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ABSTRACT

Among the various catalysts for ROP, H-bonding organocatalysts stand out in the precise 

level of reaction control they are able to render during ROP.  The H-bonding class of 

organocatalysts are thought to effect ROP via dual activation of both monomer and chain end.  

(Thio)urea mediated ROP has experienced a renaissance as a new polymerization mechanism – 

mediated by imidate or thioimidate species – facilitates new modes of reactivity and new synthetic 

abilities.  Indeed, the urea class of H-bond donors have been shown to be more active than their 

corresponding thioureas.  The imidate mechanism remains highly active in polar solvents and 

exhibits remarkable control – and ‘living’ behavior - under solvent-free conditions, and a broad 

range of temperature is accessible.  The advancements in synthetic abilities have all evolved 

through a greater understanding of reaction mechanism.  Through the continued synergistic 

advances of catalysis and material, the (thio)urea class of catalyst can find use in a host of potential 

applications, research and industrial environments.

INTRODUCTION

Organocatalysis for polymer synthesis has come to be synonymous with the construction 

of precisely tailored materials through the ring-opening polymerization (ROP) of esters, 

Page 1 of 26 Organic & Biomolecular Chemistry



carbonates and other cyclic monomers.1–10  While organocatalysts have gained a beachhead in the 

synthesis of other polymers,11 a host of organic systems for transesterification polymerization have 

been developed. 1,2,12–17  The purview of organocatalysts for polymerization are ‘living’ ROP.  A 

living ROP is a type of chain growth polymerization characterized by the lack of chain transfer 

and termination events – a kinetic definition.18  A controlled, ‘living’, polymerization is one that 

features predictable molecular weights (Mn) and molecular weight distributions close to unity 

(dispersity= Ð = Mw/Mn) and are capable of yielding polymers with well-defined architectures.1,2,12 

The selectivity of catalysts towards ROP versus non-enchainment reactions is vital to minimizing 

the molecular weight distribution.1,2,12,19,20   Additionally, functional group tolerance,1,2,21–24 

activity of catalysts under a wide range of temperature11,25–29 and pressure, 30,31 and a variety of 

solvents and solvent-free conditions32 facilitate the implementation of diverse reaction conditions 

which facilitates advanced polymer design. 

Among the various catalysts for ROP, H-bonding organocatalysts stand out in the precise 

level of reaction control they are able to render during ROP.  The (thio)urea H-bonding class of 

organocatalysts are thought to effect ROP via dual activation of both monomer and chain end, 

Scheme 1.1,2,12,33  In this approach, a typical catalyst system consisting of a thiourea (TU) and base 

cocatalyst can render high functional group tolerance and yield polymers with predictable 

molecular weights and narrow Mw/Mn.1,2,4,34–36  Despite the high selectivity shown by this class of 

catalyst, the major disadvantage had been the slow rates for ROP.34,35,37  Although the development 

of advanced catalyst systems continues apace, this shortcoming has largely been mitigated.  

Indeed, (thio)urea H-bond mediated ROP has experienced a renaissance as a new polymerization 

mechanism – mediated by imidate or thioimidate species – facilitates new synthetic abilities and 

new modes of reactivity, Scheme 1.  It should be noted that there are many structural 

Page 2 of 26Organic & Biomolecular Chemistry



manifestations of H-bond mediated catalysts,11,38–41 but this review is narrowly focused on the 

evolution of the (thio)urea/base cocatalyst system as it pertains to the ROP of δ-valerolactone 

(VL), -caprolactone (CL) and lactide (LA), in particular.
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a. Neutral H-bonding mediated ROP

b. Imidate mediated ROP with MTBD

c. Imidate mediated ROP with alkoxides

Scheme 1.  Neutral versus Imidate Mediated ROP of Lactones

(THIO)UREA H-BOND MEDIATED RING-OPENING POLYMERIZATION

The naissance of H-bond mediated ROP occurred in 2005 when the Takemoto thiourea 

(Figure 1) was applied for the polymerization of LA.4  This unimolecular, bifunctional catalyst 

consists of an H-bond donating moiety and an H-bond accepting moiety that can activate monomer 

and initiator/chain end, respectively (Scheme 2), yielding, in addition to typical ‘living’ behavior,  

highly selective ROP with minimum broadening of Mw/Mn even at monomer conversions  95%.4  

However, the reaction time is protracted (2 days), and ROP is most effective in non-H-bonding 

solvents.4  This study cemented common themes among H-bond mediated catalysts for ROP: a 

3,5-bistrifluoromethyl aryl group for its electron withdrawing abilities and a cyclohexyl group, 
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which is not required versus other alkyl groups for catalysis.4  Amazingly, this study also revealed 

similar catalytic activity to the bifunctional Takemoto catalyst when bimolecular catalysts were 

employed; the thiourea 1-S plus N,N-dimethylcyclohexylamine (NCyMe2) cocatalyzed ROP of 

LA demonstrated that covalently tethering the H-bond donor and acceptor is not essential.4,8  A 

base screen conducted using 1-S and commercially available bases revealed (-)-sparteine to exhibit 

the highest activity, achieving 95% conversion of LA in 2 h (25-fold faster than the parent system), 

producing PLA with minimal epimerization and narrow Mw/Mn.8  Thiourea plus alkylamine base 

cocatalysts are limited to the ROP of LA.42
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Scheme 2.  Proposed activation pathway of covalently linked bifunctional thiourea in ROP of LA

  
For H-bond mediated ROP, strong organic base cocatalysts are required with TUs for the 

ROP of lactones other than lactide.35  The guanidine base N-methyl-1,5,7-triazabicyclo[4.4.0]dec-

5-ene (MTBD) and amidine base 1,8-diazabicyclo[5.4.0]- undec-7-ene (DBU) are only active for 

ROP of VL and CL from alcoholic initiators in the presence of 1-S.  Under typical reaction 

conditions (2M monomer, 5 mol% cocatalysts), the MTBD or DBU plus 1-S cocatalyzed ROP of 

VL ([M]o/[I]o = 100) reached full conversion in ~4 h, and the polymerization of CL was much 

slower (full conversion in 2-5 days).42  Although slower than other catalyst systems, these 

cocatalysts are highly controlled, leading to polymers with narrow molecular weight distributions 
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(Mw/Mn ≤ 1.08), predictable molecular weights up to [M]o/[I]o = 200 with good end group fidelity.42  

The selectivity of these catalysts for monomer versus polymer could be ascribed to the high affinity 

of thiourea for s-cis esters (lactones) in contrast with negligible binding to s-trans esters (i.e. 

polymer backbone).1,2,42  In general, thioureas featuring aryl rings with strong electron 

withdrawing groups result in faster rates, but the trend is not robust.43  Further, enhanced H-

bonding to base cocatalyst will attenuate catalytic activity.16,35  

Figure 1.  Strength of cocatalyst binding is predictive of catalytic activity.

Mechanistic studies on the thiourea/alkylamine base mediated ROP of LA informed the 

development of advanced catalyst systems for ROP.  Kinetic studies on the ROP of LA cocatalyzed 

by 1-S and certain alkylamine bases (i.e. not all cocatalyst combinations) revealed second order 

dependence on [1-S]o; a mechanistic account was proposed.44  As a direct result, the bisthiourea 

2-S was synthesized and applied with base cocatalysts for the ROP of lactide, which resulted in 

enhanced rates (k2-S/k1-S ~12).37  Unexpectedly, the application of 2-S (plus base cocatalyst) results 

in rate accelerated ROP versus 1-S for all base cocatalysts and monomers examined, regardless of 

kinetics for the analogous 1-S system.  The 2-S plus base cocatalyzed ROPs of LA and lactones 

exhibit similar rate equations (Rate = kobs[M]; kobs = [2-S + base]o[initiator]o) which suggests that 
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2-S is acting as a discrete catalyst (one bisthiourea per base per monomer in the transition 

state).34,37  Buttressed by computational studies37 and indirect evidence,34 an activated-TU 

mechanism was proposed, whereby the ‘extra’ thiourea stabilizes the catalytic thiourea via H-bond 

activation, Figure 2.  The ROP of cyclic lactones in the presence of 2-S and base proceeded with 

lower catalyst loadings and enhanced rates compared to mono-thiourea 1-S, yet selectivity and 

control are retained.37  Since 2-S proved to be superior to 1-S in all comparisons, an obvious 

question becomes, what about a tristhiourea?  However, the tristhiourea 3-S is markedly inactive 

for ROP.34  This observation was attributed to intramolecular H-bonding between all three thiourea 

moieties, generating a C3 symmetric structure, rendering all thioureas inaccessible for catalysis.34  

Computational studies suggested that contracting the length of the H-bond donor moieties by 

changing C=S to C=O would break the C3 symmetry and result in the generation of a ‘frustrated’ 

system that cannot form a completed, intramolecular H-bonded network, thereby liberating a urea 

moiety for monomer activation (Figure 3).  The prediction proved prophetic, and the trisurea 3-O 

proved to be the gateway, at least for our group, to the incredibly active imidate mediated 

polymerizations.
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The ROP of VL with 3-O/MTBD achieved full conversion 25 times faster than with 2-

S/MTBD, producing PVL in 3 min (Mn = 7.5 kDa, Mw/Mn = 1.07).  The ROP of CL with 3-

O/MTBD was slower but was completed in 30 min compared to 10 h or 45 h with 2-S/MTBD or 

1-S/MTBD, respectively.  These transformations were not only more rapid but proceeded with 

high control, exhibiting the characteristics of a ‘living’ ROP.  A comparative study conducted for 

the ROP of CL (2M from benzyl alcohol, M/I = 50) with the highly-active base 1,5,7-

triazabicyclodec-5-ene (TBD), a go-to commercially available organocatalyst for ROP,45 versus 
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3-O/MTBD displayed the superior ROP abilities of the nascent urea H-bond donors:  3-O/MTBD 

(33 mM) 26 min, 97% conversion, Mw/Mn = 1.05; TBD (33 mM) 140 min, 93% conversion, Mw/Mn 

= 1.37.34  The marked success of 3-O mediated ROP suggested that other urea H-bond donors 

would be active as well.  Indeed, the monourea 1-O and bisurea 2-O were more active than the 

analogous thiourea H-bond donors when applied with a base cocatalyst for ROP.34  A 

commercially available monourea H-bond donor, triclocarban (TCC), exhibits catalytic rates and 

selectivities for all lactone monomers that rival that of 3-O.  For reasons that are not entirely clear, 

the 2-S/alkylamine system remains the more active and controlled system for the ROP of 

lactide.11,32 

The lower solubility of urea versus thiourea H-bond donors had restricted their application 

as catalysts, but almost all urea cocatalysts examined are fully soluble in the presence of base 

and/or monomer.34,46  The initial reports of urea plus base cocatalyst mediated ROP showed that 

stronger organic bases yielded more active ROP.34,47  This result stands in contrast to that of 

thiourea mediated ROP where catalytic activity is related to the binding between the cocatalysts 

(see above);44,48 this may have been the first indication that a different mechanism of enchainment 

was operative.  The initial reports also disclosed that urea H-bond donors remain active in polar 

solvent, Figure 4.  This result was particularly surprising giving the large suppression of rate in 

polar solvent (e.g. THF) displayed by thiourea H-bond donors.4,8,34,47  Again, it was becoming 

apparent that a new mechanism was engendering abilities that were historically out of reach.
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Figure 4.  The thiourea/base mediated ROP of lactones slows in polar solvent while urea/base 
mediated ROP remain active. 

IMIDATE MEDIATED RING-OPENING POLYMERIZATION

Consideration of the enchainment mechanism of the highly-active organocatalyst TBD 

provides a point of comparison for the enchainment mechanism of the nascent urea/base mediated 

ROP.  TBD is highly active for a wide range of monomers; however, TBD-catalyzed ROP have 

been observed to lack selectivity and control especially at high monomer conversions.1,2,7,42  
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Mechanistically, the lowest energy enchainment pathway has been computationally and 

experimentally suggested to be H-bonding, where TBD acts as a bifunctional molecule activating 

both monomer and chain end (Scheme 3).1,2,49,50  The mode of activity displayed by TBD serves a 

as an analogy to the advance made by Waymouth and coworkers whereby a thiourea is treated 

with a strong base to form a thioimidate species, which is highly-active for ROP, Scheme 3.35,51  

The treatment of a thiourea with strong bases like sodium and potassium methoxides form the 

thioimidate salt and an alcohol which can be used as catalyst/initiator systems for the ROP of 

lactones.  The thioimidate (anionic thiourea) can function both as an H-bond donor and acceptor 

similar to TBD (Scheme 3).51  When the ROP of LA ([LA]o/[NaOCH3]o = 200) was conducted 

using 1-10 equivalents of thiourea to NaOCH3, monomer conversion >90% was achieved in ≤ 6 

min, where faster rates were seen with lower amounts of thiourea.51  However, a molar excess of 

thiourea to base was vital to minimize the molecular weight distribution of the PLA (Mw/Mn = 1.55 

to 1.18).  The identity of the alkoxide counterion was shown to influence the selectivity of ROP, 

and slower rates but enhanced selectivity were observed with K+ versus Na+.51  The ROPs with 

thiourea/alkoxides showed characteristics of ‘living’ polymerizations.  The transformations were 

controlled and highly selective compared to ROPs mediated by alkoxides alone, producing highly 

isotactic PLA with predictable molecular weights and minimal epimerization.  The adaptability of 

this system was shown by its efficacy in ROP of VL and CL.  Computational and mechanistic 

studies indicate that the active catalyst species is characterized by the metal ion complexed to S, 

and a mode of enchainment was proposed, Scheme 3.  The larger association constant for the 

binding of TU-K+/HOtBU to VL (24±4 M-1) versus ethyl acetate (5±2 M-1) indicates that the 

selectivity of the ROP is rendered by the different binding of the anionic adduct to the cyclic 

lactone versus the open chain ester.51
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Formation of imidate catalyst and suggested activation modality.

The treatment of a urea H-bond donor with a strong base form a urea anion which is 

incredibly active and controlled in the ROP of lactones.  One method of generating the urea anion 

(imidate) is to employ a strong inorganic base, alkoxide (e.g. KOCH3) or hydride (e.g. KH).  In 

the latter method, an ex situ alcohol initiator can be introduced.  Just as neutral urea catalysts were 

previously shown to be much more active than their thiourea counterparts in performing ROP, 

Figure 4,34,47 the urea anions are much faster than the corresponding thiourea anions.35  The slowest 

imidate was not only 25 times faster than the analogous thioimidate, but also exhibited enhanced 

selectivity.35,51  Kinetic studies indicated first order behavior in [monomer] and[initiator]o and 

inverse first order dependence on urea when [alkoxide]o ≤ [urea]o.  This was suggested to be a 

result of reversible neutral urea:imidate dimer formation which could inhibit catalytic 

activity.35,52,53  This study also revealed a correlation between the pKa of the urea or thiourea and 

its activity, where ureas with lower acidity form more active (basic) imidates/thioimidates.35  
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Hence, ureas featuring more or stronger electron withdrawing groups produce urea anions that are 

less active for ROP, and an imidate is more active than its analogous thioimidate due to the 

increased acidity of thioureas versus ureas.34,35,43,47,54  The high selectivity and versatility of 

imidates, unlike TBD, was attributed to the ability to fine tune the basicity and H-bond donating 

ability by changing the substituent groups on the phenyl ring.35,51 An N-methylated 

monofunctional urea exhibited slower rates and decreased selectivity compared to ureas featuring 

two N-H donors, suggesting a bifunctional mode of activation (c.f. TBD) is preferred.35  These 

hyperactive imidate mediated H-bonding catalysts were reported to be faster and more selective 

than other organocatalysts, resembling some metal-containing catalysts in their activity.1,2,14,34,35,51  

When ureas or thioureas are subjected to strong organic bases, an equilibrium is established 

between neutral H-bond mediated ROP and the more active imidate mechanism.  Our group 

studied the mechanism of TCC/base mediated ROP, and a simple 1H NMR experiment of TCC 

with and without base cocatalyst proved highly diagnostic.  Imidate formation is indicated by an 

upfield shift of TCC resonances in the presence of base, and cocatalyst H-bonding is indicated by 

the downfield shift of TCC resonances in the presence of base.47  The equilibrium between neutral 

urea and imidate species (Scheme 4) shifts more towards imidate in the presence of stronger bases 

(BEMP-H+ pKa
MeCN = 27.6 > MTBD-H+ pKa

MeCN = 25.4 > DBU-H+ pKa
MeCN = 24.3) and upon the 

application of polar solvent (which presumably stabilizes the charged catalyst species).47,54  More 

imidate character is associated with faster rates of ROP.35,47,54,55  However, once the H-

bonding/imidate equilibrium is shifted mostly to imidate, catalytic activity will diminish if more 

acidic (thio)ureas or stronger bases are applied.  This is also attributable to the reduced basicity of 

the resulting (thio)imidate; non-linear Hammett behavior has been observed.35,43,51  The very 

progress of the reaction was shown to influence the nature of the active catalyst because, during 
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an ROP, the highly polar monomer is converted to less polar polymer.  Hence the H-

bonding/imidate equilibrium (Scheme 4) was shown to shift towards neutral catalysts late in the 

ROP.11  This may constitute an advantage of applying organic (versus alkoxides or hydrides) bases 

whose reactivity becomes attenuated late in the ROP, thereby increasing reaction control.11  
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Base-H
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Scheme 4.  Equilibrium between neutral versus imidate TCC with base

NEW REACTIONS AND ABILITIES

The development of new catalytic abilities – the imidate mechanism of enchainment – has 

provided new synthetic opportunities.  For example, (thio)imidate mediated ROP are operative 

under solvent-free conditions.32  The polar lactone monomer is ironically a poor solvent for H-

bond mediate ROP of lactones; the monomer interrupts cocatalyst H-bonding and severely 

attenuates reactivity.  However, in solvent-free conditions, the urea plus base cocatalyst system is 

highly active for ROP.  These conditions even allow for the synthesis of block copolymers that are 

inaccessible in solution conditions.32  New opportunities in additive manufacturing can be 

envisaged.

Imidate mediated enchainment allowed for the production of high molecular weight poly(γ-

butyrolactone)s (PγBLs) via selective ROP of “nonpolymerizable”  γ-butyrolactone (γBL) at -

40oC.28,29 The utility of commercially available phosphazene super bases and (thio)ureas facilitated 

the formation of linear PγBL initiated by the alcohol species.  These species display among the 

highest activity for the organocatalytic ROP of γBL.28  The ROP of γBL with alkoxide/urea 
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catalysts show high activity even at -20oC. Although this system produces linear polymers, careful 

manipulation of monomer/catalyst/initiator was required to ensure initiation from the alcohol 

(versus monomer).29  Those ROP using less acidic (thio)ureas displayed greater catalytic activity.  

The utility of the imidate/neutral H-bonding duality of (thio)ureas were further 

demonstrated in a study where a sequential one pot copolymerization of epoxides and LA was 

reported.32,56  One pot synthesis of polyether-polylactide copolymers has been successful only in 

a few cases.56  The strong base required for the ROP of cyclic ethers can lead to deleterious 

epimerization of LA and transesterification of PLA.56  The 1-S H-bond donor in the presence of 

tetrabutyl ammonium fluoride (TBAF) is effective for the copolymerization of glycidyl phenyl 

ether and LA, yielding polymers with predictable molecular weights and narrow dispersities 

(Mw/Mn = 1.13 – 1.19).56  The proposed mechanism  proceeds by an anionic initiation of the 

epoxide by TBAF; the addition of 1-S allows the conversion of the incipient alkoxide to the 1-S 

thioimidate, which is competent for the controlled ROP of LA, Scheme 5.  Hence, the mechanistic 

duality of the 1-S system directly facilitates the one pot copolymerization of epoxide and LA.14,56–

58
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Scheme 5.  ROP of epoxides and thiourea mediated conversion of alkoxide to alcohol and 

thioimdate for the ROP of lactones.

CONCLUSION

Since the application of the Takemoto thiourea for ROP and the discovery that covalent 

tethering the H-bond donor and base cocatalyst is not essential, the field of (thio)urea mediated 

ROP has advanced in spurts to among the more active and controlled systems for the enchainment 

of cyclic monomers.  (Thio)urea catalysts were conventionally known to follow a dual H-bonding 

mechanism with assistance of organic bases; however, the differing activity of these base 

cocatalysts and the ability to manipulate the H-bond donating ability by changing the acidity of 

(thio)ureas provided substantial evidence for a second mechanism.  In the presence of weaker 

organic bases, (thio)ureas promote ROP via a neutral H-bonding mechanism, whereas with 

stronger bases they proceed via an imidate H-bonding mechanism which may exhibit dual H-

bonding activity like TBD.  In most cases, the recently developed urea class of H-bond donors 

were shown to be more active than their corresponding thioureas.  The imidate mechanism remains 

highly active in polar solvents and exhibits remarkable control under solvent-free conditions, and 

high temperature applications are accessible.11  It should be emphasized that the advancements in 

synthetic abilities have all evolved through a greater understanding of reaction mechanism.  We 

expect that the enhanced utility – greater range of solvents, temperatures and substrates – will 

expose weakness and strengths of the nascent catalysts which will precipitate further advances, 

perhaps via mechanistic study.  New substrates with new demands for selectivity remain to be 

studied.  Through the continued synergistic advances of catalysis and material, the H-bonding class 

of catalyst can find use in a host of potential applications, research and industrial environments.
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