# Chemical  sience 

## Accepted Manuscript



This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

# Remote functionalization of hydrocarbons with reversibility enhanced stereocontrol $\dagger$ 

Alexandre Vasseur, ${ }^{a}$ Lionel Perrin, ${ }^{* b}$ Odile Eisenstein ${ }^{c}$ and Ilan Marek* ${ }^{a}$<br>Received (in $X X X, X X X$ ) Xth $X X X X X X X X X$ 20XX, Accepted $X$ th $X X X X X X X X X ~ 20 X X$<br>DOI: 10.1039/b000000x


#### Abstract

Remote functionalization of hydrocarbons could be achieved through a successive zirconocene-mediated allylic $\mathbf{C}-\mathrm{H}$ bond activations followed by a selective C-C bond cleavage. Determination of the reaction mechanism by density functional theory (DFT) calculations shows that the high stereocontrol observed in this process results from a large number of energetically accessible equilibria feeding a preferred reactive channel that leads to the major product. A distinctive consequence of this pattern is that stereoselectivity 15 is enhanced upon heating.


## Introduction

Manipulation of functionality at a specific position of a hydrocarbon that would generate a reaction at a different location represents a major challenge in synthetic organic chemistry. The difficulty of such remote functionalization is even more pronounced for acyclic systems where flexible alkyl chains are present between the initiating and the final reactive centers. Since the pioneering work on remote functionalization of Breslow's in the 70 's, ${ }^{1}$ numerous studies have appeared for the relay or 25 transmission of stereochemical information along alkyl chains. ${ }^{2}$

In this context, a particular impressive example in the field of asymmetric induction is the foldamer-mediated 1,61 -asymmetric remote induction reported by Clayden. ${ }^{3}$ On the other hand, as transition-metal complexes have the ability to isomerize double 30 bonds along carbon-skeleton, ${ }^{4-6}$ one could design a system where the isomerization would generate a selective remote transformation. However, due to the natural propensity for statistical isomerization, the selective migration of a metal complex along a hydrocarbon chain can only be directed if ${ }_{35}$ associated with a strongly thermodynamically favoured termination step. In this context, we have reported the transformation of unsaturated fatty alcohols derivatives as a source of substituted allylmetal species (Path A, Scheme 1) ${ }^{7}$ and the stereoselective preparation of conjugated dienyl metal
${ }_{40}$ complexes from non-conjugated enol ethers (Path B, Scheme 1) ${ }^{8}$ where the irreversible termination step is an elimination reaction. Initiating reversible allylic C-H bond activations triggered these reactions and up to 6 carbon atoms were separating the initial double bond to the terminating center. In contrast, a very
${ }_{45}$ appealing unidirectional palladium-chain walking for the enantioselective redox-relay Heck-type arylation of alkenyl alcohols was reported where an oxidative deprotonation of the
final $\alpha$-alkoxy palladium-alkyl intermediate close the catalytic cycle (Path C, Scheme 1). ${ }^{9}$

Path A: Initiation generates a walking-process leading to the formation of allylzirconocene

Remote


Path B: Initiation generates a walking-process leading to the formation of ( $E, Z$ )-conjugated dienylzirconocene

Remote


Path C: Initiation generates a walking-process leading to the formation of aldehydes



Scheme 1 General approach for remote functionalization
However, reaction of a metal complex with a functionality that would generate a final unidirectional "walking-process" over an alkyl chain of an hydrocarbon (only composed of H and C ${ }_{55}$ atoms) ${ }^{4}$ producing a chemical reaction at a defined terminus position is a very promising, but still in its infancy, approach to functionalize molecules. ${ }^{5,6}$ To answer this challenging remote functionalization of hydrocarbons, we were interested to investigate the case of $\omega$-ene cyclopropanes. If the trigger ${ }_{60}$ promotes the walking-process of a double bond to finally lead to a selective C-C bond carbon cleavage (Scheme 2), two cuttingedge methods of activation ( $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$ bond cleavage) would be unified into a single method through the use of a unique
organometallic species. ${ }^{10}$


Scheme 2 Proposed approach for remote functionalization of hydrocarbons.

## Results and Discussion

We could show that $\omega$-ene cyclopropane 1a (Scheme 3) as well as alkylidenecyclopropanes (not described) can easily undergo a zirconocene-mediated allylic $\mathrm{C}-\mathrm{H}$ bond activation followed by ${ }_{10}$ highly selective C-C bond cleavage. ${ }^{10}$ It should be noted that under the same experimental conditions, saturated cyclopropane (not possessing the remote double bond) does not lead to the carbon-carbon bond cleavage of the three-membered ring, confirming our hypothesis that the initiating step on the alkenyl ${ }_{15}$ moiety is required for the reaction to proceed. The allylic C-H bond activation most probably proceeds through the formation of $\eta^{3}$-allyl intermediate ${ }^{7,8}$ and the unique selectivity of the ringopening results from the kinetically and thermodynamically preferred formation of primary organometallic species 2 over 20 tertiary organometallic species in the ring cleavage $\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right.$ cleavage preferred over $C_{1}-C_{3}$, Scheme 3). ${ }^{11}$ Moreover, the reactivity of the bismetalated species (also called metallacycle) 2 can be fully controlled as the reactivity of the allylzirconocene moiety $\left(\mathrm{C}_{1}-\mathrm{Zr}\right)$ is higher than the reactivity of the ${ }_{25}$ alkylzirconocene $\left(\mathrm{C}_{2}-\mathrm{Zr}\right)$ moieties towards electrophiles. ${ }^{12}$


Scheme 3 1,4-Diastereoselectivity in the zirconocene-promoted allylic CH bond activation and $\mathrm{C}-\mathrm{C}$ bond cleavage.

Therefore, addition of carbonyl groups as first electrophiles 30 such as acetone leads to the unique formation of functionalized adducts at the allylic position, that could be also eventually represented as cyclic mono-metallated cyclooctenolate derivative,
and the second electrophile (i.e. $\mathrm{I}_{2}$ ) gives the final $E$-adduct 3 a in $55 \%$ yield (Scheme 3). ${ }^{10}$ Although this strategy holds potential
for 1,4-induction of diastereoselectivity with formation of the highly valued quaternary carbon and tertiary stererocenters in 1,4-relatioship in acyclic system, ${ }^{13,14}$ we could never reach a decent diastereoselectivity from $\omega$-ene cyclopropanes $(d r 3: 1$, Scheme 3). This low 1,4-diastereoselectivity in the formation of
40 the linear product was rationalized by the presence of a mixture of two geometrical $E$ - and $Z$-isomers of the substituted allylzirconocene $2,{ }^{10}$ both reacting with acetone through a chairlike transition state ${ }^{15}$ as described in Figure 1 leading to the $E$ isomer 3a as a mixture of two $\mathrm{sp}^{3}$ centered diastereoisomers. In ${ }_{55}$ this communication, we report how we could improve the diastereoselectivity of the reaction and rationalize the results.



2(E)-configurated


Figure 1 Proposed Zimmermann-Traxler transition state
Following our previous work on the zirconocene-mediated ring${ }_{50}$ opening of alkylidenecyclopropanes, ${ }^{10}$ we hypothesized that the diastereoselectivity could be improved if one could isomerize the $(Z)$-configurated substituted allylzirconocene $\mathbf{2}$ into the thermodynamically more stable $\mathbf{2}(E)$-isomer. When the diastereomerically pure $\omega$-ene cyclopropanes $\mathbf{1 b}, \mathbf{e}$ were treated ${ }_{55}$ with the Negishi reagent ${ }^{17}$ at room temperature overnight in $\mathrm{Et}_{2} \mathrm{O}$, the intermediate metallacycles $\mathbf{2 b}, \mathbf{e}$ were initially obtained as two geometrical $(E, Z)$-isomers. We were delighted to observe that the isomerization of the substituted allylzirconocene into the single $E$-allylzirconocene species 2 could be promoted by addition of ${ }^{\circ}$ THF as a co-solvent and heating to $55{ }^{\circ} \mathrm{C}$ for 3 h . Then, the addition of the carbonyl groups followed by the second electrophiles gave diastereoisomerically enriched $\mathbf{3 b - m}$ as described in Table 1. It should be noted that neither the addition of THF alone without heating nor heating (in $\mathrm{Et}_{2} \mathrm{O}$ ) without 5 addition of the cosolvent THF was sufficient to fully isomerize the $(Z)$-allylzirconocenes 2 into the $(E)$-isomer. We hypothesized that the addition of this co-solvent is needed to reach a temperature high enough to promote the isomerization of the Zinto E-allylzirconocene. In all cases, the combined C -H allylic
70 bond activation followed by the selective C-C bond cleavage leads, after isomerization of the substituted allylzirconocene and reaction with two different electrophiles, to acyclic $E$-alkenes possessing two stereogenic centers in a 1,4-relationship, including the quaternary carbon stereocenter with very high ${ }_{5}$ diastereoselectivity. It should be stressed that the selectivity of the ring-cleavage is complete as no trace of activation along the $\mathrm{C}_{1}-\mathrm{C}_{3}$ bond was detected in the crude reaction mixture. This tandem reaction is not limited to a one-carbon tether (Table 1, entries 1-5) as it could be extended similarly to a longer alkyl ${ }_{80}$ chain (Table 1 , entry $6, n=2$, entries $7-11, n=3$ and entry 12 , $n$
$=4)$ with similar selectivity. When the migrating double bond is 1,2 -disubstituted such as in 1c (Table 1, entry 6), our tandem sequence of allylic $\mathrm{C}-\mathrm{H}$ isomerization/carbon-carbon cleavage still proceeds very efficiently as $\mathbf{3 g}$ is obtained in $62 \%$ yield with ${ }_{5}$ a 1,4 -diastereoisomeric ratio of $98: 2$. It should be noted that although $\mathbf{1 c}$ was present as two geometrical $(E) /(Z)$-isomers in a 1:1 ratio, only the ( $E$ )-isomer of $\mathbf{3 g}$ is obtained.

Table 1 1,4-Diastereoselectivity in the zirconocene-promoted allylic C-H bond activation and $\mathrm{C}-\mathrm{C}$ bond cleavage.

|  <br> 1a,b |  |  | 1) $\mathrm{ZrCp}_{2} \mathrm{C}_{4} \mathrm{H}_{8}, \mathrm{Et}_{2} \mathrm{O}$ <br> $-78^{\circ} \mathrm{C}$ to rt, 12 h <br> 2) THF, $55^{\circ} \mathrm{C}, 3 \mathrm{~h}$ <br> 3) First electrophile <br> 4) Second electrophile <br> 5) $\mathrm{H}_{3} \mathrm{O}^{+}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Entry | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | $\mathrm{R}^{3}$ | n | $\mathrm{E}^{1}$ | $\mathrm{E}^{2}$ | $d r^{[2]}$ | $\begin{aligned} & \begin{array}{l} \text { Yield } \\ (\%)^{[b]]} \end{array} \end{aligned}$ |
| 1 | Pr | Bu | H | 1(1b) | MeCOMe | $\mathrm{H}_{3} \mathrm{O}^{+}$ | 98:2 | $\begin{gathered} 83 \\ (\mathbf{3 b}) \end{gathered}$ |
| 2 | Pr | Bu | H | 1(1b) | $\left[\mathrm{CH}_{2}\right]_{4} \mathrm{CO}$ | $\mathrm{H}_{3} \mathrm{O}^{+}$ | 98:2 | $\begin{gathered} 62 \\ (\mathbf{3 c}) \end{gathered}$ |
| 3 | Pr | Bu | H | 1(1b) | $\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CO}$ | $\mathrm{H}_{3} \mathrm{O}^{+}$ | 98:2 | $\begin{gathered} 52 \\ (\mathbf{3 d}) \end{gathered}$ |
| 4 | Pr | Bu | H | 1(1b) | EtCOEt | $\mathrm{I}_{2}$ | 98:2 | $\begin{gathered} 56 \\ (\mathbf{3 e}) \end{gathered}$ |
| 5 | Pr | Bu | H | 1(1b) | MeCOMe | $\mathrm{I}_{2}$ | 98:2 | $\begin{gathered} 51 \\ (\mathbf{3 f}) \end{gathered}$ |
| 6 | Et | Bu | Me | 2(1c) | MeCOMe | $\mathrm{H}_{3} \mathrm{O}^{+}$ | 98:2 | $\begin{gathered} 62 \\ (\mathbf{3 g}) \end{gathered}$ |
| 7 | Et | Bu | H | 3(1d) | MeCOMe | $\mathrm{H}_{3} \mathrm{O}^{+}$ | 98:2 | $\begin{gathered} 61 \\ (\mathbf{3 h}) \end{gathered}$ |
| 8 | Et | Bu | H | 3(1d) | $\left[\mathrm{CH}_{2}\right]_{4} \mathrm{CO}$ | $\mathrm{H}_{3} \mathrm{O}^{+}$ | 97:3 | $\begin{gathered} 61 \\ (\mathbf{3 i}) \end{gathered}$ |
| 9 | Et | Bu | H | 3(1d) | $\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CO}$ | $\mathrm{H}_{3} \mathrm{O}^{+}$ | 98:2 | $\begin{gathered} 62 \\ (\mathbf{3 j}) \end{gathered}$ |
| 10 | Et | Bu | H | 3(1d) | MeCOMe | $\mathrm{I}_{2}$ | 96:4 | $\begin{gathered} 55 \\ (\mathbf{3 k}) \end{gathered}$ |
| 11 | Et | Bu | H | 3(1d) | EtCOEt | $\mathrm{H}_{3} \mathrm{O}^{+}$ | 98:2 | $\begin{gathered} 59 \\ (\mathbf{3 1}) \end{gathered}$ |
| 12 | Et | Bu | H | 4(1e) | MeCOMe | $\mathrm{H}_{3} \mathrm{O}^{+}$ | 98:2 | $\begin{gathered} 50 \\ (\mathbf{3 m}) \\ \hline \end{gathered}$ |

[a] Determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixture
[b] Determined after purification by column chromatography on silica gel.



15 Scheme 4 Tandem reactions on the two opposite diastereoisomers of $\mathbf{1 f}$.
Importantly, when the two diastereoisomers of $\omega$-ene cyclopropanes 1f are subjected to our experimental conditions, the two opposite diastereoisomers of $\mathbf{3 n}$ are obtained with comparable diastereomeric ratios and yields (Scheme 4). In ${ }_{20}$ addition to the synthetic importance of this transformation, this result clearly shows that the $\mathrm{C}_{1}-[\mathrm{Zr}]$ bond of zirconacyclobutane intermediates $\mathbf{2}$ is configurationally stable.In other words, the two independently formed intermediate alkyl-allyl zirconacyclobutanes cis-2c and trans-2c respectively do not ${ }_{25}$ interconvert at the metalated center $\mathrm{C}_{1}$ (Path A, Figure 2) despite the isomerization of the $(Z)-\mathbf{2 c}$ into $(E)-\mathbf{2 c}$ allylzirconocene fragment at $\mathrm{C}_{5}$ by heating at $55^{\circ} \mathrm{C}$ for 3 h (Path B, Figure 2).

## Path A: configurational stability at $C_{1}$



trans-2c
(from trans 1f)

## Path B: complete isomerization at $C_{5}$


$\xrightarrow{\text { THF }, 55^{\circ} \mathrm{C}}$
(Z)-2c

(E)-2c

Figure 2 Configurational stability at $\mathrm{C}_{1}$ and isomerization at $\mathrm{C}_{5}$.
${ }^{30}$ To gain a better understanding of the mechanism of this surprising $Z$ - to $E$-isomerization of the allylzirconocene fragment on $\mathrm{C}_{5}$ without eroding the configurational stability at $\mathrm{C}_{1}$ of the zirconacyclobutane $\mathbf{2 c}$, this reaction was studied with density functional theory (DFT) calculations using the M06 functional 35 that includes dispersion contributions. ${ }^{17}$ An implicit solvent model was used for modeling bulk solvation by $\mathrm{Et}_{2} \mathrm{O}$ according to the SMD method. Gibbs free energies calculated at $\mathrm{T}=298.15 \mathrm{~K}$ and $\mathrm{P}=1 \mathrm{~atm}$ are used to discuss the reaction pathways. More details are given in the Supporting Information.
40 Experimentally, the chain walking mechanism has been established by deuterium labeling. It was shown that successive migration of the double bond is promoted by allylic $\mathrm{C}-\mathrm{H}$ bond activations to yield Zr-hydride-allyl intermediate complexes as depicted in Figure 3.I. ${ }^{9 a, 10 a}$ Calculations show that this ${ }_{45}$ mechanism is energetically preferred for the chain walking along the alkenyl chain of a cyclopropane substrate. When moving the double bond of one carbon unit, the rate-determining step involves the rotation along the $\mathrm{Zr}-\mathrm{C}$ bond of the $\sigma$-allyl ligand. The highest transition state is $6 \mathrm{kcal}_{\mathrm{kc}} \mathrm{mol}^{-1}$ above the initial ${ }_{50}$ reactants taken as energy reference hereafter. Calculations also reveal the existence of a complex set of equilibria built on rotations within $\sigma$-allyl ligands at the transient zirconocene-hydride-allyl complexes (Figure 3.I-III) that was characterized for a related Zr -allyl complex. ${ }^{18}$ These equilibria are kinetically and ${ }_{55}$ thermodynamically comparable leading to kinetically and thermodynamically unselective chain walking (zirconocene can switch between the alkene faces (Figure 3.II) and isomerize the $Z$ - into the $E$-olefin, Figure 3 .III). A fully detailed computational mechanistic of these isomerizations and others will be the ${ }_{60}$ reported in a forthcoming report.

The ability to transform the olefin complex into a hydride allylic complex where many isomerizations can be achieved at a low energy cost is thus an important feature of this system. Indeed, the Zr -promoted walking process potentially leads to a mixture of four cyclopropyl diastereoisomeric zirconacyclopropane complexes (A to D, Figure 3.V). ${ }^{17}$ These four intermediates are in equilibrium via the isomerization
aforementioned and share $\mathbf{I}$ as the most stable common intermediate, which is $7 \mathrm{kcal} . \mathrm{mol}^{-1}$ below $\mathrm{Cp}_{2} \mathrm{ZrBu}_{2}$ and free ${ }_{10}$ substrate and more stable than $\mathbf{A}$ to $\mathbf{D}$. Therefore, species $\mathbf{I}$ is the most abundant intermediate before the C-C bond cleavage. Importantly, the relative ratios of these four complexes have little to no consequence on the stereochemical outcome of the reaction as described below.

${ }_{15}$ Figure 3. Reaction pathways showing the key extrema for zirconocene I chain walking; II face switching; III $E$ to $Z$-olefin isomerization; IV Newman projection for complexes $\mathbf{B}$ and $\mathbf{C}$ to illustrate the anti- and syn-periplanar configurations between the 3membered rings; $\mathbf{V}$ Reaction pathways involved in the formation of cis-2c and trans-2c. Extrema are labeled in bold black. Gibbs free energies are in kcal. $\mathrm{mol}^{-1}$ relative to separated $[\mathrm{Zr}] \mathrm{Bu}_{2}$ and substrate taken as energy reference with values for minima and transition states in pink and teal, respectively. In multistep sequences, max refers to the Gibbs free energy of the highest transition state. The sign * ${ }_{20}$ refers to values obtained for pent-2-ene as substrate.


Figure 4. Structures of Imin, IMaj and their associated transition states of formation.
25
The four complexes $\mathbf{A}$ to $\mathbf{D}$ differ strongly in their ability to undergo the ring opening of the cyclopropyl ring since they are determined by the position of the Zr relative to the ring. An antiperiplanar relationship between the zirconacyclopropane and the
${ }_{30}$ cyclopropyl ring in $\mathbf{C}$ and $\mathbf{D}$ prevents the $\mathrm{C}_{1}-\mathrm{C}_{2}$ ring opening, (activation barrier of ca $40 \mathrm{kcal} . \mathrm{mol}^{-1}$, Figure 3.IV) whereas a syn-periplanar relationship between the reactive function in $\mathbf{A}$ and B leads to activation barriers for the $\mathrm{C}-\mathrm{C}$ bond cleavage of around $5 \mathrm{kcal} \mathrm{mol}^{-1}$. Furthermore, the ring opening of the cyclopropyl
35 ring always occurs at the least substituted carbon-carbon bond as shown in Scheme 3 and Figure 3.V. No transition state for $C_{1}-C_{3}$ bond cleavage could be located presumably due to the steric hindrance.

Cyclopropane ring opening of $\mathbf{A}$ and $\mathbf{B}$ respectively yields ${ }_{40}$ Imin and IMaj that are the calculated structures for $(Z) \mathbf{- 2 c}$ and $(E)-\mathbf{2 c}$, respectively (Figures 2 and 3 ). Whereas, isomers A and B
are isoenergetic, IMaj is energetically preferred over Imin by 4 kcal. $\mathrm{mol}^{-1}$, an energy difference that is also present in the corresponding transition states. The transition state for the cyclopropane ring opening occurs by approaching the methylene ${ }_{5} \mathrm{C}_{2}$ to the Zr while maintaining the $\mathrm{Zr}-\beta$-ene interaction. In both $\mathbf{T S}_{\text {B-IMaj }}$ and $\mathbf{T S}_{\text {A-Imin }}$, the $\mathrm{Zr}-\mathrm{C}_{2}$ bond distance is $2.66 \AA$ and the $\mathrm{C}_{2}-\mathrm{C}_{1}$ is $1.72 \AA$. Thus, the difference in energy between the two transition states $\mathbf{T S}_{\text {B-IMaj }}$ and $\mathbf{T S}_{\text {A-Imin }}$ appears to be due to nonbonded interactions between the ethyl chain and the $\mathrm{Cp}_{2} \mathrm{Zr}$ ${ }_{0}$ fragment. As illustrated in Figure 4, these interactions are present in IMaj and Imin and account for similarity in the kinetic and thermodynamic preferences. Thus, the kinetic preference for going via the transition state that forms the thermodynamically preferred IMaj, accounts for the experimental 3:1 ${ }_{15}$ diastereoisomeric ratio of $\mathbf{3}$ (Scheme 3) when the reaction is performed at room temperature. Importantly, intermediates $\mathbf{C}$ and D, which cannot perform the cyclopropane ring opening, isomerize to either $\mathbf{A}$ or $\mathbf{B}$ via the Zr -allyl hydride intermediate $\mathbf{I}$ and thus also contribute to products formation.
20 Calculations indicate that direct isomerization between $(Z)$ and (E)-2c, (i.e. between Imin to IMaj) is not allowed. This originates from the restricted rotation around $\mathrm{C}_{4}-\mathrm{C}_{5}$ caused by either the presence of a $\pi$-bond or the constraint of the 6 membered ring in the two $\sigma$-allyl complexes. Alternatively, a 25 mechanism that connects Imin to I and thus to IMaj via allylic C-H activation and formation of a zirconium-hydride-diene complex has been computed; the highest transition state of this pathway is located at $22 \mathrm{kcal} \mathrm{mol}^{-1}$ above energy reference. ${ }^{19}$ Consequently, the most energetically preferred pathway from
${ }_{30} \mathbf{I m i n}$ to IMaj is via $\mathbf{A}$, I and $\mathbf{B}$ with the highest transition state being $10 \mathrm{kcal}_{\mathrm{kc}}^{\mathrm{mol}}{ }^{-1}$ above the energy reference. This isomerization between $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and $\mathbf{D}$ via $\mathbf{I}$ controls the stereoselectivity of the reaction and highlights the importance of the reversibility of the allylic $\mathrm{C}-\mathrm{H}$ bond activation and $\mathrm{C}-\mathrm{C}$ bond
35 cleavage by heating the reaction mixture at $55^{\circ} \mathrm{C}$ for 3 h .
These computations show that the high diastereoselectivity of this reaction is not due to the existence of a single preferred path but to a large number of energetically accessible equilibria that enables the isomerization of all intermediates into a single one,
40 responsible for the formation of the major product. This mechanism of dynamic thermodynamic resolution has already been reported in the literature mainly for the equilibration of $\mathrm{sp}^{3}$ alkylithium species, ${ }^{20}$ but also for the formation of substituted allylithium species with sparteine. ${ }^{21}$ Having now a good
${ }_{45}$ understanding of the reaction mechanism, we turned our attention to the last synthetic challenge, namely the functionalization of the second $\mathrm{Csp}^{3}-[\mathrm{Zr}]$ bond (second electrophile) through the creation of a new $\mathrm{C}-\mathrm{C}$ bond.

To perform such C-C bond forming events, transmetalation ${ }_{50}$ reactions usually provide a unique and powerful means of expanding the synthetic scope of organozirconium chemistry. ${ }^{22}$ Once the tandem allylic $\mathrm{C}-\mathrm{H}$ and selective $\mathrm{C}-\mathrm{C}$ activations is performed on $\mathbf{1 b}$, THF is added and the solution is heated at 55 ${ }^{\circ} \mathrm{C}$ for 3 h . Then acetone was first added and the resulting alkyl zirconium species was transmetalated into alkyl copper species by addition of catalytic amount of copper salt. ${ }^{23}$ The in-situ generated alkylcopper can then react with classical electrophiles of copper chemistry as allyl bromide and aromatic as well as
heteroaromatic acyl chloride to give functionalized adducts ${ }_{60}$ (Scheme 5, formation of $\mathbf{3 0 - q}$, respectively). The corresponding alkyl copper species could also be transmetalated into palladium by addition of $10 \mathrm{~mol} \%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and coupled with aromatic iodide (formation of $\mathbf{3 r}$, Scheme 5).

## Conclusions

${ }_{65}$ In conclusion, a diastereoselective remote functionalization of $\omega$ ene cyclopropane species is reported that could lead, in addition, to the formation of functionalized adducts with high 1-4 diastereocontrol. As highly enantiomerically enriched cyclopropane derivatives are easily accessible, ${ }^{24}$ this reaction 70 could represent an interesting entry to the formation of enantiomerically enriched quaternary and tertiary carbon stereocenters in acyclic systems. Computational studies reveal an original way to achieve high stereocontrol by having a plethora of equilibria feeding a preferred reactive channel leading to the
75 major isomer through thermodynamic control. This accounts for the counter-intuitive result that stereocontrol is enhanced by thermal treatment.


Scheme 5 Transmetalation of $\mathrm{Csp}^{3}-[\mathrm{Zr}]$ bond for further C-C bond 80 forming processes.

## Acknowledgements

This research is supported by the European Research Council under the European Community's Seventh Framework Program (ERC grant agreement no. 338912). LP thanks CCIR of ICBMS 85 and CALMIP for providing computational resources and technical support. OE thanks the Technion for an invited Schulich Professorship position during which this collaboration was initiated.

## Notes and references

${ }_{90}{ }^{a}$ The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry and Lise Meitner-Minerva Center for Computational Quantum Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel. Fax: (+) 972-4-829 37 09; Tel : (+)972-4-829 37 09; E-mail: chilanm@tx.technion.ac.il
${ }^{\text {b }}$ ICBMS UMR 5246, Université de Lyon, Bat Curien, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne cedex, France.
${ }^{c}$ Institut Charles Gerhardt, CNRS UMR 5253, cc 1501, Université Montpellier 2, Place E. Bataillon, 34095 Montpellier, France.
5 † Electronic Supplementary Information (ESI) available: Experimental procedures, computational details, list of coordinates, E and G for optimized structures, spectroscopic data and copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. See DOI: 10.1039/b000000x/

101 (a) R. Breslow, Chem. Soc. Rev., 2003, 1, 553; (b) R. Breslow, Acc. Chem. Res., 1980, 13, 170.
2 For reviews; see: (a) I. Franzoni and C. Mazet, Org. Biomol. Chem., 2014, 12, 233; (b) H. Jiang, L. Albrecht and K. A. Jørgensen, Chem. Sci., 2013, 4, 2287; (c) H. Schwarz, Acc. Chem. Res., 1989, 22, 282.
153 L. Byrne, J. Solà, T. Boddaert, T. Marcelli, R. W. Adams, G. A. Morris and J. Clayden, Angew. Chem. Int. Ed., 2014, 53, 151.
4 G. P. Moss, P. A. S. Smith, and D. Tavernier, Pure Appl. Chem. 1995, 67, 1307.
5 For metal-walking over electron-rich $\pi$-system; see: (a) D. Strawser,
20 A. Karton, A. V. Zenkina, A. A. Iron, L. J. W. Shimon, J. M. L. Martin and M. E. van der Boom, J. Am. Chem. Soc., 2005, 127, 9322; (b) O. Zenkina, M. Altman, G. Leitus, L. J. W. Shimon, R. Cohen and M. E. van der Boom, Organometallics, 2007, 26, 4528. For metal-walking on hydrocarbons; see: (a) C. R. Larsen, G. Erdogan
25 and D. B. Grotjahn, J. Am. Chem. Soc., 2014, 136, 1226; (b) G. Hilt, ChemCatChem., 2014, 6, 2484; (c) J. Tao, F. Sun and T. Fang, J. Organomet. Chem., 2012, 698, 1; (d) F. Ding, Y. Sun and F. Verpoort, Eur. J. Inorg. Chem., 2010, 1536; (e) G. Erdogan, D. B. Grotjahn, Top. Cat., 2010, 53, 1055; (f) G. Erdogan and D. B.
30 Grotjahn, J. Am. Chem. Soc., 2009, 131, 10354; (g) T. O. Northcutt, D. D. Wick, A. J. Vetter and W. D. Jones, J. Am. Chem. Soc., 2001, 123, 7257; (h) R. A. Periana and R. G. Bergman, J. Am. Chem. Soc., 1986, 108, 7332.
6 (a) W-C. Lee, C-H. Wang, Y-H. Lin, W.-C. Shih and T.-G. Ong,
35 Org. Lett., 2013, 15, 5358; (b) L. Wu, I. Fleicher, R. Jackstell, I. Profir, R. Franke and M. Beller, J. Am. Chem. Soc., 2013, 135, 14306; (c) M. Vilches-Herrera, L. Domke and A. Börner, ACS Catalysis, 2014, 4, 1706. (d) J. S. Bair, Y. Schramm, A. G. Sergeev, E. Clot, O. Eisenstein and J. F. Hartwig, J. Am. Chem. Soc., 2014, 136, 13098.
7 (a) N. Chinkov, A. Levin and I. Marek, Angew. Chem. Int. Ed., 2006, 45, 465; (b) I. Marek, N. Chinkov and A. Levin, Synlett, 2006, 4, 501 .
8 N. Chinkov, S. Majumdar and I. Marek, J. Am. Chem. Soc., 2003, 125, 13258; (b) N. Chinkov, S. Majumdar and I. Marek, J. Am. Chem. Soc., 2002, 124, 10282.
9 (a) T.-S. Mei, H. H. Patel and M. S. Sigman, Nature, 2014, 508, 340; (b) T.-S. Mei, E. W. Werner, A. J. Burckle and M. S. Sigman, J. Am. Chem. Soc., 2013, 135, 6830; (c) E. W. Werner, T.-S. Mei, A. J. Burckle and M. S. Sigman, Science, 2012, 338, 1455; (d) M. J. Hilton, L.-P. Xu, P-O. Norrby, Y-D. Wu, O. Wiest, M. S. Sigman, J. Org. Chem. DOI: $10.1021 / \mathrm{jo501813d}$.
10 (a) A. Masarwa, D. Didier, T. Zabrodski, M. Schinkel, L. Ackermann and I. Marek, Nature, 2014, 505, 199; (b) S. Harada, H. Kiyono, R.
55 Nishio, T. Taguchi and Y. Hanzawa, J. Org. Chem., 1997, 62, 3994; (c) P. W. Dimmock and R. J. Whitby, J. Chem. Soc. Chem. Commun., 1994, 2323; (d) J.-L. Vasse and J. Szymoniak, Tetrahedron Lett., 2004, 45, 6449.
11 A. Masarwa and I. Marek, Chem.-Eur. J., 2010, 16, 9712.
6012 L. T. Kiman, S. N. Mlynarski, G. E. Ferris and J. P. Morken, Angew. Chem. Int. Ed., 2012, 51, 521.
13 For reviews; see: (a) Y. Minko and I. Marek, Chem. Commun., 2014, 50, 12597; (b) A. Y. Hong and B. M. Stoltz, Eur. J. Org. Chem., 2013, 2745; (c) J. P. Das and I. Marek, Chem. Commun., 2011, 47,
65 4593; (d) C. Hawner and A. Alexakis, Chem. Commun., 2010, 46, 7295; (e) M. Bella and T. Gasperi, Synthesis, 2009, 1583; (f) P. G. Cozzi, R. Hilgraf and N. Zimmermann, Eur. J. Org. Chem., 2007, 5969; (g) I. Marek and G. Sklute, Chem. Commun., 2007, 43, 1683; (h) B. M. Trost and C. Jiang, Synthesis, 2006, 369; (i) C. J. Douglas

70 and L. E. Overman, Proc. Natl. Acad. Sci. USA, 2004, 101, 5363; (j) I. Denissova and L. Barriault, Tetrahedron, 2003, 59, 10105; (k)

Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis, Eds.: J. Christoffers and A. Baro, Wiley-VCH, Weinheim, 2005; (1) E. J. Corey and A. Guzman-Perez, Angew. Chem. Int. Ed.,

14 (a) I. Marek, Y. Minko, M. Pasco, T. Mejuch, N. Gilboa, H. Chechik and J. D. Das, J. Am. Chem. Soc., 2014, 136, 2682; (b) D. Didier, P.O. Delaye, M. Simaan, B. Island, G. Eppe, H. Eijsberg, A. Kleiner, P. Knochel and I. Marek, Chem.-Eur. J., 2014, 20, 1038; (c) M. Pasco,

18 M. Vatamanu, Organometallics, 2014, 33, 3683
19 This pathway involves an energetically demanding transition state to form a cis-butadiene complex via allyl $\mathrm{C}-\mathrm{H}$ at $\mathrm{C}^{4}$, followed by the ring closing at the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond. Participation of a butadiene complex in a related chemistry was suggested. See Scheme 6 in H. Yasuda and A. Nakamura, Angew. Chem. Int. Ed., 1987, 26, 723.

20 (a) P. Beak, D. R. Anderson, M. D. Curtis, J. M. Laumer, D. J. Pippel and G. A. Weisenburger, Acc. Chem. Res. 2000, 33, 715; (b) W. K. Lee. Y. S. Park and P. Beak, Acc. Chem. Res. 2009, 42, 224; (c) E. Vedejs and M. Jure, Angew. Chem. Int. Ed. 2005, 44, 3974; (d) J. Andraos J. Phys. Chem. A. 2003, 107, 2374.
21 D. Hoppe and O. Zschage, Angew. Chem. Int. Ed. Engl. 1989, 28, 69. 22 P. Wipf and H. Jahn, Tetrahedron, 1996, 52, 12853.
23 (a) S. Farhat, I. Zouev and I. Marek, Tetrahedron, 2004, 60, 1329; (b) N. Chinkov, H. Chechik, S. Majumbar, A. Liard and I. Marek, Synthesis, 2002, 2473; (c) S. Farhat and I. Marek, Angew. Chem. Int. Ed., 2002, 114, 361; (d) A. Liard and I. Marek, J. Org. Chem., 2000, 65, 7218.
24 (a) A. B. Charette and A. Beauchemin, Org. React., 2001, 58, 1; (b) H. Lebel, J.-F. Marcoux, C. Molinaro and A. B Charette, Chem. Rev., 2003, 103, 977. (c) H. Y. Kim and P. J. Walsh, Acc. Chem. Res., 2012, 45, 1533.

