Surface functionalization of hydroxyapatite nanoparticles for biomedical applications

Abstract

This review completely covers the various aspects of hydroxyapatite (HAp) nanoparticles and their role in different biological situations, and provides the surface and interface contents on (i) hydroxyapatite nanoparticles and their hybridization with organic molecules, (ii) surface designing of hydroxyapatite nanoparticles to provide their biocompatibility and photofunction, and (iii) coating technology of hydroxyapatite nanoparticles. In particular, we summarized how the HAp nanoparticles interact with the different ions and molecules and highlighted the potential for hybridization between HAp nanoparticles and organic molecules, which is driven by the interactions of the HAp nanoparticle surface ions with several functional groups of biological molecules. In addition, we highlighted the studies focusing on the interfacial interactions between the HAp nanoparticles and proteins for exploring the enhanced biocompatibility. Such studies focus on how these interactions affect the hydration layers and protein adsorption. However, the hydration layer state involves diverse molecular interactions that can alter the shape of the adsorbed proteins, thereby affecting cell adhesion and spreading on the surfaces. We also summarized the relationship between the surface properties of the HAp nanoparticles and the hydration layer. Furthermore, we spotlighted the cytocompatible photoluminescent probes that can be developed by designing HAp/organic nanohybrid structures. We then emphasized the importance of photofunctionalization in theranostics, which involves the integration of diagnostics and therapy based on the surface design of the HAp nanoparticles. Furthermore, the coating techniques using HAp nanoparticles and HAp nanoparticle/polymer composites were outlined for fusing base biomaterials with biological tissues. The advantages of HAp/biocompatible polymer composite coatings include the ability to effectively cover porous or irregularly shaped surfaces while controlling the thickness of the coating layer, and the addition of HAp nanoparticles to the polymer matrix improves the mechanical properties, increases the roughness, and forms the morphologies that mimic bone nanostructures. Therefore, the fundamental design of hydroxyapatite nanoparticles and their surfaces was suggested from various aspects for biomedical applications.

Graphical abstract: Surface functionalization of hydroxyapatite nanoparticles for biomedical applications

Article information

Article type
Review Article
Submitted
15 Mar 2024
Accepted
10 Jun 2024
First published
26 Jun 2024

J. Mater. Chem. B, 2024, Advance Article

Surface functionalization of hydroxyapatite nanoparticles for biomedical applications

T. Kataoka, Z. Liu, I. Yamada, T. G. P. Galindo and M. Tagaya, J. Mater. Chem. B, 2024, Advance Article , DOI: 10.1039/D4TB00551A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements