Journal of Materials Chemistry A

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsA

ARTICLE TYPE

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

Oxygen Storage Capacity and Thermal Stability of CuMnO₂-CeO₂ Composite System

Xiubing Huang, Chengsheng Ni, Guixia Zhao and John T.S. Irvine*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

Abstract: Fast and reversible oxygen diffusion in solid oxides depending on oxygen partial pressure at low temperatures is a promising strategy for improving the overall performance and service lifetime of many energy-related materials. However, the high energy required for the redox reaction of cations and their high thermodynamic barriers have impeded the realization of fast oxygen diffusion at low

- ¹⁰ temperatures. Herein, we report enhanced oxygen diffusion and storage capacity of monoclinic crednerite CuMnO₂ at a lower temperature by surface modification with CeO₂. The fast and reversible oxygen uptake/release can be attributed to CeO₂ that serves as fast oxygen diffusion channel between bulk CuMnO₂ and the surrounding atmospheres. Importantly, the amount of CeO₂ in the CuMnO₂-CeO₂ composite system has great effect on the total oxygen storage capacity and redox behaviour. Our findings
- ¹⁵ could provide useful information for developing effective oxygen storage materials in wide energyrelated applications.

1. Introduction

Solid-state oxygen storage materials (OSMs) have attracted considerable attention due to their wide applications in numerous

- ²⁰ oxygen-related energy and environmental fields, such as threeway catalysts for the effective removal of automobile exhaust emissions (e.g., NO_x, CO, and hydrocarbons).^{1, 2} The development of OSMs is also crucial to the success of new energy technologies, such as oxygen enrichment to improve the ²⁵ efficiency of chemical looping combustion.³ Ideal OSMs for
- ²⁵ efficiency of chemical fooping combustion. Ideal OSIMS for practical applications should satisfy certain requirements and possess some properties, including large oxygen storage capacity (OSC), quick absorption/desorption of oxygen and their dependence on temperature and/or oxygen partial pressure, and ³⁰ good reversibility.

The most widely investigated OSMs are based on ceria (e.g., well-known Ce_{1-x}Zr_xO_{2+ δ}) due to the reversibly redox reaction of Ce³⁺/Ce⁴⁺,^{2, 4-8} however, their OSC are relatively small and usually achieved by the usage of reductive gas. Recently, Oxides

- ³⁵ based on transition metals have attracted remarkable attention due to their excellent properties, such as their flexible oxidation states, various phase structures, possible substitutions, cationic and anionic non-stoichiometry, or lattice oxygen deficient in the framework.^{3, 9-13} Their oxygen storage/release behaviour is
- ⁴⁰ generally based on the oxygen non-stoichiometry, which can be achieved by adjusting the surrounding oxygen partial pressure (i.e., oxidative air, reductive H₂) or temperature.^{11, 14} Among OSMs based on transition-metals, extensive attention has been paid to delafossite-type oxides with the general formula CuMO₂
- $_{45}$ (M = trivalent cation) because of the low reductive/oxidative temperature of Cu²⁺/Cu⁺, remarkable oxygen uptake ability, wide

potential applications, environmental-friendliness and abundance.15-17 However, only very limited work has been reported on the effect of trivalent cation species on the oxygen 50 storage properties of the delafossite-type CuMO₂ oxides under oxidative/reductive atmospheres.¹⁵⁻¹⁷ For example, Sumio Kato, et al. reported that CuMnO2 and CuFeO2 exhibited larger OSC values at lower temperature than those of CuAlO₂ and CuGaO₂¹⁵ and OSC values for x = 0.1 and 0.3 in CuFe_{1-x}Al_xO₂ were larger s5 than that for x = 0 above 500 °C.¹⁷ However, the full details of phase-transformation process under oxidative/inert atmospheres and effect of surface-modification by other metal oxides on the oxygen diffusion, oxygen storage capacity and thermal stability of CuMO₂ still remain not well-defined.

- 60 In the search for better OSMs, crednerite CuMnO₂ as an alternative phase to delafossite-type CuMO₂ seems to have great potentials due to its changeable valence and low-temperature for oxygen uptake/release,^{15, 18} and its wide applications, such as hydrogen photo-evolution catalyst,¹⁹ three-way catalyst for the 65 removal of exhaust gases (e.g., CO, NO_x),¹⁵ and hydrogen storage.²⁰ As reported by several research groups, crednerite CuMnO₂ exhibits the monoclinic structure at room temperature, which is consisted of edge-shared MnO₆ octahedron and twocoordinated Cu⁺ cations at the interlayer sites, as represented in 70 Figure 1.^{15, 19, 21} This structure is closely related to the rhombohedral 3R delafossite structure of CuFeO₂ (i.e., the Cu⁺ cations linearly coordinating with two O ions, and the parallel O-Cu-O chains connecting Fe³⁺ cations to form two-dimensional sheets of edge-shared FeO₆ octahedrons), but with a distortion of $_{75}\ MnO_{6}$ octahedron due to the Jahn-Teller effect of $Mn^{3+,22}$
- However, it has been reported that $Cu_{1+x}Mn_{1-x}O_2$ (0.08 < x < 0.12) at high temperature can exhibit the delafossite-like phase with

hexagonal structure because the thermal expansion of the structure would result in a larger lattice distortion than that from Jahn-Teller effect. $^{23,\,24}$

Figure 1. Schematic illustration of the crystal structure of CuMnO₂. The illustration was drawn with Diamond 3.1d software for crystal and molecular structure visualization.

It is well known that multiple valences of Mn cations can coexist in many Mn-containing compounds, which could be beneficial to the oxygen-storage property.²⁵⁻²⁷ The valence of Mn ¹⁰ in CuMnO₂ has been demonstrated to be +3, however the existence of Mn⁴⁺ in the nonstoichiometric Cu_{1+x}Mn_{1-x}O₂ oxides is also detected by XPS because the excess Cu atoms would occupy the octahedral site with Cu²⁺ while the electrical neutrality principle would result in the formation of mixed

¹⁵ Mn³⁺/Mn⁴⁺.^{18, 28} In addition, the Cu_xMn_{3-x}O₄ spinel, one of the oxidation products of CuMnO₂, has been reported to show the coexistence of Mn³⁺/Mn⁴⁺, implying a possible increase in the total oxygen uptake ability under oxidative atmosphere.^{27, 29, 30} However, pure crednerite CuMnO₂ oxide is usually synthesized

- ²⁰ using solid-state reaction at very high temperatures^{15, 31, 32} or ionexchange reaction with a long reaction time.³² Such high reaction temperature or slow chemical conversion rate for reversible redox processes are impractical for many technological applications.¹⁸ Therefore, it is important to improve the oxygen diffusion ability
- $_{\rm 25}$ and the overall oxygen storage capacity in crednerite CuMnO_2 at low temperatures.

CeO₂ has been widely investigated as three-way catalysts or oxygen promoters due to the fast oxygen ionic mobility between Ce^{4+} and Ce^{3+} in reductive/oxidative atmosphere even though ³⁰ CeO₂ could retain its fluorite structure under oxidizing and mildly reducing atmospheres.³³⁻³⁷ CeO₂ has also been reported as an introducing active back in $L = CO_2 = CO_2 = CO_2$

- interlayer or electrolyte in La_{1-x}Sr_xCoO_{3-δ}/CeO₂ composite system to improve the oxygen ionic mobility, in which some chemical reactions can take place at the interfaces between perovskite and ³⁵ CeO₂.^{38, 39} Therefore, CeO₂ may function as oxygen ionic mobility channel between oxides and their surrounding atmosphere. Here, we investigated the CuMnO₂-CeO₂ composite system with the purpose of further optimizing the oxygen
- diffusion ability and overall oxygen storage capacity at low 40 temperatures under alternating oxidative (i.e., air or O₂) and inert (i.e., Ar) atmospheres. Modifying the surfaces of CuMnO₂ with CeO₂ may bring in both benefits of CuMnO₂ and CeO₂, thereafter

adjusting their thermochemical properties (e.g., redox properties, non-stoichiometry, oxygen exchange constant, and formation of

⁴⁵ oxygen vacancies), further enhancing their OSC and thermal stability. Our research results indicate that modifying CuMnO₂ with a small portion of CeO₂ (e.g., the molar ratios of CeO₂ to CuMnO₂ smaller than 20%) can improve the oxygen storage capacity at low temperatures (< 600 °C) with a highly reversible ⁵⁰ manner.

2. Experimental Section

2.1 Sample Preparation

CuMnO₂-CeO₂ composites were prepared by a conventional Pechini method, followed by a solid state method. In a typical 55 process, 10 mmol of Cu(NO₃)₂ 2.5H₂O (98%) and 10 mmol of Mn(CH₃COO)₂ 4H₂O (98%) were dissolved into 100 mL of deionized H₂O under continuous stirring. A certain amount (0.5, 1.0, 2.0 or 4.0 mmol) of Ce(NO₃)₃ 6H₂O (99.99%) was added into the above solution under stirring, followed by adding 20 60 mmol of citric acid monohydrate (99.95%) and 10 mL of ethylene glycol. After stirring for 4 h, the solvent was evaporated at 110 °C to obtain a gel. After drying, the powder was ground and pre-fired at 500 °C under static air for 1 h to get the precursor. Then the precursor was pressed into pellets and fired at 65 960 °C for 12 h under flowing argon. The obtained products were referred to CuMnO₂-xCeO₂, in which x is the molar ratio percent of CeO₂ to CuMnO₂ (i.e., $x = mol of CeO_2/mol of CuMnO_2 \times$ 100).

2.2 Characterization

70 Structures of all samples were characterized by X-ray powder diffraction (XRD) on a PANalytical Empyrean Reflection Diffractometer with Cu K α irradiation ($\lambda = 0.15418$ nm). HRTEM images and TEM elemental mapping of samples were observed on a JEM-2011 Transmission Electron Microscopy 75 (TEM) with an acceleration voltage of 200 kV equipped with an X-ray Energy Dispersive Spectroscopy (EDS). The morphologies of all samples were observed on a JEOL JSM-6700 Field Scanning Electron Microscopy (FESEM). The oxygen uptake samples behaviours of these were measured by 80 thermogravimetric analysis (TGA) on a NETZSCH TG 209 instrument (NETZSCH-Geraetebau GmbH, Selb, Germany) with a TASC 414/3 controller. The measurements were carried out for 50 mg specimens up to 800 °C with heating rate of 10 °C/min under air or O2 with flowing rate 25 mL/min. In addition, the 85 reversibility of the oxygen uptake/release was carried out in the following experiments: 1) Firstly increasing temperature to 600 ^{o}C under flowing O_{2} gas, then switching the gas from O_{2} to Ar with temperature from 600 to 900 °C; after cooling down to 300 °C under flowing Ar, switching the gas from Ar to O₂ with 90 temperature from 300 to 600 °C; repeated this process between 300 and 900 °C for 4 times. The thermal stability (weight and phase structure change) of as-prepared samples with temperature from room temperature to 1000 °C under flowing air was checked by TGA/DTA technique carried out on a Stanton Redcroft STA-95 780 series thermal analyser.

3. Results and Discussion

XRD patterns of these as-prepared $CuMnO_2$ -xCeO₂ composites obtained by post-annealing at 960 °C for 12 h under flowing Ar are displayed in Figure 2. The XRD pattern for CuMnO₂ in Figure 2a can be indexed to a pure monoclinic structure with

- 5 C2/m space group. All the peaks are in good agreement with the JCPDS card No. 50-0860 for the crednerite phase. For the CuMnO₂-xCeO₂ composites, they are obviously composed of crednerite CuMnO₂ and fluorite CeO₂, and no other impurity phases are observed. The XRD Rietveld refinements for CuMnO₂
- ¹⁰ and CeO₂ were carried out using GSAS software based on the monoclinic structure with C2/m space group and cubic structure with Fm-3m space group, respectively. The typical XRD patterns after final refinement for CuMnO₂ and CuMnO₂-40CeO₂ are shown in Figure 3, further confirming the phase composition of ¹⁵ CuMnO₂ and CeO₂.²¹

Figure 2. XRD patterns of as-prepared CuMnO₂-xCeO₂ (i.e., postannealing at 960 °C under flowing Ar): (a) CuMnO₂, (b) CuMnO₂-5CeO₂, (c) CuMnO₂-10CeO₂, (d) CuMnO₂-20CeO₂, (e) CuMnO₂-40CeO₂.

20

Figure 3. XRD patterns after final Rietveld refinements for as-prepared products: (a) CuMnO₂ and (b) CuMnO₂-40CeO₂.

Detailed lattice parameters for pure CuMnO₂ and CuMnO₂xCeO₂ composites after Rietveld refinements are summarized in ²⁵ Table 1. There are no obvious changes in the lattice parameter *a*, *b* and *c* for CuMnO₂ and *a* for CeO₂ with the increasing CeO₂ amount up to x = 40 for CuMnO₂-xCeO₂ composite, suggesting that CuMnO₂ and CeO₂ exist mainly as separate phases and there may be only some contact between the surfaces. The HRTEM ³⁰ images of CuMnO₂ in CuMnO₂-10CeO₂ and CuMnO₂-40CeO₂ (Figure S1) show clear lattice fringes and these *d* spacings of 0.22 and 0.57 nm correspond to the (111) and (001) planes of CuMnO₂, respectively. The TEM elemental mappings of Cu, Mn, O and Ce for CuMnO₂-10CeO₂ (Figure S2) and CuMnO₂-40CeO₂ ³⁵ (Figure S3) also indicate the individual existence of CuMnO₂ and CeO₂, as well as the inhomogeneous surface contact between

CeO₂ and CuMnO₂. The oxygen uptake behaviours of as-prepared CuMnO₂-xCeO₂ composites were investigated by TGA at temperature up to 800 ⁴⁰ °C under flowing air or O₂. The results shown in Figure 4 reveal a remarkable oxygen uptake capacity of this CuMnO₂-xCeO₂ composite system under oxidative atmosphere, which corresponds to the following exothermic oxidation reaction:

$$\label{eq:cuMnO2+1/(6-2y)O2} \begin{split} CuMnO_2 + 1/(6-2y)O_2 &\to 1/(3-y)Cu_yMn_{3-y}O_4 + (3-2y)/(3-y)CuO \\ \scriptstyle 45 \end{tabular} \end{split}$$

Figure 4. TGA curves of as-prepared CuMnO₂-xCeO₂ samples (i.e., postannealing at 960 °C under flowing Ar for 12 h) under flowing air or pure O₂ with 25 mL/min from room temperature to 800 °C. The solid line is the TGA curves under air and the short dash is under pure O₂.

The weight for all these samples starts to increase at about 300 ^oC, due to the increase in the oxygen content, accompanied with the oxidation of Cu^+ and/or Mn^{3+} . Pure $CuMnO_2$ had a continuous and smooth weight increase with increasing 55 temperature from 300 to 800 °C, reaching the maximum value of 5.475 wt% at 800 °C under both flowing air and O_2 , corresponding to the formation of spinel Cu₁₀₅₈Mn₁₉₄₂O₄. For pure CuMnO₂ and CuMnO₂-xCeO₂ composites, the oxygen uptake rate in air is a bit slower than that in O₂ and the maximum $_{60}$ oxygen uptake amount in air is also a bit smaller than that in O_2 , in which CuMnO₂-5CeO₂ exhibits the most weight increase, reaching 6.169 wt% at 591 °C under flowing O2 and 6.031 wt% at 620 °C under flowing air, respectively, suggesting higher oxygen partial pressure would enhance the oxygen uptake ability at lower 65 temperatures. With the further increase of CeO₂ amount in the composite, the maximum OSC decreased, which can be attributed to the offset effect of CeO₂ since the weight increase is majorly

As-prepared Sample	Composition	a (Å)	b (Å)	c (Å)	Cell volume (Å ³)	β
CuMnO ₂	CuMnO ₂	5.592(3)	2.883(1)	5.892(3)	92.1(1)	104.03(3)
CuMnO ₂ -5CeO ₂	CuMnO ₂	5.597(3)	2.883(1)	5.892(3)	92.2(1)	104.00(4)
	CeO_2		5.412(2)		158.5(2)	
CuMnO ₂ -10CeO ₂	CuMnO ₂	5.593(1)	2.883(6)	5.892(1)	92.19(3)	104.06(3)
	CeO ₂		5.412(1)		158.5(2)	
CuMnO ₂ -20CeO ₂	CuMnO ₂	5.589(2)	2.882(1)	5.891(2)	92.08(8)	104.08(4)
	CeO_2		5.411(1)		158.4(1)	
CuMnO ₂ -40CeO ₂	CuMnO ₂	5.597(3)	2.883(1)	5.891(3)	92.24(9)	104.06(7)
	CeO ₂		5.412(2)		158.5(3)	

55

Table 1. Lattice parameters of as-prepared CuMnO₂-xCeO₂ obtained from Rietveld refinements by GSAS software.

caused by the oxidation of Cu⁺ and/or Mn³⁺ in CuMnO₂ while CeO₂ could maintain its fluorite-type structure under inert ⁵ atmosphere,^{40, 41} as determined by XRD results in Figure 2. After reaching the maximum weight at around 600 °C, further increasing the temperature to 800 °C results in slight and smooth

- weight decreases (< 0.14 wt%) for all these CeO₂-modified CuMnO₂ samples, which can be attributed to the composition adjustment of spinel Cu_yMn_{3-y}O₄ with temperature.¹⁸ These results also indicate that CeO₂-modification would favour the oxygen mobility in CuMnO₂ and the formation of spinel Cu_yMn_{3-y}O₄ with more Mn⁴⁺ at lower temperatures. It should be noted that
- the oxygen uptake in CuMnO₂ and CuMnO₂-xCeO₂ composites ¹⁵ are mainly coming from the oxidation of CuMnO₂ to CuO and spinel Cu_yMn_{3-y}O₄. Assuming the total weight increase is only coming from the oxidation of CuMnO₂, the composition of spinel Cu_yMn_{3-y}O₄ at the maximum weight under flowing O₂ can be calculated based on **Equation 1** to be Cu_{1.370}Mn_{1.630}O₄ for the
- $_{20}$ CuMnO₂-5CeO₂ starting mix, Cu_{1.317}Mn_{1.683}O₄ for CuMnO₂-10CeO₂, Cu_{1.356}Mn_{1.644}O₄ for CuMnO₂-20CeO₂ and Cu_{1.316}Mn_{1.684}O₄ for CuMnO₂-40CeO₂, while the composition of spinels at the maximum weight under flowing air can be calculated to Cu_{1.332}Mn_{1.668}O₄ for CuMnO₂-5CeO₂,
- $_{25}$ Cu_{1.296}Mn_{1.704}O₄ for CuMnO₂-10CeO₂, Cu_{1.310}Mn_{1.690}O₄ for CuMnO₂-20CeO₂ and Cu_{1.268}Mn_{1.732}O₄ for CuMnO₂-40CeO₂, respectively. These calculation results suggest that higher oxygen partial pressure favour the formation of spinels with more Mn⁴⁺ from the oxidation of CuMnO₂-xCeO₂ composites.
- 30 XRD patterns of the oxygenated CuMnO₂ and CuMnO₂-xCeO₂ composites after TGA test up to 800 °C under flowing air are shown in Figure 5. While CeO₂ in these oxygenated CuMnO₂-xCeO₂ composites still maintained its fluorite-type cubic structure, CuMnO₂ was oxidized to CuO and spinel Cu_yMn_{3-y}O₄
- $_{35}$ oxides, in good agreement with the TGA analysis for Figure 4 and previous reported results. 18 The lattice parameters of CeO_2 and spinel Cu_yMn_{3-y}O_4 in the oxygenated CuMnO_2 and CuMnO_2 xCeO_2 composites after TGA test up to 800 °C in flowing air were refined from the XRD results in Figure 5 using GSAS
- ⁴⁰ software and summarized in Table 2. The lattice parameters of CeO₂ in the oxygenated CuMnO₂-xCeO₂ composites are a bit smaller than those of as-prepared CuMnO₂-xCeO₂ composites (as shown in Table 1), indicating the possible doping of Mn and/or Cu in the lattice of CeO₂ after oxidation. In addition, the lattice
- ⁴⁵ parameters of spinel Cu_yMn_{3-y}O₄ in the oxygenated CuMnO₂xCeO₂ composites are also slightly smaller than those of oxygenated pure CuMnO₂, indicating the higher Cu/Mn ratios in the spinel Cu_yMn_{3-y}O₄ in the oxygenated CuMnO₂-xCeO₂

composites as the smaller ionic radii of Cu²⁺ than that of Mn²⁺ ⁵⁰ would result in lattice parameter decreases when copper ions replace manganese ions on tetrahedral sites.

Figure 5. XRD patterns after TGA test from room temperature to 800 °C under flowing air: (a) CuMnO₂, (b) CuMnO₂-5CeO₂, (c) CuMnO₂-10CeO₂, (d) CuMnO₂-20CeO₂, (e) CuMnO₂-40CeO₂.

Table 2. Lattice parameters of oxygenated CuMnO₂-xCeO₂ in Figure 5 from Rietveld refinements by GSAS software.

Oxygenated CuMnO ₂ -xCeO ₂	Composition	a (Å)	Cell volume (Å ³)
CuMnO ₂	$Cu_{y}Mn_{3-y}O_{4}$	8.317(2)	575.30(7)
	CuyMn3-yO4	8.307(2)	573.23(4)
$CuMnO_2$ -5 CeO_2	CeO ₂	5.407(8)	158.14(7)
CuMa0 10Ca0	CuyMn3-yO4	8.311(5)	574.06(3)
$CulvinO_2$ -10CeO ₂	CeO_2	5.409(1)	158.26(1)
C-M-0 20C-0	CuyMn3-yO4	8.309(4)	573.64(9)
$CulvinO_2$ -20CeO ₂	CeO ₂	5.410(6)	158.39(3)
CuMa0 40Ca0	CuyMn3-yO4	8.312(2)	574.27(1)
$CumiO_2$ -40CeO ₂	CeO ₂	5.410(2)	158.35(8)

To further check their thermal stability with temperature under flowing air, we treated the as-prepared samples (i.e., postannealing at 960 °C for 12 h under flowing Ar) from room temperature up to 1000 °C with heating and cooling rates of ±10 °C/min under flowing air, as shown in Figure 6. As discussed in aforementioned paragraphs, the as-prepared samples can start to 65 uptake oxygen near 300 °C and reach the maximum values at near 600 °C for CuMnO₂-xCeO₂ composites and 800 °C for pure CuMnO₂, respectively. On further heating, these samples exhibit steeply weight loss from 960 °C accompanied by an endothermic peak in the DTA curves, as shown in Figure S4. Such behaviour 70 can be attributed to the transformation of spinels and CuO back into a crednerite $Cu_{1+y}Mn_{1-y}O_2$ phase, accompanied with the release of O_2 .^{18, 32} During the cooling process under flowing air from 1000 °C, there are sharp continuous weight increases till around 880 °C, which can be attributed to the re-oxidation of 5 crednerite phase to CuO and spinel oxides. The slight weight increase from 880 to 600 °C can be attributed to the composition adjustment of spinels with the cooling temperature, as determined by XRD shown in Figure S5. Notably, their weights at 1000 °C are higher than their pristine counterparts, suggesting CuO and 10 spinel Cu_yMn_{3-y}O₄ at high temperature under air can be converted

to $Cu_{1+y}Mn_{1-y}O_2$ rather than $CuMnO_2$ according to **Equation 2**. $1/(3-y)Cu_yMn_{3-y}O_4 + (3-2y)/(3-y)CuO \rightarrow \alpha Cu_xMn_{3-x}O_4 + (2-\alpha)/2Cu_{1+y}Mn_{1-y}O_2 + [1/(6-2y)-\alpha/2]O_2$ (Equation 2) where $\alpha = 2y'/(3 + 3y' - 2x')$.

Figure 6. TGA curves of as-prepared CuMnO₂-xCeO₂ samples (i.e., postannealing at 960 °C for 12 h under flowing Ar) from room temperature up to 1000 °C with heating and cooling rates of 10 °C/min under flowing air.

- The TGA behaviours of the oxygenated CuMnO₂-xCeO₂ ²⁰ composites (i.e., after TGA test up to 800 °C under flowing O₂) with temperature up to 900 °C under flowing argon are displayed in Figure 7. The results show that all these samples are stable till around 600 °C under flowing argon. Further increasing temperature would lead to a continuous weight loss (< 1.2 wt%) ²⁵ till about 790 °C, in which the oxygenated CuMnO₂-5CeO₂ exhibited the most weight loss and the total weight loss decreased with the increase of CeO₂. The small weight loss can be attributed to the removal of oxygen in spinels. At temperatures higher than 790 °C, these sharp weight losses are attributed to the further
- ³⁰ removal of oxygen to form crednerite Cu_{1+y}·Mn_{1-y}O₂.³¹ To further support this conclusion, we treated the oxygenated CuMnO₂, CuMnO₂-5CeO₂ and CuMnO₂-20CeO₂ under flowing argon at 900 °C for 2 h and their XRD patterns shown in Figure S6 indicate the reformation of crednerite CuMnO₂ structure. The
- ³⁵ total weight losses for the oxygenated CuMnO₂-5CeO₂, CuMnO₂-10CeO₂ and CuMnO₂-20CeO₂ are higher than that for oxygenated CuMnO₂. The enhanced oxygen mobility and storage capacity in the CuMnO₂-xCeO₂ composite system can be attributed to the synergistic effect between CuMnO₂ and CeO₂, in the cuMnO₂ and CeO₂ and CeO₂.
- ⁴⁰ which CeO₂ can act as an oxygen transfer channel or oxygen promoter dependent on temperature and/or oxygen partial pressures. The possible doping or exsolution of Cu/Mn into or from the lattice of CeO₂ on the surface dependent on the temperature and oxygen partial pressure may also contribute to

⁴⁵ the enhanced performance. Therefore, with the surface modification of CeO₂, CuMnO₂ can uptake oxygen from CeO₂ rather than direct from surrounding O₂ atmosphere. And vice versa, under inert Ar atmosphere, CuO and spinel Cu_yMn_{3-y}O₄ can release oxygen to CeO₂ lattice and then to the surroundings, ⁵⁰ rather than direct to the surroundings.

Figure 7. TGA curves of oxidized CuMnO₂-xCeO₂ samples (i.e., after TGA test up to 800 °C under flowing O₂) from room temperature to 900 °C under flowing argon with 25 mL/min.

From the TGA data in Figure 4, it appears that these CeO₂modified CuMnO₂ oxides can be oxidized from 300 °C and reach the maximum weight at around 600 °C under flowing O2, while the oxygenated samples can start to release oxygen from 600 °C under flowing argon based on the TGA results in Figure 7. These 60 results indicate that CeO2-modified CuMnO2 oxides can cause either oxygen uptake or release depending on the temperature and/or oxygen partial pressure. Thus, remarkable oxygen uptake/release behaviours are expected via adjusting the temperature and oxygen partial pressure. As demonstrated in 65 Figure 8, CuMnO₂ and CeO₂-modified CuMnO₂ oxides can uptake/release a large amount of oxygen in which CuMnO2-5CeO₂ exhibits the highest OSC (ca. 6.0 wt%) and CuMnO₂-20CeO₂ shows the best reversibility under the alternating O₂ and argon between 300 and 900 °C for four cycles, indicating CeO2 70 modification would improve the oxygen storage capacity as well as the reversibility of CuMnO2. The OSC and reversibility would become worse with the increasing cycle times, as shown in Figure S7, but the final weight after each treatment under flowing argon during the cycles almost maintains the same, indicating that 75 the gradual weight loss may be due to the formation of spinels with less Mn⁴⁺ during the oxidation process with the increasing cycling times. As shown in Figure S8, after a nine cycle test under alternating O2 and argon, CuMnO2-5CeO2 still contains crednerite CuMnO₂ and fluorite CeO₂ phases; however, there are 80 obvious CeO2 nanoparticles on the CuMnO2 surface, in comparison to the FESEM images in Figure S9. The TEM results for CuMnO₂-10CeO₂ after the TGA test, as shown in Figure S10, also indicate the appearance of CeO2 nanoparticles on the surface of CuMnO₂, which resulted in a worse performance for the 85 oxidation of CuMnO₂. The TEM elemental mapping results for CuMnO₂-10CeO₂ in Figure S10 suggest that some Cu be doped into the lattice of CeO₂ while Mn is still in CuMnO₂, which can be explained by the bigger ionic radius of Cu²⁺(0.73 Å) and $Cu^+(0.77 \text{ Å})$ than that of Mn^{3+} (0.58 Å) and $Mn^{4+}(0.53 \text{ Å})$.

Figure 8. TGA curves of as-prepared CuMnO₂-xCeO₂ samples (i.e., postannealing at 960 °C for 12 h under flowing Ar) under alternating O₂ and argon. The samples were firstly oxidized under O₂ to 600 °C, then switched the gas to argon and increased the temperature to 900 °C. After 5 cooled down to 300 °C under argon, the gas was then switched back to O₂ and oxidized to 600 °C.

4. Conclusions

In conclusion, we found that fast and reversible oxygen mobility, and increased oxygen storage capacity in crednerite CuMnO₂ ¹⁰ could be achieved at reduced temperatures (ca. 600 °C) by surface modification with CeO₂ in an amount less than 20 mol% in the CuMnO₂-CeO₂ composite system. The fast and reversible oxygen uptake/release and increased oxygen storage capacity at lower

temperatures can be attributed to the synergistic effect of CeO₂ as ¹⁵ oxygen diffusion channel between bulk CuMnO₂ and the surrounding atmospheres, favouring the reversible formation of spinels at lower temperatures. Our findings reported here could provide a pathway for the design and developing effective oxygen storage materials in a range of energy-synergetic related ²⁰ applications at low temperatures.

Acknowledgements

The authors gratefully thank the Engineering and Physical Sciences Research Council (EPSRC) platform grant EP/I022570/1 and EP/I022570/2 for financial support.

25 Notes and references

School of Chemistry, University of St Andrews, St Andrews, Fife, UK: Fax: +44(0)1334463808; Tel: +44(0)133463680; Email: jtsi@standrews.ac.uk.

- † Electronic Supplementary Information (ESI) available: Additional 30 XRD, TGA/DTA, HRTEM and FESEM images as well as TEM elemental mappings. See DOI: 10.1039/b000000x/
 - 1. H. C. Yao and Y. F. Y. Yao, J. Catal., 1984, 86, 254-265.
- C. E. Hori, H. Permana, K. Y. S. Ng, A. Brenner, K. More, K. M.
 Rahmoeller and D. Belton, *Appl. Catal. B-Environ.*, 1998, 16, 105-117
- T. Motohashi, Y. Hirano, Y. Masubuchi, K. Oshima, T. Setoyama and S. Kikkawa, *Chem. Mater.*, 2013, 25, 372-377.
- 4. M. Ozawa, M. Kimura and A. Isogai, *J. Alloys Compd.*, 1993, **193**, 73-75.
- A. Gupta, U. V. Waghmare and M. S. Hegde, *Chem. Mater.*, 2010, 22, 5184-5198.
 M. D. V. et al. C. V.
- M. P. Yeste, J. C. Hernandez-Garrido, D. C. Arias, G. Blanco, J. M. Rodriguez-Izquierdo, J. M. Pintado, S. Bernal, J. A. Perez-Omil and J. J. Calvino, *J. Mater. Chem. A*, 2013, 1, 4836-4844.

- X. Wang, G. Lu, Y. Guo, L. Jiang, Y. Guo and C. Li, *J. Mater. Sci.*, 2009, 44, 1294-1301.
 O. Darra, G. W. G. Z.
- Q. Dong, S. Yin, C. Guo, T. Kimura and T. Sato, *RSC Advances*, 2012, 2, 12770-12774.
 S. Domenson J. D. D. Lander, *et al.* 75
- 50 9. S. Remsen and B. Dabrowski, *Chem. Mater.*, 2011, **23**, 3818-3827.
 - O. Parkkima, H. Yamauchi and M. Karppinen, *Chem. Mater.*, 2013, 25, 599-604.
 S. Carter, A. Selcuk, R. J. Chater, J. Kajda, J. A. Kilner and B. C. H.
- Steele, Solid State Ionics, 1992, 53–56, Part 1, 597-605.
- - J. W. Lekse, S. Natesakhawat, D. Alfonso and C. Matranga, *J. Mater. Chem. A*, 2014, **2**, 2397-2404.
 H. Lore, W. S. Churth, Y. S. Churth, M. S. Churth, and M. S. Churth, *Phys. Rev. Lett.* **14**, 141 (1997).
- H. Jeen, W. S. Choi, M. D. Biegalski, C. M. Folkman, I. C. Tung, D.
 D. Fong, J. W. Freeland, D. Shin, H. Ohta, M. F. Chisholm and H. N. Lee, *Nat. Mater.*, 2013, **12**, 1057-1063.
- 15. S. Kato, R. Fujimaki, M. Ogasawara, T. Wakabayashi, Y. Nakahara and S. Nakata, *Appl. Catal. B-Environ.*, 2009, **89**, 183-188.
- 16. S. Kato, H. Sato, M. Ogasawara, T. Wakabayashi, Y. Nakahara and S. Nakata, *Solid State Sci.*, 2012, **14**, 177-181.
- 17. S. Kato, S. Suzuki, R. Kawashima, M. Ogasawara, T. Wakabayashi, Y. Nakahara and S. Nakata, *J. Mater. Sci.*, 2013, **48**, 8077-8083.
- M. Trari, J. Töpfer, P. Dordor, J. C. Grenier, M. Pouchard and J. P. Doumerc, J. Solid State Chem., 2005, 178, 2751-2758.
- 70 19. Y. Bessekhouad, M. Trari and J. P. Doumerc, Int. J. Hydrogen Energ., 2003, 28, 43-48.
 - 20. S. A. M. Abdel-Hameed, F. H. Margha and A. A. El-Meligi, *Int. J. Energ. Res.*, 2014, **38**, 459-465.
- 21. Y. Bessekhouad, Y. Gabes, A. Bouguelia and M. Trari, *J. Mater. Sci.*, 5 2007, **42**, 6469-6476.
- 22. J. Topfer, M. Trari, P. Gravereau, J. P. Chaminade and J. P. Doumerc, Z. Kristallogr., 1995, **210**, 184-187.
- 23. Driessne.Fc and G. D. Rieck, Z. Anorg. Allg. Chem., 1967, **351**, 48-62.
- 80 24. Driessne.Fc and G. D. Rieck, Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1967, **351**, 48-&.
- 25. J. Li, S. Xiong, X. Li and Y. Qian, *Nanoscale*, 2013, **5**, 2045-2054.
- 85 27. D. P. Shoemaker, J. Li and R. Seshadri, J. Am. Chem. Soc., 2009, 131, 11450-11457.
 20. H. Y. Citanov, and A. S. Seshadri, J. Am. Chem. Soc., 2009,
 - 28. H. Y. Chen and D. J. Hsu, J. Alloys Compd., 2014, 598, 23-26.
- 29. I. N. Dubrovina, V. F. Balakirev and A. V. Antonov, *Inorg. Mater.*, 2001, **37**, 76-81.
- 90 30. E. R ós, S. Abarca, P. Daccarett, H. Nguyen Cong, D. Martel, J. F. Marco, J. R. Gancedo and J. L. Gautier, *Int. J. Hydrogen Energ.*, 2008, 33, 4945-4954.
 - 31. A. P. Amrute, Z. Łodziana, C. Mondelli, F. Krumeich and J. Pérez-Ram fez, *Chem. Mater.*, 2013, **25**, 4423-4435.
- 95 32. B. Bellal, B. Hadjarab, N. Benreguia, Y. Bessekhouad and M. Trari, J. Appl. Electrochem., 2011, 41, 867-872.
- 33. Z. Liu, Z. Wu, X. Peng, A. Binder, S. Chai and S. Dai, *J. Phys. Chem. C*, 2014, **118**, 27870-27877.
- 34. L. Shi, W. Chu, F. Qu and S. Luo, *Catal. Lett.*, 2007, **113**, 59-64.
- 100 35. A. Horn és, A. B. Hungr á, P. Bera, A. L. Cámara, M. Fern ández-Garc á, A. Mart nez-Arias, L. Barrio, M. Estrella, G. Zhou, J. J. Fonseca, J. C. Hanson and J. A. Rodriguez, J. Am. Chem. Soc., 2009, 132, 34-35.
- 36. S. D. Senanayake, D. Stacchiola and J. A. Rodriguez, *Acc. Chem. Res.*, 2013, **46**, 1702-1711.
 - I. Moog, C. Feral-Martin, M. Duttine, A. Wattiaux, C. Prestipino, S. Figueroa, J. Majimel and A. Demourgues, *J. Mater. Chem. A*, 2014, 2, 20402-20414.
 - 38. E. Y. Konysheva, S. M. Francis, J. T. S. Irvine, A. Rolle and R.-N. Vannier, *J. Mater. Chem.*, 2011, **21**, 15511-15520.
 - E. Konysheva, R. Blackley and J. T. S. Irvine, *Chem. Mater.*, 2010, 22, 4700-4711.
 - 40. A. S. Ivanova, Kinet. Catal., 2009, 50, 797-815.
- 41. Y. Zhou and M. N. Rahaman, Acta Mater., 1997, 45, 3635-3639.

Fast oxygen diffusion and improved oxygen storage capacity in crednerite $CuMnO_2$ have been achieved at reduced temperatures by surface modification with CeO_2 .

