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for their relaxation time14,19–21. In microgravity, the growth of

NEF is limited only by the size of the container and long wave-

length fluctuations exhibit a dramatically long lifetime, compa-

rable to that of the macroscopic state22,23. As a result, while in

microgravity theoretical models valid for non-equilibrium steady

states cannot be used during the transient to equilibrium24, on

Earth the evolution of the macroscopic state is always significantly

slower than the maximum relaxation time of the NEF. One can

thus assume that the system goes through a sequence of quasi-

stationary states, as originally suggested in Ref.15. As a conse-

quence, at every instant during diffusion, the presence of the NEF

in fluid mixtures can be detected by small-angle scattering ex-

periments14,15,19–21,25,26 and analyzed with the same theoretical

tools that are used to describe non-equilibrium steady states1,15.

While NEF in molecular binary mixtures have been widely in-

vestigated, their investigation in soft matter and in particular in

colloidal systems has been so far quite limited. On the theoretical

side, a model based on Fluctuating Hydrodynamics27, describing

NEF in a colloidal suspension subjected to a steady-state macro-

scopic concentration gradient, was developed by Schmitz28 more

than twenty years ago. This model, provides an analytical ex-

pression for the dynamic structure factor S(q,ω) of an arbitrarily-

dense buoyancy-matched suspension (or equivalently in the ab-

sence of gravity). As shown by Li et al.10, the result obtained

by Schmitz coincides in the hydrodynamic limit (qR ≪ 1 , where

q is the wave-vector of the fluctuations and R is the radius of

the colloidal particles) with the previously developed theory for

molecular mixtures, if the effect of gravity is neglected in the lat-

ter theory. This analogy is somehow expected: even a dense col-

loidal suspension, when probed over length scales that are much

larger than the size of colloidal particles, should not differ from a

molecular mixture. It is plausible that this analogy remains valid

also when buoyancy is taken into account but this fact remains

unchecked.

A very promising theoretical framework for the study of NEF

in colloidal suspensions is represented by Dynamic Density Func-

tional Theory (DDFT), an extension of the very successful (static)

Density Functional Theory (DFT)29 that is aimed to capture the

dynamics of inhomogeneous fluids, in particular when they are in

non-equilibrium states30–32. DDFT can be thought of as a gener-

alized diffusion equation that captures the time-dependent behav-

ior of the density in non-equilibrium systems undergoing Brown-

ian dynamics33. It is thus clear that DDFT bears the potential

of describing successfully the correlations in non-equilibrium col-

loidal suspensions34, especially in view of recent progresses that

were made to account for hydrodynamic interactions among the

colloidal particles and to clarify the controversy between deter-

ministic and fluctuating DDFT. However, a DDFT-based prediction

for the dynamic structure factor or for the intermediate scattering

function of a colloidal suspension diffusing across a macroscopic

gradient is, to the best of our knowledge, not yet available even

though encouraging steps have been recently made35,36.

Experiments on NEF have been focused mostly onto poly-

mer suspensions and other macromolecular solutions in non-

equilibrium steady states10,11,22, during diffusion25,26 and also

during the transient to a steady state24. A surprisingly small

number of experimental studies of NEF arising during diffusion

of colloidal suspensions is currently available19,37, despite the

importance of colloids in several fundamental and technological

processes. One obstacle is that preparing an initial state with a

macroscopic concentration gradient that is free of spurious flows

is a rather challenging feat. Moreover, diffusion experiments are

usually long, since diffusion of colloidal particles requires several

days over relatively thick layers of liquid of the order of a few cm.

As a consequence, only two experimental studies have been re-

ported in literature, both of them using optical shadowgraphy38

as small-angle scattering probe of the NEF. The first study was

performed by Croccolo et al.19 on a relatively dilute (4.1 % weight

fraction) aqueous suspension of silica particles (Ludox TMA). A

dense (34 % weight fraction) suspension of the same particles was

investigated in the other study, by Oprisan et al.37, together with

a dilute (0.01 % weight fraction) suspension of gold particles in

water. In all cases the suspensions were made to diffuse against

pure water. Experiments in Ref.19 investigated the dynamics of

the NEF and found that a dilute colloidal suspension exhibits the

transition, previously observed in molecular systems25,26, from

the diffusive decay of fluctuations at large wave vectors to the

regime in which gravity is dominant at small wave vectors. The

diffusion coefficient of the NEF was found to be nearly constant

in time with a value 38.5 µm2/s that was markedly different from

the value 22 µm2/s, previously reported in other studies that

made use of the same sample39–41. In addition, the roll-off wave-

vector qro, which marks the effect of gravity on the fluctuations,

was found to slowly decrease with the diffusion time as t
−1/8

d
,

in agreement with theory, but with a pre-factor smaller than the

theoretical value by about 30 %. On the other hand, the mea-

surements on the more concentrated sample in Ref.37 were not

of sufficient quality to allow for a quantitative comparison with

theory. Indeed, the dynamics of the fluctuations showed only a

qualitative agreement with theory and the amplitude of the fluc-

tuations could not be reliably assessed because of the presence of

the optical transfer function of the shadowgraph method, which

modulates in a q-dependent fashion the scattering intensity. Even

though in principle the transfer function can be independently

measured and used to correct the experimental data22,42,43, this

procedure was not followed in Ref.37. It remains thus to be clari-

fied experimentally whether both the statics and the dynamics of

the NEF agree with an improved theoretical model for colloidal

suspensions that includes gravitational effects, in particular for

dense suspensions.

In this work, we obtain time-resolved small-angle scattering in-

formation during diffusion of a dense colloidal suspension in the

presence of gravity. The sample is a dense colloidal suspension

of Ludox TMA at 34 % weight fraction, a system that provided

contradictory results during previous studies19,37. The study of

the NEF is performed via the recently introduced Differential Dy-

namic Microscopy (DDM)44,45, a fully quantitative method based

on a commercial microscope that is used here to measure both

the characteristic amplitude and correlation rate of the concen-

tration fluctuations as a function of their wave vector q and of

the time td elapsed from the beginning of diffusion. Compared

to the previously used shadowgraphy and to other Digital Fourier
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Microscopy46 methods, the use of DDM allows an easier imple-

mentation, optical sectioning capabilities along the optical axis

and a better rejection of multiple scattering. In addition, we took

advantage of the microscope setup to devise a simple and novel

diffusion cell based on liquid-bridging that enables studying diffu-

sion in very thin samples (less than 1 mm). This expedient guar-

antees that the whole diffusion process takes place over a rea-

sonably short experimental duration compared to previous stud-

ies with colloids in Refs.19 and37, in the absence of long lasting

perturbations determined by the procedure used to start the dif-

fusion process that plague other methods. Our experiments give

quantitative access to the structure and dynamics of the dense

colloidal suspension during the entire diffusion process. At var-

ious times td after the start of the diffusion process we find that

single silica particles with diameter ≃ 22 nm coexist with a mi-

nority (estimated ratio 1:10000) of large particles, presumably

aggregates (diameter ≃ 130 nm), whose presence was previously

detected also in Ref. 37. By subtracting off the signal originated

from the aggregates, we are able to identify two main regimes

as a function of the wave-vector q of the fluctuations. For wave-

vectors smaller than a cross-over wave-vector qco the scattering

is dominated by NEF originated at the diffusing interface: for the

largest wave-vectors in this range (qro < q < qco) the intensity of

the light scattered by the fluctuations follows a power law scaling

with exponent −4, and the relaxation of the fluctuations occurs

diffusively with a diffusion coefficient D1; for the smallest wave-

vectors (q < qro) both the amplitude and relaxation time of the

fluctuations are quenched by gravity. Our sensitive diagnostics

enables us obtaining scattering information also for q > qco, a re-

gion not easily accessible, because the scattering signal due to

NEF becomes smaller than the corresponding equilibrium contri-

bution. In this q-range, we indeed find that the scattering sig-

nal plateaus to an effective equilibrium value that corresponds to

the instantaneous average concentration within the sample and

that concentration fluctuations relax with a diffusion coefficient

D2 that is markedly and unexpectedly different from D1. Both

diffusion coefficients are found to vary in time: D2(td) decreases

in time from 48 µm2/s to 37 µm2/s, whereas D1(td) exhibits the

opposite trend, increasing from 32 µm2/s to 37 µm2/s.

We find that the decrease of D2 can be explained as the result

of the decreasing overall particle concentration that occurs dur-

ing diffusion. This hypothesis is confirmed by independent equi-

librium measurements on samples with weight fraction ranging

from the final one (17 %) to the initial one (34 %). An additional

confirmation comes from estimates of the osmotic compressibility

of the suspension that we could obtain in a rather unconventional

way i.e. by calculating the ratio of the scattering intensity at small

q, where the scattering signal is dominated by NEF, to the one at

large q, where the equilibrium scattering signal is recovered.

To ascertain whether the time-dependence observed for D1(t)

could be a peculiar feature of the colloidal nature of our sample,

we derive an expression for the dynamic structure factor of the

concentration NEF in a dense colloidal suspension in the presence

of gravity, by extending the analysis in Ref. 28 to include gravity.

When our experimental conditions are matched by taking the hy-

drodynamic limit of theory, our expression for the dynamic struc-

ture factor is found to coincide with the one derived by Vailati

and Giglio15 for molecular mixtures, provided that structural ef-

fects of the dense suspension (entering mainly via osmotic com-

pressibility) are properly taken into account. As a result, both the

existence of a diffusion coefficient D1 = D2 and the observation of

its time dependence remain uncaptured by linear Fluctuating Hy-

drodynamics, which leads us to speculate that a non-linear theory

is needed to rationalize our observations.

2 Theory

In this Section, we outline a theoretical framework for describing

the correlation properties of the fluctuations arising in a dense

colloidal suspension in a non-equilibrium time-dependent state

during isothermal diffusion. Our aim is to obtain an expression

for the dynamic structure factor S(q,ω) of the fluctuations to be

used to interpret our quantitative microscopy experiments, which

provide time-resolved, small-angle scattering information during

diffusion.

Light scattering experiments in binary mixtures or colloidal sus-

pensions are sensitive to fluctuations δm in the refractive index

m(r, t). The light scattering intensity I(q,ω) as a function of the

wave-vector q and the frequency ω is given by

I(q,ω) = A0

〈

|δm(q,ω)|2
〉

(1)

where the factor A0 depends on the parameters of scattering

experiments47 and where the Fourier transform is defined as

f (q,ω) =
∫

dt
∫

dr f (r, t)e− j(q·r−ωt), r is the spatial variable, t is

time and j is the imaginary unit. If, as in our case, one is inter-

ested in Rayleigh scattering it is possible to neglect the effect of

pressure fluctuations, thus focusing only on the effect of temper-

ature fluctuations δT and concentration fluctuations δw. Since

our experiments are performed at constant temperature with a

colloidal suspension, one has

I(q,ω) = A0

(

∂m

∂w

)2

p,T

S(q,ω), (2)

where we have introduced the so-called dynamic structure fac-

tor S(q,ω) =
〈

|δw(q,ω)|2
〉

of the concentration fluctuations. The

usual tool by which S(q,ω) in Eq. 2 is calculated for a non-

equilibrium fluid is Fluctuating Hydrodynamics27.

Since in typical light scattering experiments the correlations of

the intensity of light scattered by the fluctuations are more often

probed as a function of the delay time τ rather than frequency,

an inverse Fourier transform in the frequency ω is required to

pass from the dynamic structure factor to the intermediate scat-

tering function S(q,τ) =
∫

dωS(q,ω)e− jωτ . For a molecular bi-

nary mixture and for a colloidal suspension that is either dilute or

studied in the hydrodynamic limit, the dynamic structure factor

is a Lorentzian function with decay rate Γ(q) and one obtains the

simple result S(q,τ) = S(q) f (q,τ) for the intermediate scattering

function, where the static structure factor S(q) =
〈

|δw(q, t)|2
〉

t
is

given by Eq. 9 and the normalized intermediate scattering func-

tion 47 is given by f (q,τ) = e−Γ(q)τ . In the following paragraphs

we will sketch the main theoretical results that are obtained when
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Fluctuating Hydrodynamics is used to describe diffusion in col-

loidal suspensions. We first analyze the case in which gravita-

tional effects are absent, and in particular the theory of Schmitz28

for dense colloidal suspensions. We then extend Schmitz model,

by introducing the effect of buoyancy. Finally, based on these re-

sults that are valid for stationary steady states, we describe time-

dependent diffusion in a dense colloidal suspension. All the the-

oretical results that will be presented below are obtained in the

approximation that the wave-vector q is perpendicular to the di-

rection of the macroscopic concentration gradient, which is well

justified in small-angle scattering experiments and, in particular,

for our DDM experiments.

2.1 Concentration fluctuations in isothermal non-

equilibrium stationary states

When a colloidal suspension is subjected to a stationary concen-

tration gradient ∇w, the coupling between the gradient and the

velocity fluctuations parallel to the gradient induces long-ranged

concentration NEF, similar to what happens in molecular binary

mixtures1. Experimentally, the concentration gradient is often

induced through thermophoresis48 (also known as Soret effect

in binary mixtures) via the application of a macroscopic tempera-

ture gradient, which induces both concentration and temperature

NEF. In the case of a concentration gradient in an isothermal col-

loidal system, the strength of the equilibrium temperature fluctu-

ations is small and one can focus on the contribution of the con-

centration NEF, as shown by Schmitz in Ref.28. In this seminal pa-

per, Schmitz calculates the dynamic structure factor S(q,ω) of the

fluctuations for a buoyancy matched colloidal suspension in the

presence of a steady concentration gradient maintained by con-

tinuous pumping of the solvent through semi-permeable walls. In

principle, the expression for the dynamic structure factor S(q,ω)

derived by Schmitz remains valid also if the concentration gra-

dient is produced by other isothermal means, as it is the case of

the present work. Experiments on a dilute suspension of small

silica spheres19 showed that gravity affects the dynamics of the

fluctuations in a way similar to molecular mixtures, for which it

is known that also the amplitude of the fluctuations is strongly

affected49. This result suggests that - at least for the dynamics

- there is a strong similarity between dilute colloidal suspensions

and molecular mixtures. A model describing NEF in a dense col-

loidal suspension under the effect of gravity would serve to better

understand how far the analogy with molecular mixtures can be

brought.

To achieve this task, we have extended the results provided in

Ref.28 to include the effect of buoyancy. The detailed derivation

of the dynamic structure factor of a dense colloidal suspension

including buoyancy is reported in Electronic Supplementary

Information (ESI). We summarize here the final result that reads

S(q,ω) = SE(q)

[

1+
1

χ(q) |νT (q,ω)|2
ℜ [νT (q,ω)]

ℜ [D(q,ω)]

(∇w)2

q4

]

2ℜ [D(q,ω)]q2

∣

∣β (q)g ·∇w+
[

jω +D(q,ω)q2
]∣

∣

2
, (3)

where, in analogy to previous work on molecular binary mix-

ture, we have made the choice to express the concentration w as

the mass fraction of the particles (supposed for simplicity to be

denser than the dispersion medium) in suspension. This expres-

sion looks quite complex, as a consequence of the wave-vector

and frequency dependence of some physical parameters that mir-

rors the nonlocal and memory effects that are typical of dense

colloidal suspensions. In Eq. 3, g is the gravity acceleration vec-

tor and the colloidal suspension is characterized by a mass den-

sity ρ, diffusion coefficient D(q,ω), transverse kinematic viscosity

νT (q,ω), solutal expansion factor β (q), and osmotic compress-

ibility χ(q) that mirrors the positional correlations that exist in

a dense colloidal suspension as a consequence of the interaction

between the colloidal particles (all these quantities are properly

defined in ESI). Moreover, we have introduced the static equilib-

rium structure factor of the fluctuations

SE(q) =
kBT

ρ
χ(q), (4)

where kB is the Boltzmann constant, and T is the (constant) sys-

tem temperature. The symbol ℜ[z] indicates the real part of the

complex number z and j is the imaginary unit. Since in our exper-

iments we probe the hydrodynamic range qR ≪ 1, where R is the

particle radius (or more generally the typical interaction distance

between two particles, including hydrodynamic interactions) it is

possible to simplify Eq. 3 by taking advantage of the fact that

in this limit, the osmotic compressibility, the transverse viscosity

and the diffusion coefficient converge to their hydrodynamic, q-

independent limits χ, ν and D















SE(q)→ SE = kBT
ρ χ

νT (q,ω)→ ν

D(q,ω)→ D

. (5)

It is worth noting that all the susceptibilities and transport coeffi-

cients, including in particular the diffusion coefficient, do depend

implicitly on concentration, even though this dependence cannot

be easily evaluated within the framework of fluctuating hydrody-

namics. Such dependence is of course retained also in the hydro-

dynamic limit. The expression for the dynamic structure factor of

a dense suspension in the hydrodynamic limit thus reads

S(q,ω) = S(q)
2Γ(q)

ω2 +Γ2(q)
(6)

which is written in terms of the non-equilibrium static structure
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field microscopy experiment vanishes for both large q and small

q45,46, which implies that the experimentally accessible wave-

vector range typically reduces to [5×10
−2, 1.4] µm−1.

4 Results and discussion

4.1 Structure of the fluctuations

For each scattering wave-vector q, the output of the DDM anal-

ysis is the image structure function d(q,∆t) as a function of the

time delay ∆t. A typical structure function measured during the

diffusion process at q = 0.45 µm−1 is shown in Fig. 4a, together

with the corresponding intermediate scattering function f (q,∆t),

shown in Fig. 4b. The intermediate scattering function exhibits
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Fig. 4 a) Experimental results (blue squares) for the image structure

function (a) and intermediate scattering function (b) measured at

q = 0.45 µm−1, and at time td = 2010 s from the beginning of the diffusion

process. The continuous line is the best fitting curve of the experimental

data to a double exponential process as given by Eqs. 17 and 18. In (b)

we decompose the decay described by Eq. 18 in its two components, a

fast one (dotted line) and a slow one (dashed line), with the horizontal

line representing the amplitude as

a double relaxation process: a fast relaxation superimposed to

a slower relaxation. The double relaxation process observed for

f (q,∆t) is present for all the available wave-vectors and is well fit-

ted to a linear combination of a slow stretched-exponential decay

and a faster simple-exponential decay:

f (q,∆t) = a f (q)e
−Γ f (q)∆t +as(q)e

−[c(γ)Γs(q)∆t]γ (18)

with a f (q) + as(q) = 1. Even though this function depends on

five parameters, they can be obtained from substantially different

regions of the experimental data, a feature which makes them

independent. The value of the stretching exponent is γ = 0.55

and c(γ) = 1

γ Γ( 1

γ ), where Γ is Euler’s Gamma function. By in-

sertion of Eq. 18 into Eq. 17, it is possible to fit the experi-

mental data for d(q,∆t) very accurately (Fig.4a, blue line) and to

obtain the amplitudes A(q), a f (q), as(q), the rates Γ f (q), Γs(q)

and the noise term B(q). Within this model, the total scattering

intensity I(q) = A(q)/T (q) is thus the sum of the scattering inten-

sity Is(q) = A(q)as(q)/T (q) associated with the slow process and

the scattering intensity I f (q)=A(q)a f (q)/T (q) associated with the

fast process.

As anticipated in the 3.2 subsection, an accurate characteriza-

tion of the transfer function T (q) is needed to obtain the scat-

tering intensities Is(q) and I f (q). The transfer function T (q), ob-

tained with the calibration procedure described in ESI, is shown

in Figure 1 (ESI), where we also show that after division with

T (q), the scattering intensity Is(q) is substantially flat in the ac-

cessible q-range for all values of td . As discussed in more detail

in ESI, the results for Is(q) can be attributed to the presence of

colloidal aggregates of Ludox particles and will not be discussed

further here. By contrast, the contribution I f (q) (Figure 5) asso-

ciated to the fast process exhibits the expected excess of scatter-

ing at the smallest wave-vectors, which is the signature of NEF.

In fact, fitting the data for I f (q) to Eq. 9 provides estimates at

various td for the roll-off wave-vector qro, for the crossover wave-

vector qco, and for the scattering intensity IE at equilibrium. We

note that the roll-off wave-vector qro could not be determined re-

liably in the latest stages of the diffusion process (for td larger

than about 6000 s), because the gravity-induced plateau lied out-

side the accessible q range. In fact, for large wave-vectors, the

frame rate of the image acquisition prevents an accurate charac-

terization of the relaxation when the lifetime of the fluctuations

becomes comparable with the inverse of frame rate and this oc-

curs for q ≃ 1.5×10
6 m−1 (further details can be found in Section

4.2). For small q, the accurate determination of the amplitude

is made difficult by: (a) the overall duration of each movie that

should be kept sufficiently small to avoid picking up the diffusion

kinetics; (b) the presence of slow convective processes within the

sample cell, mainly affecting the slow relaxation; (c) the strong

effect of the transfer function T (q) of the microscope that goes to

zero for small values of q.

The roll-off wave-vector

We show in Fig.5b the results obtained for the roll-off wave-vector

qro (blue squares) and for the crossover wave-vector qco (yellow

diamonds). The black line is the expected trend from theory ob-

tained from Eq. 11, in which the value of ∇w is the value at the

mid-height of the cell (where the concentration gradient has a

maximum and the amplitude of the NEFs is larger15) determined

by solving the diffusion equation61: ∂ 2
t w − D̄∇2w = 0 with the

initial condition

w(x,z, t = 0) =

{

w0 = 0.34 f or z ≤ h
2

0 f or z > 0
(19)

and impermeable boundary conditions. Here ∂t indicates the par-

tial derivative with respect to the variable t. For the diffusion

coefficient D̄ we used the value D̄ = 3.7×10
−11 m2/s that we ob-

tained from equilibrium measurements performed at the average

concentration w0

2
(see ESI Fig. 4). Even though the overall time

dependence of the experimental qro is well reproduced by the the-

ory, there is a systematic shift, corresponding to a factor of about

1.25. This discrepancy can be at least partly due to a systematic er-

ror introduced by an inaccurate estimate of the transfer function

T (q) for q → 0. Indeed, in this limit the signal from the calibra-

tion sample is vanishing small and the presence of large scale slow

convective motions makes the determination of the dynamics of

the sample and amplitude of T (q) less reliable. We also report

in Fig. 5b, the results for qro (orange circles) obtained from the

analysis of the dynamics of the NEF, which appear in better agree-

ment with theory. Further comments about the comparison of the

experimental values for qro (both from the statics and dynamics
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Fig. 5 (a) Scattering intensity I f (q) obtained for a diffusing colloidal suspension at various times td from the beginning of diffusion:

td = 180, 690, 1230, 2010, 3390, 6540, 10000 s (from top to bottom). Continuous lines are best fits to Eq. 9. Data for Is(q) are shown in ESI. (b) Roll-off

wave-vector qro as function of the time td elapsed from the beginning of diffusion, as obtained from the static (blue squares) and from the dynamic

(orange circles) analysis of the NEF. The continuous line is a theoretical prediction from Eq. 11, evaluated for z corresponding to the sample

mid-plane. Yellow diamonds represent the crossover wave-vector qco. The dashed line is the theoretical prediction from Eq. 12, again calculated for z

corresponding to the sample mid-plane. In addition, the osmotic compressibility χ̄ is assumed to remain constant during diffusion.

of the NEF) and theory will be provided in Section 4.2.

The crossover wave-vector

The measurement of the crossover wave vector qco enables the

experimental determination of the osmotic compressibility from

the excess scattering of the non-equilibrium fluctuations, a yet

unexplored route for colloids. Fitting the data for qco with Eq. 12

(Fig.5b), provides the estimate χ = (0.065±0.01) s2/m2 for the

osmotic compressibility of the suspension. The fit is performed

by neglecting the z-dependence of the variables and assuming

for |∇w(t)| and D representative values obtained as discussed in

the previous paragraph, while for ν we took the constant value

1.3410
−6 m2 · s−1, obtained from a direct viscosity measurement

on a sample at w = w0/2. The value obtained for χ is one order

of magnitude smaller than the van ‘t Hoff expression for the com-

pressibility of an ideal solution χid =
mp

kBT w, which gives χid = 0.89

s2/m2 for w = w0/2. It is however worth pointing out that the

value obtained here for the osmotic compressibility represents a

global estimate, roughly corresponding to the average concentra-

tion w0/2 of the sample and does not take into account the large

changes in concentration occurring during the diffusion process.

Equilibrium fluctuations

A more refined approach to determine the osmotic compressibil-

ity χ as a function of time relies on inverting Eq. 12 to ob-

tain χ(td) =
(∇w)2

νDq4
co

(the z-dependence of all the variables is lost

since in our experiments we have access only to vertically aver-

aged quantities). The results of this inversion are shown (red

circles) in Fig.6, in which we also plot with different units (left

axis) the scattering intensity IE of the equilibrium fluctuations,

obtained from the large-q behavior of the data in Fig. 5. The

value of the unknown proportionality constant between IE and χ

could be in principle determined by absolute calibration. Here,

we determined such value by minimization of the mean square

deviation between the two data sets, given that no absolute cal-

ibration was performed. An exponential increase with a charac-

teristic time τA = (2.7 ± 0.3)× 10
3 s (black line in Fig.6) is the

best fit of the experimental data, which provides the estimate

χ = (0.08±0.01) s2/m2 for the osmotic compressibility at equi-

librium, when the concentration is equal to w0/2 everywhere in

the sample.

The observed temporal increase of the scattering intensity is

an indication that we are well beyond the limit of validity of the

van’t Hoff law χid =
mp

kBT w that would lead to a constant value

for IE in time, since the average concentration remains constant.

This hypothesis is well confirmed by a set of DDM experiments

on colloidal suspensions prepared at uniform concentration in the

range [0.17, 0.34], whose scattering intensity as a function of con-

centration is shown in ESI (Fig. 3). The results show that at these

concentrations, the osmotic compressibility of the suspension is

actually decreasing with concentration, confirming that colloidal

interactions in a dense colloidal suspension cannot be neglected

during diffusion.
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Fig. 6 Right axis: Osmotic compressibility χ (red circles) obtained

during diffusion obtained from inversion of Eq.12. Left axis: equilibrium

scattering intensity (blue squares) obtained from the large-q behavior in

Fig. 5a.

4.2 Dynamics of the fluctuations

While in Section 4.1 we have focused on the amplitude of the

fluctuations, equally important information can be extracted from

the study of their lifetime. Indeed, fitting of the experimental in-

termediate scattering functions provides both the fast rate Γ f (q)

(Fig. 7) and the slow rate Γs(q) (ESI, Fig. 2) and they are very

well separated and clearly distinguishable. As discussed in more

detail in ESI, the slow process can be attributed to diffusing large

aggregates of silica particles. As far as the fast process is con-

cerned, inspection of Fig. 7 shows that the behavior of the corre-

lation rate does not mirror exactly the predictions from Eq. 10.

This can be better appreciated in Fig. 8a, where for clarity we

report only the curve obtained for td = 690 s. The experimen-

tal data for Γ f (q) conform to the expected behavior (continuous

line) only in the low-q region, where the position of the minimum

allows determining qro and the q2 scaling provides and estimate

for the diffusion coefficient D1. Interestingly, at the large wave

vectors we observe a transition to a different diffusive behavior

characterized by a diffusion coefficient D2, such that D2 > D1.

This behavior, which is observed here for the first time, can be

monitored during diffusion to obtain the temporal dependence of

the two diffusion coefficients (Fig.8b) and the roll-off wave-vector

qro (Fig.5b, orange circles).

As far as the roll-off wave-vector is concerned, the estimate

obtained from the dynamics (Fig. 5b, orange circles) is about

20% smaller than the one obtained by the statics (Fig. 5b, blue

squares) and agrees well with the theoretical prediction from Eq.

11, evaluated for z corresponding to the sample mid-plane (Fig.

5b, continuous line). The estimate obtained from the dynam-

ics is expected to be more robust, as it is substantially indepen-

dent from any calibration procedure. In fact, it is not affected by

errors in the determination of the transfer function T (q), which

plays a crucial role in the reconstruction of the true scattering in-

tensity I(q). It might be however possible that only part of the

q [m
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Fig. 7 Correlation rate of the fast relaxation mode of concentration

fluctuations in a diffusing non-equilibrium colloidal suspension as a

function of the scattering wave-vector q, for different times

td = 180, 690, 1230, 2010, 3390, 6540, 10000 s after the beginning of

diffusion.

observed discrepancy is due to systematic errors. Indeed, it was

recently observed in experiments62 that the roll-off wave-vector

determined from the statics is always about 11% larger than the

one determined from the dynamics, an effect that is presently not

accounted for by available theories.

We also observe that both D1 and D2 depend on time. How-

ever, while the value of D1 increases during diffusion, the op-

posite trend is exhibited by D2. Both diffusion coefficients re-

lax exponentially to the same value (of about 3.7× 10
−11 m2/s)

with time constants that are compatible with the relaxation of

the macroscopic concentration gradient. Comparison of Figs. 5

and 7 shows that the transition from the diffusive behavior with

diffusion coefficient D1 to the one with diffusion coefficient D2

takes place roughly at q = qco. This suggests that while for q < qco

the signal is dominated by the giant NEF occurring during dif-

fusion, at large q, where the amplitude of the NEF vanishes, the

equilibrium properties of the suspension are probed. At the begin-

ning of the experiment, the signal from the NEF originates from

a thin layer at the midheight of the sample (average concentra-

tion w0/2), where the concentration gradient is maximum, while

the equilibrium scattering originates from the lower part of the

cell, where almost all the colloidal particles are confined (aver-

age concentration w0). By contrast, at the end of the experiment,

the concentration is the same (w0/2) everywhere and NEF are

not present anymore. At intermediate times during diffusion, the

equilibrium scattering signal can be thought of as the superposi-

tion of three contributions: one from the bottom layer of the sus-

pension, with concentration decreasing in time; one from the up-

per layer with concentration increasing in time; and one from the

central part, in which the average concentration remains locked

to w0/2.
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Fig. 8 a) Correlation rate of the fast relaxation mode of concentration fluctuations in a diffusing non-equilibrium colloidal suspension as a function of

the scattering wave-vector q, measured at td = 690 s after the beginning of diffusion. The continuous line is the best fit of the low-q data with Eq. 10,

which provides an estimate for the roll-off wave-vector qro and for the diffusion coefficient D1. The dashed line is a fit of the high-q data with

Γ(q) = D2q2, where D2 > D1. b) Diffusion coefficients D1 (squares) and D2 (circles) extracted as shown in panel a) at different times during diffusion.

The corresponding values for qro are reported in Fig. 5b as orange circles.

In this picture, owing to the dependence on concentration of

the diffusion coefficient of the colloidal suspension, we expect

that the diffusion coefficient D2 should change during diffusion,

mirroring the sample concentration decrease from w0 = 34% to

w0/2 = 17%. To check if the observed change of D2 can be ac-

counted for by this effect we have characterized the dynamics

of colloidal suspensions prepared at uniform concentration. The

results (ESI, Fig. 4) show that the diffusion coefficient of a ho-

mogeneous Ludox suspension with concentration w varies in the

range [3.7, 4.8]× 10
−11 m2/s when w goes from 0.17 to 0.34. The

upper and lower bounds of this interval, i.e. D(w0)≃ 4.8×10
−11

m2/s and D(w0/2)≃ 3.7×10
−11 m2/s are consistent with the value

of D2 measured at the beginning and at the end of our diffusion

experiment, confirming thereby the validity of our picture.

By contrast, the 15% increase of D1 observed during diffusion

is more difficult to rationalize. Indeed, previous experiments on a

dilute Ludox suspension (concentration 4.1 %) found that a con-

stant diffusion coefficient 38.5 µm2/s described the data for all

times during diffusion19, in agreement with the linearized fluc-

tuating hydrodynamics theory presented in Sec. 2. The same

behavior is expected also for a dense colloidal suspension such

as the one investigated here (concentration 34%) provided that

the hydrodynamic range is probed. This expectation is not met

by our experiments in which we observe an increase in time of

D1, pointing to a transient slowing down of the dynamics with

respect to the long-time equilibrium behaviour that is monotoni-

cally vanishing with the concentration gradient.

We made a first attempt to justify the observed time-

dependence for D1 by considering the fact that the information

about the fluctuations that we obtain in our experiments is aver-

aged across the sample thickness. The contribution of the NEF is

originated in the region where the concentration of the suspen-

sion is not uniform due to the presence of the macroscopic gradi-

ent. In case of a linear concentration profile, the average diffusion

coefficient coincides with the value at the cell mid-height, where

the concentration remains locked to w0/2. While for a dilute sus-

pension non-linearities of the concentration profile can safely as-

sumed to be small, in concentrated suspensions this might not

be the case. A direct experimental measurement of the verti-

cal concentration profile during diffusion on such thin samples

is almost impossible. As previously done in other scattering ex-

periments1,15, we addressed this issue by solving the diffusion

equation with the appropriate boundary and initial conditions. In

particular, to fully account for the concentration dependence of

the diffusion coefficient in our sample, we used the non-linear

diffusion equation61: ∂ 2
t w−∇(D(w)∇w) = 0, where we assumed

a concentration dependence: D(w) =D0(1+Kw), (D0 = 28 µm2/s,

K = 1.8), compatible with our results from equilibrium measure-

ments (ESI, Fig. 4). By solving the non-linear diffusion equation

with the initial and boundary conditions given by Eq. 19, we find

that the diffusion coefficient corresponding to the height where

the concentration gradient has a maximum differs from the aver-
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age value D̄ = D0(1+K w0

2
) by less than 1%, ruling out this effect

as a possible explanation for the observed time-dependence of D1,

which involves changes of roughly 15%.

Another explanation for the observed increase of D1 might

come from the results of Brogioli and Vailati in Ref.16. They

used linearized fluctuating hydrodynamics to calculate the advec-

tive contributions of non-equilibrium concentration fluctuations

to the net mass transfer during a diffusion experiment. These

advective contributions are second order terms neglected in the

linearized equation and should represent in principle small per-

turbations of the macroscopic state. Surprisingly, Brogioli and

Vailati showed that the mass flux obtained from the superposi-

tion of these contributions coincides with the one expected from

the phenomenological Fick’s law. Therefore, the entire diffusive

mass transfer can be thought to be generated by non-equilibrium

fluctuations. In order to obtain a consistent model for the mass

transfer by non-equilibrium fluctuations, they then renormalized

the hydrodynamic equations and found that the macroscopic dif-

fusion coefficient D(g) in the presence of gravity is related to the

diffusion coefficient D̄ that describes macroscopic diffusion in the

absence of gravity at the same average concentration by the equa-

tion D(g) = D̄
[

1−0.66
D0

D̄
qro(g)R

]

= D̄ [1−0.51qro(g)R]. Since qro

depends on ∇w this relation indicates that the diffusion coeffi-

cient is depressed when a concentration gradient is present, as

a consequence of the fact that large scale fluctuations relax by

gravity. However, an estimate for our experimental conditions at

t = 200 s when qro ≃ 1× 10
5 m−1, provides 0.51qro(g)R = 0.1 %,

which is two orders of magnitude smaller than the experimentally

observed 15 % difference.

Finally, we note that the presence of a concentration gra-

dient across a colloidal suspension has been found to quench

the velocity fluctuations during colloidal sedimentation of large

spheres63,64. This phenomenon has not yet been confirmed for

small Brownian particles, but of course it could represent a mech-

anism by which in a stratified sample diffusion takes place slower

than in a homogeneous case.

It remains true that non-linearities can affect in subtle and un-

expected ways the validity of the theoretical model that we have

used for describing our experiment since some of the assumptions

made in deriving the linearized fluctuating hydrodynamics theory

presented in Sec. 2 and based on Ref.28 could be violated at the

beginning of our experiments, when the concentration gradient is

very large. A non-linear fluctuating hydrodynamics approach, al-

ready advocated by other investigators2, could bypass this limita-

tion and possibly explain our results. Such challenging extension

is well beyond the aim of the present work.

5 Conclusions

Diffusion, one of the most widely studied transport mechanisms

with a wealth of applications ranging from the transport of

molecules at the cellular level to the gravitational settling of

atoms in stars, represents an effective test-bench for theories aim-

ing at obtaining a macroscopic description of out-of-equilibrium

systems. During diffusion, a key role is played by non-equilibrium

concentration fluctuations, whose amplitude, life-time and corre-

lation range are strongly enhanced with respect to equilibrium,

in both molecular and macromolecular fluids14,19,25. Quite sur-

prisingly, while the case of diffusion in dilute suspensions received

some attention in the past19,28,37 no quantitative results are avail-

able for dense colloids, neither theoretical, nor experimental.

In this work, we have extended the results of Ref.28 to obtain a

theoretical prediction for the dynamic structure factor of the con-

centration fluctuations in out-of-equilibrium dense suspensions in

the presence of buoyancy effects. The development of a novel

sample cell, based on liquid bridging, enabled us studying isother-

mal diffusion in thin layers of a dense suspension of silica parti-

cles. The concentration fluctuations have been characterized by

means of Differential Dynamic Microscopy (DDM)44,45, a method

based on a commercial microscope that was used here to obtain

both static and dynamic scattering information on the suspension

i.e. both the amplitude and correlation rate of the concentra-

tion fluctuations as a function of their wave vector q and of the

time td elapsed from the beginning of diffusion. The static scat-

tering results are in good agreement with the theoretical expec-

tations, with an excess of scattering signal at small q caused by

the non-equilibrium fluctuations and the presence of an equilib-

rium contribution at largest observed q. The simultaneous de-

termination of the scattering intensity of both equilibrium and

non-equilibrium fluctuations allowed the direct determination of

the osmotic compressibility of the suspension from the ratio of the

two signals, a procedure that does not require an absolute calibra-

tion of the instrument. As far as the dynamics is concerned, the

relaxation of concentration fluctuations is determined by gravity

at small wave-vectors, while at intermediate wave vectors they re-

lax diffusively with a diffusion coefficient D1, in agreement with

theoretical predictions. For large q, in the regime where equi-

librium scattering is recovered, the concentration fluctuations ex-

hibit a diffusive relaxation with diffusion coefficient D2 that is

surprisingly different from D1. In addition, when these two co-

efficients are monitored during diffusion we find an unexpected

monotonic increase of D1 (about 15%), in contrast with a mono-

tonic decrease of D2 (about 17%). While the decrease of the diffu-

sion coefficient D2 could be rationalized by the varying concentra-

tion of the sample during diffusion, as confirmed by independent

equilibrium measurements, the increase of the diffusion coeffi-

cient D1 remains uncaptured by current theoretical models. The

observation that D1 changes in time at constant average concen-

tration and depends on the local concentration gradient suggests

that D1 cannot be derived solely from local equilibrium consid-

erations. Also, we believe that, despite the efforts made here to

maximize the output from existing theoretical approaches based

on linearized fluctuating hydrodynamics28, it is possible that the

observed temporal increase of the diffusion coefficient of the NEF

might be not captured by current linear theories and an extension

to include non-linear terms might be needed2. DDFT might also

represent a useful tool, especially in light of recent developments

aimed at merging the gap with non-equilibrium fluctuations65

and reinforcing the link with scattering experiments35,36. Finally,

additional experiments, possibly aiming at outlining in a clearer

way the contribution of non-local and memory effects in dense

colloidal suspensions, might be useful in particular for large val-

ues of qR. Clarifying these issues appear particularly relevant be-
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cause colloidal suspensions seem to be a very suitable candidate

sample for verifying experimentally the existence of recently pre-

dicted Casimir forces that arise during diffusion as a consequence

of the long-ranged nature of the non-equilibrium concentration

fluctuations66,67.
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Structure	and	dynamics	of	concentration	fluctuations	in	a	non-equilibrium	
dense	colloidal	suspension	
by	F.	Giavazzi,	G.	Savorana,	A.	Vailati,	R.	Cerbino	
	
	
	

Non-equilibrium	 fluctuations	 arise	
whenever	 a	 macroscopic	 gradient	 is	
imposed	 across	 a	 fluid	 sample.	 By	
exploiting	 a	 novel	 cell	 design	 and	
quantitative	 optical	 microscopy	 we	
study	 the	 amplitude	 and	 the	 lifetime	
of	 the	 concentration	 fluctuations	 that	
occur	 during	 diffusion	 of	 a	 dense	
colloidal	 suspension	 into	 pure	water.	
We	 find	 that	 the	 relaxation	 of	
concentration	 fluctuations	 is	
described	 by	 two	 diffusion	

coefficients	that	depend	on	time	and	tend	asymptotically	to	the	same	value	only	for	long	times,	
when	 the	 concentration	 gradient	 vanishes.	 Our	 results	 suggest	 the	 opportunity	 of	 extending	
current	linear	theories	to	deal	with	large	concentration	gradients.	
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