 5CB 
using the AA GAFF force field (as described in the Methods) to facilitate the modeling of new 
mesogens and analytes without extensive parameterization. 

The 5CB model was validated by comparing the temperature variation in structural and dynamical 
properties calculated using the AA and UA models to experimental measurements (Figure 2). 
Each property was computed from a 50 ns simulation performed at the indicated temperature 
after annealing as described in the Methods. Figure 2a shows the order parameter, which is 𝑃2 
related to the average angle between a mesogen molecular axis and the LC director vector, , by 𝜃
Equation 1:

𝑃2 =
3
2cos2 𝜃 ―

1
2 (1)

The order parameter varies from a value near 1 in the nematic phase and a value near 0 in the 𝑃2 
isotropic phase at the .55 Details on the calculation of this parameter are presented in the 𝑇NI
Supporting Information. The experimental data indicate that  is near 308.2 K,56-58 which is 𝑇𝑁𝐼
reasonably reproduced by the UA model as expected. The AA model instead produces a nematic 
phase at temperatures higher than the experimentally determined . However, the value of the 𝑇𝑁𝐼

 order parameter calculated in the nematic phase using the AA model is in good agreement 𝑃2
with the UA model and only slightly exceeds the experimental value, suggesting that structural 
properties of the nematic phase are reasonable even if the thermodynamics of the phase 
transition are inaccurate. Figure 2b shows the LC density as a function of temperature. The AA 
model is in much better agreement with the experimental data than the UA model, again indicating 
that the model reproduces LC structure accurately. Finally, Figure 2c shows the average mesogen 
diffusion coefficient and components of the diffusion coefficient parallel and perpendicular to the 
LC director vector. These data show that the AA model is in excellent agreement with 
experimental measurements while the UA model overestimates mesogen diffusivity by nearly two 
orders of magnitude. We attribute the increased diffusivity in the UA model to the absence of 
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explicit hydrogen atoms as previously noted for other UA models.53-54 Together, these data 
indicate that the structural and dynamic properties of nematic-phase 5CB predicted by the AA 
model are in good agreement with experimental values, permitting further evaluation of LC-
analyte interactions.

Figure 2: Comparison of 5CB model predictions to experimental measurements. All plots 
compare the temperature dependence of a bulk 5CB property calculated using either the UA 
(blue) or AA (yellow) model to experimental measurements (red). Squares indicate the 
temperatures at which simulations/experiments were performed. A dashed line is drawn at 300 K 
as a guide to the eye. Properties include: (a) the order parameter, with experimental data from 𝑃2 
Ref. 56; (b) the bulk density, with experimental data from Ref. 57; and (c) 5CB diffusion coefficients, 
with experimental data from Ref. 58. The component of the diffusion coefficient parallel to the 
director vector (Dǁ), the component perpendicular to the director vector (DꞱ), and the average 
diffusion coefficient (˂D˃) are separately reported.

Analyte Partitioning into Bulk 5CB

Sensor activation requires the partitioning of analytes from the vapor phase into the LC followed 
by analyte diffusion to the substrate. We thus sought to quantify the thermodynamics of analyte 
partitioning into the LC as a first step toward characterizing analyte transport. Analyte partitioning 
was quantified by computing the solvation free energy, , which is the free energy change for Δ𝐺solv

Page 7 of 24 Molecular Systems Design & Engineering



8

transferring the analyte from an ideal gas vapor phase to bulk LC (schematically illustrated in 
Figure 3a).  can be related to the Henry’s law constant, , the LC molar density, , the Δ𝐺solv 𝐾𝐻 𝜌𝐿𝐶

pressure, , the temperature, , and the ideal gas constant, , by Equation 2:59𝑝 𝑇 𝑅

Δ𝐺solv = ― 𝑘𝐵𝑇ln (𝜌𝐿𝐶𝑅𝑇
𝐾𝐻𝑝 ) (2)

Negative values of  correspond to smaller values of , indicating more favorable Δ𝐺solv  𝐾𝐻

partitioning into the LC film. To validate the computational approach, we calculated  for Δ𝐺solv
analytes with experimentally reported Henry’s law constants in 5CB. Figure 3b shows the 
solvation free energies using both the UA and AA 5CB models for methane (CH4), carbon dioxide 
(CO2), glutaraldehyde (GLU), and DMMP. Simulation values are compared to solvation free 
energies calculated using Equation 2 with experimentally determined Henry’s law constants. The 
CH4 and CO2 Henry’s law constants were computed by de Groen et al. by measuring the bubble 
point of the gas in a closed system with the LC.24-25 The GLU Henry’s law constant was measured 
using the Purpald method60 in which aldehydes react with a dye to allow their concentration to be 
inferred from absorbance measurements.26 The DMMP Henry’s law constant is an order-of-
magnitude estimate based on experimental measurements using a mass-transfer model of 
chemoresponsive LC sensor activation.15, 23 Values of  calculated using both the AA and UA Δ𝐺solv
5CB models reproduce the experimental values within ~1-2 kBT for each analyte. The agreement 
between these values indicates that the AA 5CB and analyte models can reproduce experimental 
measurements of analyte partitioning and that the AA and UA models are of comparable 
accuracy. 

Figure 3: Validation of solvation free energy calculations. a) Simulation snapshots 
illustrating the two states used to calculate the solvation free energy ( ). The analyte is Δ𝐺solv

shown in red. b)  calculated using the UA and AA 5CB models. Values are compared to Δ𝐺solv
experimental estimates based on Henry’s law constants using Equation 2. 
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In addition, we compared the values calculated with the AA model to polarizable continuum (PC) 
model using benzonitrile as a solvent (details of the DFT calculations and comparisons are 
presented in Figure S8), which has been used previously as a DFT alternative for calculating 
solvation energies for benzonitrile-containing LCs.61 We found that errors between the AA and 
PC models are within the DFT mean squared error of 0.2 eV.62  We note that while this justifies 
the use of the PC model for comparison with DFT-calculated values for small molecules in 5CB, 
the AA model error is smaller than DFT errors compared to experiments as shown in Figure 3b. 
Because the results in Figure 2c indicate that the AA 5CB model provides more accurate 
calculations of 5CB diffusion than the UA model and diffusivities cannot be obtained from the PC 
model, we will only present results using the AA model for the remainder of this study.

Figure 4: Analyte partitioning into bulk 5CB. a) Comparison of the solvation free energy (Δ
) and contributions to the solvation free energy due to Lennard-Jones and electrostatic 𝐺solv

interactions. b) Radial distribution functions (RDFs) computed between the center-of-mass 
(COM) of each analyte and the COM of the 5CB nitrile group. c)  The maximum value of the 
RDF between each analyte and the nitrile group. The color scheme matches that of part b).
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We next computed  for the six atmospheric analytes of interest (Figure 4a).  is negative Δ𝐺solv Δ𝐺solv
for each analyte, indicating that partitioning into the LC from the vapor phase is thermodynamically 
favorable. The magnitude of  varies between -1.44 kBT for Cl2, which partitions least Δ𝐺solv
favorably into the LC, and -5.05 kBT for SO2, which partitions most favorably. These differences 
indicate that corresponding Henry’s law constants and thus dissolved analyte concentrations 
should vary by an order of magnitude according to Equation 2. We note that the free energies 
predicted by these simulations neglect any possible analyte dissociation or reactions between 
analytes such as O3 or Cl2 and 5CB that could affect partitioning.63-64

Figure 4a further decomposes  into contributions related to electrostatic interactions and LJ Δ𝐺solv
interactions. The electrostatic contribution accounts for hydrogen bonding and dipole-dipole 
interactions and is largest for the analytes with the largest dipole moments (H2O, SO2, and O3; 
see SI Figure S2).  The significant contribution of the electrostatic interactions to  for these Δ𝐺solv
analytes suggests that their partitioning would be sensitive to the dielectric constant of the bulk 
LC. The largest electrostatic contribution is obtained for H2O, which we attribute to hydrogen bond 
formation as further discussed below. The LJ contribution accounts for van der Waals interactions 
between the analyte and surrounding LC as well as the perturbation to LC structure due to 
excluded volume interactions. Because multiple energetic interactions contribute to the LJ 
contribution, trends are more difficult to discern. However, we do note that the magnitude of the 
LJ contribution to  is similar for NO2, CO2, and SO2 due to the similar chemical structures Δ𝐺solv
and molecular geometries of these analytes. H2O is the only analyte with a significant positive LJ 
contribution.  

To investigate interactions with the polar nitrile group on 5CB, Figure 4b shows radial distribution 
functions (RDFs) that report the density of analyte molecules at a distance r from the COM of the 
nitrile group with values normalized by the bulk density of analyte. RDFs are computed for H2O, 
O3, and NO2 because these analytes span a range of electrostatic contributions to  (Figure Δ𝐺solv
4a). The RDF for H2O shows a significantly larger peak than the other two analytes, indicating the 
preferential coordination of water molecules with the nitrile group. This result is consistent with 
the formation of hydrogen bonds. We also calculated a significant hydrogen bond strength of -
0.27 eV between the water molecule and the benzonitrile in gas phase with DFT. Figure 4c 
compares the maximum value of the RDF for all six analytes. H2O exhibits the strongest 
coordination to the nitrile group, followed by SO2 which also has a large dipole moment. These 
results suggest that in addition to tuning the bulk electrostatic properties of the LC to mediate 
partitioning, tuning the specific chemistry of polar groups can affect analyte interactions with the 
mesogen. 

Interfacial partitioning and dynamics

Values of  report the thermodynamics of analyte partitioning between the vapor phase and Δ𝐺solv
bulk LC. However, the structure of a LC can differ from its bulk structure near the vapor-LC 
interface. Figure 5a shows the normalized density of the LC as a function of the z-component of 
the distance from the vapor-LC interface ( . The interface was defined as the position at which 𝑑z)
the 5CB density was half that of the bulk density. We note that the density approaches zero on 
the vapor side of the the interface because mesogens do not enter the vapor phase within the 
simulation timescale. The oscillations in the density near the interface (  nm) indicate ―3 <  𝑑z < 0
smectic-like ordering, whereas the density plateaus to a bulk value far from the interface (𝑑z

 nm). This result, which is consistent with prior simulation and experimental findings,18 <  ― 3
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suggests that the smectic-like region near the interface could lead to interfacial barriers to analyte 
partitioning that are not captured by .Δ𝐺solv

To investigate this possibility, we performed umbrella sampling to compute the potential of mean 
force (PMF) for transferring an analyte across the vapor-LC interface. The PMF reports the free 
energy change associated with moving an analyte from a reference position in the vapor phase 
as a function of . Umbrella sampling was performed for H2O, Cl2, and SO2 because they span 𝑑z

the range of  values according to Figure 4a. Figure 5b shows PMFs for each analyte. For Δ𝐺solv

reference, the corresponding value of  computed for partitioning between the vapor phase Δ𝐺solv
and bulk LC is shown as a dashed line. The PMFs exhibit similar features, including a plateau at 
a value similar to for  nm, oscillations for  nm, and a local minimum Δ𝐺solv 𝑑z <  ― 3 ―3 <  𝑑z < 0
near  nm (i.e., at the vapor-liquid interface), although the local minimum is not observed  𝑑z =  0
for H2O. The agreement between values of  and the PMF values far from the interface Δ𝐺solv
confirms that the system size is sufficient to model interfacial behavior without finite size effects. 
The oscillations in the PMFs correspond to oscillations in the LC density, indicating that PMF 
features mirror the smectic layering of the LC. The local minima at the interface for Cl2, and SO2 
suggest that these analytes could potentially accumulate at the interface, affecting transport into 
the bulk LC film. However, the magnitude of the PMF variations are small (<3 kBT). 

Figure 5: Comparison of bulk and interfacial partitioning. a) 5CB density as a function of 
the z-component of the distance from the vapor-LC interface ( ). The density is normalized 𝑑z
by the density of bulk 5CB in the nematic phase. b) Potentials of mean force (PMFs) as a 
function of for Cl2, H2O, and SO2. PMF values are set to zero at  = 1 nm. c) Permeabilities 𝑑z 𝑑z
computed for the bulk LC and the interfacial region using Equation 4. 
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To determine if variations in the PMF are significant enough to affect analyte transport across the 
LC film, we computed analyte permeabilities in the bulk LC and at the vapor-LC interface. The 
permeability, , relates the analyte flux across an interface,  to the concentration difference, , 𝑃 𝐽, Δ𝐶
as shown in Equation 3:

𝐽 = 𝑃Δ𝐶 (3)

The permeability can be calculated using the inhomogeneous solubility-diffusion model (Equation 
4) which accounts for spatial variations in analyte diffusivity and solubility.  is the analyte 𝐷(𝑑z)
diffusion coefficient as a function of  and the PMF accounts for spatial variations in solubility:65𝑑z

1
𝑃 = ∫

𝑑(2)
𝑧

𝑑(1)
𝑧

exp (PMF
𝑘𝐵𝑇 )

𝐷(𝑑z) 𝑑𝑑z (4)

We applied Equation 4 to compute analyte permeability at the vapor-LC interface using the PMFs 
shown in Figure 5a and by calculating  from the umbrella sampling trajectories as described 𝐷(𝑑z)
in the Supporting Information (SI Figure S4). We defined the limits of integration as  nm 𝑑(1)

𝑧 =  ―6
and = 1 nm to capture only interfacial behavior. We similarly applied Equation 4 to compute 𝑑(2)

𝑧

the permeability of the bulk LC by equating the PMF to  and  to the component of the Δ𝐺solv 𝐷(𝑑z)
bulk analyte diffusion coefficient parallel to the LC director vector. Since these values are constant 
in bulk LC, the integrand can be factored out of the integral in Equation 4 and the remaining 
integral evaluates to the LC film thickness, , which we set to 18 µm based on experimental 𝛿
systems.8, 15-17 Figure 5c compares the interfacial and bulk permeabilities for O3, H2O, and Cl2. For 
all three analytes, the bulk permeability is four orders of magnitude lower than the interfacial 
permeability. This suggests that transport across the LC region near the vapor-LC interface is fast 
in comparison to the transport through the bulk LC film and the oscillations in the PMFs do not 
significantly influence analyte transport. 

Estimated times for sensor activation using transport model

We next sought to predict the sensor activation time using the simulation results to determine if 
this timescale could be used to distinguish between activation by different analytes. Since Figure 
5c indicates that analyte transport is dominated by the bulk properties of the LC, we modified a 
mass-transport model originally derived by Hunter and Abbott to relate the analyte solvation free 
energies and diffusivities in bulk LC to the sensor activation time, .15, 23 We assume that analyte 𝑡𝑎𝑐𝑡
transport to the substrate is slow compared to the timescale for the displacement of substrate-
bound mesogens (i.e., sensor activation is transport-limited). This assumption is justified by prior 
experimental measurements for the activation of LC sensors by DMMP that showed that the 
sensor activation time is limited by mass transfer across the vapor-LC interface.23 Prior 
computational and experimental studies have also shown that mesogen displacement timescales 
can be varied by modifying the chemical composition of the substrate independently of the bulk 
LC composition.16-17 Therefore, we assume that the transport-limited regime is achievable 
experimentally and investigate the ability of to distinguish activation by different analytes. 𝑡𝑎𝑐𝑡 

To relate  to simulation quantities, we assume that analyte transport within the LC is at pseudo 𝑡𝑎𝑐𝑡
steady-state and analyte accumulates within the LC film.  is then the time necessary for the 𝑡𝑎𝑐𝑡
average concentration of analyte in the LC film to reach a threshold concentration, , for which 𝐶𝑎𝑐𝑡
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there is a sufficient thermodynamic driving force to displace the mesogens at the substrate’s 
surface and trigger sensor activation.  is a quantity that depends on the elastic properties of 𝐶𝑎𝑐𝑡
the LC and the analyte-substrate chemistry. Therefore,  will likely be different for each analyte 𝐶𝑎𝑐𝑡
and may vary by orders of magnitude. However, we can still identify trends relating analyte 
diffusivity and partition coefficients to  by assuming that  is constant for all studied analytes. 𝑡𝑎𝑐𝑡 𝐶𝑎𝑐𝑡
The Supporting Information includes further discussion of these assumptions, a derivation of the 
mass-transfer model presented below, and a derivation of an alternate mass-transport model 
which assumes that  approaches zero. 𝐶𝑎𝑐𝑡

Using these assumptions, Equation 5 relates  to the film thickness, , the overall mass transfer 𝑡𝑎𝑐𝑡 𝛿
coefficient, , the concentration of analyte in the vapor stream, , and : 𝐾𝑜𝑣 𝐶𝑣𝑎𝑝 𝐶𝑎𝑐𝑡

𝑡𝑎𝑐𝑡 =
𝛿

2𝐾𝑜𝑣
ln ( 𝐶𝑣𝑎𝑝

𝐶𝑣𝑎𝑝 ― 𝐶𝑎𝑐𝑡) (5)

Equation 5 indicates that the activation time will decrease as a function of the overall mass transfer 
coefficient.  is related to the diffusion coefficient, , partition coefficient, , and the vapor-LC 𝐾𝑜𝑣  𝐷 𝐾𝑝
interface mass transfer coefficient,   via Equation 6:𝑘𝑐

1
𝐾𝑜𝑣

=
1
𝑘𝑐

+
𝛿𝐾𝑝

𝐷 (6)

The overall mass transfer coefficient can exist in two regimes: either mass transfer at the interface 
dominates or analyte partitioning and diffusion dominates.  is related to the Henry’s law 𝐾𝑝
constant, and correspondingly, the solvation free energy of an analyte via Equation 7:

𝐾𝑝 =
𝐾𝐻𝑝

𝜌𝐿𝐶𝑅𝑇 = exp (Δ𝐺𝑠𝑜𝑙𝑣

𝑘𝐵𝑇 ) (7)

Since the diffusivities of vapor-phase small molecules typically vary by less than a factor of two,66 
we assume  = 312.5 µm/s for all analytes based on the value obtained by Hunter and Abbott.23 𝑘𝑐

 then depends on two experimentally determined, analyte independent quantities (  and ) 𝐾𝑜𝑣 𝑘𝑐 𝛿
and two simulation-derived, analyte specific quantities (  and . For simplicity, Equation 8 𝐾𝑝  𝐷)
defines the permeance, , in terms of the two simulation-derived quantities: 𝒫

𝒫 =
𝐷
𝐾𝑝 (8)

Calculating the permeance thus allows  to be compared between different analytes. 𝐾𝑜𝑣
Computing , however, requires knowledge of , which is dependent on the thermodynamic 𝑡𝑎𝑐𝑡 𝐶𝑎𝑐𝑡
driving force. Equation 9 eliminates  by normalizing the sensor activation time by the sensor 𝐶𝑎𝑐𝑡
activation time previously reported for DMMP transport across 5CB, , which is between 10-𝑡𝐷𝑀𝑀𝑃
100 s depending on the substrate properties, and assuming  is constant between different 𝐶𝑎𝑐𝑡
analytes and detection schemes.23 
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𝑡𝑎𝑐𝑡

𝑡𝐷𝑀𝑀𝑃
=

1
𝑘𝑐

+
𝛿
𝒫

1
𝑘𝑐

+
𝛿

𝒫𝐷𝑀𝑀𝑃

(9)

The only unknown quantity in Equation 9 is the permeance, which is computed from the 
simulations for each analyte. We note that an alternative mass-transport model, which instead 
assumes that analyte molecules rapidly, irreversibly adsorb to the substrate without accumulating 
in the film, also leads to the same dependence of  on  as in Equation 9 without assuming 𝑡𝑎𝑐𝑡 𝒫
similar . Further details on this model are presented in the Supporting Information. 𝐶𝑎𝑐𝑡

Figure 6a shows the relative sensor activation times in 5CB determined by Equation 9 for the six 
atmospheric analytes of interest and for DMMP as a reference. Points are labeled based on 
values of the permeance computed using  and the bulk-phase analyte diffusivity while  Δ𝐺solv
Equation 9 is plotted as a red line. Different analytes exhibit different sensor activation times, 
supporting the hypothesis that this timescale could be used to distinguish sensor activation by 
different analytes. DMMP, which has the highest permeance due to its highly favorable 
partitioning into 5CB (Figure 3b), lies in a regime where the activation time plateaus because  is 

1
𝑘𝑐

significantly larger than in Equation 9, indicating that overall mass transport is limited by mass 
𝛿
𝒫 

Figure 6: Mass-transport model of sensor activation. a) Relative response time as a 
function of permeance for all six analytes. Response times are calculated relative to the 
response time for DMMP, which was experimentally measured to be between 10 and 100 s. 
b) The leading order polynomial dependence of the response time on film thickness as a 
function of permeance for all six analytes.
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transfer across the vapor-LC interface. This result agrees with previous experimental conclusions 
for DMMP transport23. However, the other six analytes all have permeances lower than that of 
DMMP, and as a result their sensor activation times are limited by analyte transport through the 
LC film. 

To facilitate experimental validation of the transport model, Equation 10 quantifies the 
dependence of the activation time on the film thickness as a function of :𝒫

𝑑 ln(𝑡𝑎𝑐𝑡)
𝑑 ln(𝛿) =

( 1
𝑘𝑐

+
2𝛿
𝒫 )

( 1
𝑘𝑐

+
𝛿
𝒫) (10)

Figure 6b shows the dependence of the activation time on the film thickness for the same seven 
analytes as Figure 6a. Most of the analytes lie between the two regimes of linear and quadratic 
dependence, with the extremes being Cl2, which is closer to the quadratic regime, and DMMP, 
which is closer to the linear regime. This model of the dependence on film thickness allows for 
experimental verification of the transport model and predicted permeance values by determining 
the change in activation time associated with a change in film thickness. 

Comparison of transport in TL205 analog to 5CB

Figure 6 shows how the sensor activation time in the transport-limited regime depends on analyte 
permeance in the bulk LC. This analysis suggests that the activation times for NO2 and H2O are 
similar, as are the activation times for CO2 and SO2, which suggests that sensor activation times 
in 5CB may not distinguish these analytes due to their similar permeances (within the 
assumptions of the mass-transport model). Instead, alternative LC materials may lead to distinct 
permeances for these pairs of analytes. Differences in analyte permeance in 5CB are primarily 
related to differences in analyte solvation free energies. For example, the partition coefficients for 
the seven analytes studied in Figure 6 varies from 0.24 to 0.0064 whereas the diffusivity varies 
from 243 µm2/s to 637 µm2/s. This comparison indicates that tuning the solvation free energy is 
the more important factor when considering sensor design. Figure 3 further suggests that 
solvation free energies depend on electrostatic interactions and hydrogen bonding interactions 
with the LC to different degrees for different analytes, suggesting that tuning mesogen chemical 
properties can affect activation times to further improve sensor selectivity.

To evaluate the effect of mesogen chemical properties on transport, we computed  and Δ𝐺solv
determined corresponding analyte permeances in TL205. TL205 is a proprietary mixture of 
fluorinated, nonpolar mesogens that is in the nematic phase at room temperature.20 We 
approximated TL205 as a 1:1 mixture of the two components shown in Figure 7a. AA models for 
both components were parameterized using the same strategy used for 5CB. The mixture was 
similarly annealed to obtain a well-mixed nematic phase that was then used to perform analyte 
solvation free energy calculations. While both TL205 components lack the nitrile groups needed 
to bind to metal salt substrates, mixtures of mesogens with additives containing nitrile groups can 
act as chemoresponsive sensors.8 We assume that bulk TL205 is thus a suitable model for a 
chemoresponsive mixture of TL205 with a nitrile-containing additive (e.g., 5CB). 
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Figure 7b compares for the six atmospheric analytes in bulk 5CB and TL205.  is less Δ𝐺solv Δ𝐺solv
favorable in TL205 than in 5CB for all analytes except NO2, with H2O, O3, and SO2 exhibiting the 
largest increases in . These three analytes had the largest contribution from electrostatic Δ𝐺solv
interactions for partitioning in 5CB (Figure 4a), and as expected the electrostatic contribution to 
the solvation free energy in TL205 also dictates the change in the total solvation free energy (SI 
Figure S7). The dielectric constant of TL205 is approximately half of the dielectric constant of 
5CB67-68, explaining the less favorable partitioning of these three analytes. H2O is the only analyte 
for which the value of  is positive, indicating unfavorable partitioning. This result can be Δ𝐺solv

Figure 7: Analyte partitioning and transport in TL205. a) Chemical structures and 
simulation snapshots of two components used to represent the mesogen mixture in TL205. b) 
Comparison of solvation free energies for all analytes in 5CB and in TL205. c) Comparison of 
permeances for all analytes in 5CB and TL205.
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explained by the importance of hydrogen bonds to the nitrile group in 5CB (Figure 4c), which are 
absent in TL205. 

We next translated the results of Figure 7b and analyte diffusion coefficient measurements (SI 
Figure S3) into permeances using Equation 8. Figure 7c compares analyte permeances in both 
5CB and TL205. In general, the less favorable partitioning of more polar analytes into TL205 
translates into lower permeances in TL205 than in 5CB. In particular, the permeances of H2O and 
SO2 are significantly reduced. Importantly, the permeances of NO2 and H2O differ significantly in 
TL205, as do the permeances of CO2 and SO2. Thus, while sensor activation times for these 
analytes were indistinguishable in 5CB, constructing a sensor from TL205 instead would facilitate 
selectivity between these analytes, potentially enabling the construction of sensor arrays 
comprised of both 5CB- and TL205-based sensors to distinguish between all six atmospheric 
analytes. 

Conclusions

In this work, we performed classical molecular dynamics simulations to study the partitioning and 
diffusion of small-molecule analytes in chemoresponsive liquid crystal sensors. We developed an 
all-atom model of a common mesogen, 5CB, and nine analytes, including four atmospheric 
pollutants and two ambient atmospheric species. We validated the simulation models by showing 
that the all-atom 5CB model reproduces experimental measurements of LC structure and more 
closely matches experimental diffusivity measurements than a widely used united-atom model. 
Simulated solvation free energies for a subset of analytes also compared favorably to solvation 
free energies obtained from experimentally determined Henry’s law constants. Using these 
models, we calculated the solvation free energies of the six atmospheric analytes in the bulk LC 
to quantify analyte partitioning. These results showed that electrostatic interactions, and 
particularly interactions between polar analytes and the nitrile group on 5CB, significantly impact 
partitioning. We also determined that variations in the LC density near the vapor-LC interface 
have minimal impact on analyte transport across LC films. Using the simulation-derived estimates 
of analyte partitioning and diffusivity in the bulk LC, we predicted sensor activation times by 
modifying a previously developed mass-transfer model. Our results indicate that differences in 
transport across the film translate to order-of-magnitude differences in activation times, 
suggesting that transport properties can be used to identify what analyte causes sensor activation. 
We further predict that replacing 5CB with TL205, another experimentally accessible LC, can lead 
to variations in relative sensor activation times to improve sensor selectivity. These results 
suggest that the computational screening of analyte interactions with mesogens or LC additives 
can be used to increase sensor selectivity to different analytes by tuning analyte transport and 
corresponding sensor activation times.
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Molecular dynamics simulations predict the effect of analyte transport on the activation time 
of chemoresponsive liquid crystal sensors to improve sensor selectivity
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