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Polyelectrolytes are a class of polymers possessing ionic groups on their repeating units. Since
counterions can dissociate from the polymer backbone, polyelectrolyte chains are strongly influenced
by electrostatic interactions. As a result, the physical properties of polyelectrolyte solutions are
significantly different from those of electrically neutral polymers. The aim of this article is to highlight
key results and some outstanding questions in the polyelectrolyte research from recent literature. We
focus on the influence of electrostatics on conformational and hydrodynamic properties of
polyelectrolyte chains. A compilation of experimental results from the literature reveals significant
disparities with theoretical predictions. We also discuss a new class of polyelectrolytes called poly(ionic
liquid)s that exhibit unique physical properties in comparison to ordinary polyelectrolytes. We conclude
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this review by listing some key research challenges in order to fully understand the conformation and
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1 Introduction

The field of polymer science emerged as a distinct scientific
discipline in 1920, with the core concept based on the macro-
molecular hypothesis proposed by Staudinger.! Since then, it
has been well accepted that polymers are made of molecules
covalently bonded to each other. The definition by IUPAC states
that polymers are substances composed of macromolecules
with a molecular weight exceeding several thousand.” During
the past century, polymer chemists have made significant
advances in creating new polymer species and controlling the
polymerisation process, while polymer physicists have focused
on understanding the properties of polymers by using theore-
tical, computational, and experimental approaches. As a result,
polymer-based materials are prevalent and extensively used in
various industries and daily products.?

Despite the significant research progress in the physics of
non-ionic polymers, the properties of which (especially in dilute
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dynamics of polyelectrolytes in solutions.

solutions) are relatively well understood, less advancement has
been made in charged polymers. Polyelectrolytes, which
received their name from Raymond M. Fuoss in 1948," are a
class of ion-containing polymers. Historically, polymers with
relatively low ion-contents (10-15%) were defined as ionomers,
while polymers with very high ion-contents were defined as
polyelectrolytes.” A better definition was proposed based on the
physical properties of ion-containing polymers:® polyelectro-
Iytes are polymers whose properties in solution are governed by
electrostatic repulsion between dissociated groups along the
chain, while ionomers are polymers in which the bulk proper-
ties are governed by ionic interactions (i.e., dipole interactions
between ion pairs) in discrete regions of the polymer material
where attractive forces dominates. In fact, some ion-containing
polymers have exhibited transition from ionomer-like to
polyelectrolyte-like behaviours, depending on, for example, the
temperature.” Polyelectrolytes can be further divided into two
groups depending on the nature of the ionic groups.® Weak
polyelectrolytes are conventionally defined as polymers with
weakly acidic or basic groups, in contrast to strong poly-
electrolytes, which are composed of polymers with definitive
strong acid or base groups.’™** Note that this differs from strongly
charged and weakly charged polyelectrolytes, which refer to
systems with high and low densities of ionic monomers along
the backbone, respectively. However, there is no universally
agreed-upon threshold that defines ‘high’ versus ‘low’ charge
density. Vinylic polyelectrolytes, which carry approximately one
charge every 0.2-0.3 nm (e.g, PSS), and polysaccharides that have
one charge per monomer unit, equating to roughly one charge
every 0.5 nm, are considered as strongly charged.
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Regardless of the type of polyelectrolytes, their conformation
in solution is significantly influenced by the electrostatic inter-
actions. The modelling of charged polymers is rather compli-
cated since ions on the backbone chain are covalently bonded.
For example, it is widely accepted that some counterions stay
bound (condensed) in the vicinity of the chain backbone due to
strong electrostatic attractions between polyions and counter-
ions. This phenomenon is called the counterion condensation."®
As a result, the effective charge fraction on a polyelectrolyte chain
in solution is not always equal to the charge density (ie., the
number of ionic monomers) of the chain. Many theoretical
models with different approaches have been reported in the
literature, and their predictions could explain some properties
of polyelectrolyte solutions.”'®**'* However, many conflicting
results between experimental data and theoretical predictions
have been reported, even for linear polyelectrolyte chains in
solutions.

The number of factors and lengthscales which control the
solution properties***®'” is larger for charged polymers than
for neutral polymers, making polyelectrolyte theory lag behind
that of neutral polymers. These highly complex systems are
difficult to study experimentally. For example, if we study the
rheology of a neutral polymer in solution, measurements vary-
ing the polymer concentration, molar mass, solvent quality and
temperature will usually suffice to understand the given system.
However, for a polyelectrolyte, additional physical quantities,
such as the charge density, the counterion size and its valence,
the added salt concentration, and the dielectric constant of the
solvent, all become relevant experimental variables. Moreover,
it is not possible to define a single solvent quality, and the
chemical structure of the polyelectrolyte backbone, side-chain
ions and counterions have to be considered separately. In
concentrated solutions, the polyelectrolyte systems exhibited
fascinating dynamics'®?° which we are only beginning to
understand. Their ability to form complexes with oppositely
charged matter made them relevant to many industrial formu-
lations and biological systems and is one of the main aspects of
polyelectrolyte research today.**>*

We would also like to highlight an emerging category of
polyelectrolytes known as poly(ionic liquid)s or polymerized
ionic liquids. In this context, poly(ionic liquid)s (PILs) denote
polymers in which ionic liquid structures are covalently inte-
grated into the repeating units.>>*® Here, ionic liquids (ILs) are
molten salts consisting of cations or anions which melt below
100 °C.*’ Fig. 1 displays representative chemical structures of a
PIL polycation and its counteranions: PIL ions are relatively
large, asymmetric, and charge delocalized, making the physical
properties of PILs different from those of ordinary ion-
containing polymers.*® For example, PILs have exhibited glass
transition at relatively low temperatures even if the charge
density is high.* This unique glass transition behaviour of PILs
has led to active research in manipulating the bulk properties of
PILs, e.g., their ionic conductivity and viscoelasticity, which have
been extensively investigated over the past decade.’*® The
research community acquired a basic understanding of the
behaviour of PILs, which function similarly to ionomers.
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Fig. 1 Representative chemical structures of a PIL polycation and four differ-
ent types of counteranions. Polycation: PC4*; poly(1-butyl-3-vinylimidazolium),
counteranions: TFSI™; bis(trifluoromethanesulfonyl)imide, TfO™; trifluorometha-
nesulfonate, PF¢ ™ ; hexafluorophosphate, BF,; tetrafluoroborate.

However, the solution properties of PILs, i.e., the behaviour of
PILs as polyelectrolytes, have been scarcely investigated.

In solution, PILs can release their counterions into the
solvent and possess charges on their chain backbone, showing
similar properties to those of ordinary polyelectrolytes, such as
poly(sodium styrenesulfonate).>® In contrast to ordinary poly-
electrolytes, PILs can be dissolved in solvents with a wide range
of dielectric constants even if the charge density on PIL chains
is high.”> Good solubility of PILs can also be obtained in pure
ILs.>® The unique features of PILs in solutions have raised
many interesting questions in the polyelectrolyte research
community. For example, how do PILs behave in solvents with
low dielectric constants?>® According to the Manning model for
counterion condensation,'® the number of dissociated counter-
ions is predicted to decrease with decreasing solvent dielectric
constant. If so, PILs would behave as neutral polymers or as
ionomers in low-dielectric solvents. Investigating the charge
screening effects exerted by ionic liquid ions on polymerized
ionic liquid chains within pure ionic liquids offers an interest-
ing research avenue, especially considering the distinctive
solvent characteristics of ionic liquids.®”

Our primary aims are (1) to establish scaling laws that
elucidate the relationship between the properties of polyelectro-
Iytes and variables such as molar mass, salt concentration, and
charge fraction; (2) to test the theoretical models reviewed in
Section 2; and (3) to highlight experimental results which expand
or challenge the current framework of polyelectrolyte physics. We
provide a critical overview of several key questions in polyelec-
trolyte physics, with an emphasis on the experimental literature
where new conclusions can be drawn by compiling and/or
re-analysing existing data. We hope this perspective will com-
plement earlier reviews in the field which have focused on
the development of theory,”*>*%7%% simulations,”®*** and par-
ticular experimental methods, systems, or properties.®®®! This
article narrows its scope to exploring the intricacies of dilute
polyelectrolyte solutions.®” For experimental reviews dealing
with non-dilute solutions and gels, we direct readers to ref. 14,
68 and 83-85.

This journal is © The Royal Society of Chemistry 2024
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This review article is structured as follows: Section 2 intro-
duces several theoretical models proposed in the literature to
represent the conformation of dilute polyelectrolyte solutions;
Section 3 discusses the properties of polyelectrolytes in the
dilute regime, dividing our discussion into sixteen subsections
along with research questions related to the conformation and
dynamics of single chains in solution; Section 4 concludes our
review and highlights open questions.

2 Theoretical approaches to the
conformation and dynamics of
polyelectrolytes in solution

Dilute polymer solutions are defined as those in which the
chains do not overlap.'*®® Considering a chain made up of N
chemical monomers with an end-to-end distance R, the overlap
concentration (c¢*) in units of number of repeating units per
volume is:

¢ = (1)

In this article, we use the symbol ¢ to refer to the concen-
tration, measured as the number of monomers per unit
volume. When plotting data or quoting concentration values,
it is more convenient to use concentrations in moles of mono-
mers per volume. This is represented by ‘M’, which denotes
moles of monomers per dm®. Intrinsic viscosities are in units of
M~ as opposed to the more common units of dL g~'. We also
use N instead of molar masses. The following example illus-
trates the reason for these choices: suppose we compare the
properties of polystyrene sulfonate (PSS) with Na® and Cs"
counterions. Let us assume that the conformation of the chains
is not influenced by the choice of counterion. A plot of ¢* or [5]
vs. N will overlap for both PSS salts when expressed in units of
M and M, respectively, thus capturing the essential physics
that the chain conformation is unchanged. In contrast, a plot of
c* in g L' vs. M,, results in two separate curves for NaPSS and
CsPSS because the Cs' ion has a larger mass than the Na' ion. A
few exceptions, such as in Fig. 6, use the concentration in mass
per volume (c,) as part of a dimensionless product.

2.1 Conformation in dilute salt-free solutions

2.1.1 Scaling approach. The scaling approach to polymer
conformation and dynamics was primarily developed by de
Gennes et al. and Pfeuty and Dobrynin et al.’”°° Consider a
polyelectrolyte chain with a bare (non-electrostatic) Kuhn
length Ixo. Each Kuhn segment is made up of gx chemical
monomers with length b (Ix o = gxb). For chains with character-
istic lengthscales smaller than the Kuhn length, they are rigid,
and their end-to-end distance R scales as

R ~ bN fOr N S gK' (2)

For chains with end-to-end distances larger than a Kuhn
segment, they adopt random walk statistics up to the thermal
blob size . Each thermal blob contains gr monomers;
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therefore, the end-to-end distance of the chains (between the
Ix,0 and &7) is given by

N2
R~ (—) for
gK

If the end-to-end distance is larger than &, the polymer
conformation depends on the solvent quality exponent v:

N v
R~¢r <g_T) for gr <N < g, (4)

gk <N <gr. 3)

1 1
where v = 3 for poor solvents, v = 3 for theta solvents, and
V=73 for good solvents. Here, ¢r is given by eqn (3) with

N=gr.

The next relevant lengthscale is the size of the electrostatic
blob. This marks the distance at which the electrostatic energy
is of the order of the thermal energy kgT, where kg is the
Boltzmann constant and T is the absolute temperature. The
Coulomb energy of an electrostatic blob is

Uel = (gelf)ZeZ/(gosréel), (5)

where f is the fraction of monomers bearing a dissociated
charge, ie., the charge fraction, and g is the number of
chemical monomers inside an electrostatic blob. The end-to-
end distance of the electrostatic blob is

1/3
(lKﬁ()b)2/3 (%) for T <« 9,
B
L
fe] = (lKr()b)z/3 (lﬁfiz) forT = 0, (6)
1\
(I ob)®/ 727 (1372) for T > 0,
where /g is the Bjerrum length and 0 1is the theta

temperature. Eqn (6) was derived by using the equations of

la=¢r (?) and &1 = /I obgr (ref. 90) under the assump-
T

P

tion of U, = kgT for T > 0 and U, = y&, for T « 0, where y is the

2
. . . . wkgT .
polymer/solvent interfacial tension, given by y ~ ——=— with

B
&
0-T . .
= being the reduced temperature.

On distances larger than the electrostatic blob size, the
chain is stretched, and its conformation is a pole of
electrostatic blobs:

R~ felﬁ for N > g, (7)
8el

where ¢ is given by eqn (6). The schematic illustration of a
dilute polyelectrolyte chain is shown in Fig. 2. In the model
reported by Dobyrnin et al. in 1995,%° the shortest lengthscale
considered was the monomer size, which was equated to the
thermal blob size and the Kuhn length, corresponding to
&r = Ix,0 = b in the above equations. The updated scaling model
of Dobrynin and Jacobs®®°* worked out the solution properties
of polyelectrolytes for arbitrary values of &1 and &.
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Fig. 2 Dilute polyelectrolyte chain adopts an extended configuration of
electrostatic blobs of length & inside which the conformation is a self-
avoiding walk of thermal blobs with length &r. A random walk of Kuhn
segments with length [k o forms the thermal blob.

The conformation of polyelectrolytes is often quantified
through the ‘stretching parameter’ (B), which is the ratio of
the end-to-end distance of an electrostatic blob (&) to its fully
stretched contour length:

bR (Inf?) 2 for T < 0,

b
Bzfie]l: b2/3l£}0/3(13f2)*'/3
214

for T =0, (8)

b1y e (Inf?) Y7 for T > 0.

The stretching parameter B ~ 1 for semiflexible polyelectro-
Iytes represents a fully stretched state.**°>™** For flexible sys-
tems, values of B ~ 2-5 are common.”*™®’ The end-to-end
distance of a polyelectrolyte chain is R = bN/B.

If the thermal blob is larger than the electrostatic blob,
then eqn (3) is valid for gx < N < gei. Equivalently, setting v =1/
2 in eqn (4) gives the same result. If the electrostatic blob is
smaller than the Kuhn length, the equations above expect the
polyelectrolyte to be in a fully stretched configuration so that
R ~ DN. This ‘rod-like’ configuration assumes no transverse
fluctuations. In some cases, it was found that salt-free poly-
electrolytes adopted a directed random walk configuration.’®°°
In the next section, we will address the experimental evidence
concerning this issue.

Polyelectrolytes having more than one dissociated charge
per Kuhn segment (gx > f ') are sometimes referred to as
strongly charged polyelectrolytes. In this case, the above
equations predict &, < Ik, so that the electrostatic blob concept
should not apply. Note that if Manning condensation holds,
this is always the case if Ixo > Iz and 6 > 1/gx. Here, 6 denotes
the fraction of monomers that contain an ionic group.
Some experimental evidence'®® suggests that the Coulomb
energy inside an electrostatic blob may significantly exceed
kT, thus adding a pre-factor to eqn (5) and making the
size of electrostatic blobs larger than expected by eqn (6).
This would mean that the electrostatic blob concept
may apply even when there are more than one dissociated
charge per bare Kuhn segment, see further discussions in
Section 3.10.
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2.1.2 Variational approach. Following the work of
Muthukumar,'>'%'% the radius of gyration of a polyelectro-
lyte in low salt solution was given by

(g;g")le

1/3
Ry x 7} Ik 0Nk 0, )

ko

where Ny, is the number of Kuhn segments per chain. Eqn (9)
reproduces the scaling derived by Katchalsky et al.'®*

2.2 Conformation in dilute solutions with added salt

2.2.1 Scaling approach. Depending on the polyelec-
trolyte and added salt concentrations, different screening
regimes can apply.®® Here, we focus on the case when
2¢ + fc > (fN)?(4nl) > If this condition is met, the electro-
static screening length scales as:

(B 1/21 2]
Fser = E +F )

where ¢ and c; are the polymer and added salt concentrations in
units of number per unit volume, respectively.

The screening length r,., described by eqn (10) is propor-
tional to the Debye screening length:

i L\ 2 1+% 12
-~ \dnlgfe fc '

According to Manning’s theory, the number of monomers
dissociated between charges is f~' =~ Iy/b. Combining this
with the fact that B > 1, ry, in eqn (10) is always larger than
k1, see ref. 89 for a more detailed discussion of electrostatic
screening in polyelectrolyte solutions.

If the end-to-end distance R of a chain is smaller than the
screening length (7y,), the chain conformation is expected to be
the same as that in a salt-free solution. For R > ry, sections of
the chain with size rg,, containing ge.r = rsergel/€er chemical
monomers, repel each other with full excluded volume. The
end-to-end distance of a chain is R = 74 (N/gser)”® for N > ger.
Using the screening length from eqn (10), the dependence of
the end-to-end distance on added salt concentration is given by

(10)

(11)

—1/5
R(c,) = B3V =25 N33 {1 +%} : . (12)
Eqn (12) holds until the screening length decreases to the size
of an electrostatic blob .. At this point, the chain is not
stretched by electrostatics but its dimensions are larger than
the neutral ones because the electrostatic excluded volume
swells the chain on distances larger than r.s. = . The scaling
model of Dobrynin et al.* gave no prediction for ry. < . For
the overlap concentration, the scaling model predicted:

, 20\ % (B\}
(1+==2) = (Z) N2
(i) =)

2.2.2 The expanded worm-like chain model. A different
approach to model the properties of dilute polyelectrolytes in
salt solutions has been applied primarily by Norisuye and

(13)

This journal is © The Royal Society of Chemistry 2024
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co-workers, 10> 114

Polyelectrolytes were assumed to behave as
expanded worm-like chains (WLC), and their properties were
described using four parameters: the chain persistence length
(Ip), the excluded volume strength (B), the mass per unit length
(My, = My/b), and the cross-sectional chain diameter (dc).

First, the properties of a polyelectrolyte chain in the absence
of excluded volume (i.e. an ideal chain) were calculated using
the models developed by Yamakawa and co-workers for non-

ionic polymers."*>''® For the end-to-end distance:

Ry = 2L,L — 21,%(1 — e "), (14)

where the subscript 0 indicates that R corresponds to the ideal
chain conformation, and L = DN is the contour length of
the chain.

The influence of excluded volume was taken into account
using expansion factors (¢). The expansion factor ag® = R/R, is:

ag’ = [1 + (102 + 70m/9)2* + 8n*/*#/*°

~ <2
x (0.933 + 0.067¢~ 831392 (15)
where the functions K and Z are:
3 /L
F="K(= 16
24(04 (16)

and

—1)2 —1
o (L) TLI(E TESTY
2, 6 \2, I

01
by (L>I/2 661122109198 1003516 L
. P

= if —<12
by by
(17)
and the excluded volume parameter is:
INY2 B /L2
=(=) —(=—) . 1
i (275) 2Ly (2119) (18

If chain size measurements covering a sufficiently broad range
of N for a fixed salt concentration are available, it is possible to
use eqn (14)-(18) to extract ,, B and M;.'"’

The persistence length and excluded volume strength are
separated into intrinsic and electrostatic contributions:

L= lpo+ Le,
B =By + B,

where [, , and [, . are the intrinsic and electrostatic persistence
lengths, respectively, and By and B, are the intrinsic and
electrostatic excluded volume strengths, respectively.

The non-electrostatic excluded volume is calculated as the

sum of a hard-core repulsion term and an attractive
term:106,118,119

I T I
By = Edc + Ba, (21)
where d¢ is the chain’s cross-sectional diameter and B, is the

excluded volume strength arising from attractive contributions
between Kuhn segments, see ref. 120 and 121.
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Approaches to estimate the Ba term, which is usually only
relevant at very high ionic strengths, can be found in ref. 118.
The added salt concentration at which Ba = —(n/2)dc — Ber,
i.e., B =0 is referred to as the 0-salt condition because chains
are not perturbed by excluded volume. Note that even at the 0-
salt point, the electrostatic effect continues to influence the
polymer conformation in comparison to the non-ionic sce-
nario, primarily through the electrostatic contribution to the
persistence length.

Experimentally, the electrostatic terms were found to vary as
power-laws of the added salt concentration:

B = Ko ("),

i~

(22)

Lp.er = K™Y (23)

Many theoretical efforts have been devoted to predict prefactors
(K, Ky) and exponents (85, f1) in eqn (22) and (23). Odijk*** and
independently Skolnick and Fixman'*® predicted K; = 4/l and
p1=2,which is known as the OSF limit. While it is apparent that
the OSF prediction cannot describe experimental observations
over a broad range of c,,"***° no consensus has been reached
on whether it should hold over particular conditions. A differ-
ent prediction was made by Barratt and Joanny,"*” who calcu-
lated By = —1 if bf » (I, ols)">."*® Reviews on this topic can be
found in ref. 9, 58 and 129-131.

For the electrostatic excluded volume, Fixman and Skolnick
predicted:

119

B =21 'R(y), (24)

where y = 21k 'e*“/l and R(y) ~ y in the y — 0 (or k — 0) limit
and R(y) ~ n/4(0.27 + In(y)) in the y — oo (or k' — 0) limit.
Houwart and Odijk*** worked out a similar prediction but with
R(y) taking a constant value, which implies B oc k™!
ment also with the scaling model of Dobrynin et al.*®

Note that for weakly charged polyelectrolytes, where &g >
Ix,0, the scaling model outlined in Section 2.2.1 indicates that
the worm-like chain model should not apply because there exist
two contributions to the excluded volume (non-ionic and ionic)
and these perturb the chain conformation at distinct length-
scales: ¢p for the non-ionic excluded volume and rg., for the
ionic excluded volume. This differs from the expanded worm-
like chain (WLC), where chains are modelled as having a single
cross-over between Gaussian and expanded conformations.

2.2.3 Variational theory. In excess salt, high N limit, the
expansion factor for the radius of gyration of a polyelectrolyte
(0 = Ry/+/DNIx 9/6) calculated by the variational procedure
by Muthukumar matched the theory of Flory:'*?

L5 gn — 134037
S 7S T 105\2n

2
" [<1J{0) +4nlB(gKf) :|NK‘0]/2,

2 Kzl](‘()3

, in agree-

(25)

where y, is the non-ionic contribution to the solubility para-
meter () and the last term inside the square brackets accounts
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for the electrostatic excluded volume. In the og > 1 limit, the
expression for the radius of gyration becomes:

Rg oc ZB1/5‘f2/5C571/5N3/5- (26)

Note that in this theory, the unperturbed chain’s dimensions
Rgo =~ (Nkolo/6)"” are ¢ independent. This differs from
Norisuye et al.’s approach, who introduced an ionic strength
dependence of R, (or Ry) via eqn (19), for this reason, we use
ag for the R, expansion factor instead of «s.

The Bjerrum length is included in eqn (26) in two ways: first,
the explicit term I5"° accounts for the fact that as the dielectric
constant decreases, the strength of the electrostatic repulsion
between two like charges increases. According to Manning’s
theory, if the distance between ionic groups is smaller than /g,
then f ~ bl ', so eqn (26) indicates Ry to be a decreasing
function of Iz (as shown in Fig. 24). For weakly charged
polyelectrolytes, where f is independent of Iz, R, is expected
to increase with /g, provided there is no shift to the ionomer
regime.

2.3 Comparison of theories

2.3.1 Expanded worm-like chain model. The expanded
worm-like chain model can, under certain conditions, be
mapped onto the scaling model of Dobrynin et al. Specifically,
for systems where the electrostatic blob size is on the order of
Ix,0 or smaller, scaling predicts that with excess salt, the chain
conformation is rigid up to ry, and then follows excluded
volume statistics up to the chain size R. In this case, setting
My, = MyB/b, I, = rs/2 and B ~ ry,, the expanded worm-like
chain model reproduces the predictions of the scaling model
for the configurational properties of polyelectrolyte chains.

Note that the conformation of polyelectrolytes is sometimes
modeled as a directed random walk on lengthscales between &g
and the screening length. Under this assumption, the WLC
model would not be applicable. As we will see in our review of
the experimental literature, experimental evidence suggests
that at least in some cases, fluctuations transverse to the
stretching direction are not significant.

2.3.2 Variational theory. The result of the variational the-
ory for the size of polyelectrolyte chains in salt-free solution
(eqn (9)) matched the N, f and Iz exponents predicted by
Dobrynin et al. for the T = 0 case. In excess salt, the ¢; and N
exponents for the chain size predicted by the variational theory
agreed with the scaling calculation (eqn (12)). The f and I
exponents of the variational theory are ~ 50% larger than the
scaling exponents for 7'= 6. In terms of the expanded worm-like
chain model, the high ¢ exponents of variational theory were
reproduced using Iy oc ¢~ *, B oc ¢~ "> and eqn (25) with [, =
Ix0/2, B oc ¢ '. The full results from the variational theory for
semiflexible chains yielded more complex scaling than would
be expected from this simple mapping, see ref. 134 and 135.

2.4 Dynamic properties of polyelectrolyte solutions

2.4.1 Scaling approach. Throughout this section, we use
eqn (12) to calculate the size of polyelectrolyte chains in excess
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salt and eqn (7) and (8) in low-salt solutions. The scaling laws
presented here are therefore expected to be valid when rg., >
.1 Polyelectrolytes in dilute solution were expected to be non-
draining and described by the Zimm model,*® which gives the
longest relaxation time of:

3
ns (BN for ¢s < fe,
s R3 _ kBT B
TZ?kBT ) s nors b\ f ” forc, > fc
kgT B 2¢s s '
(27)

where 7 is the viscosity of the solvent. The diffusion coefficient
was estimated as D ~ R*/t,:

kgT B for ¢, < fe,
) kT B ne Nb
TR ) kT B\ /2¢\ /3 (28)
BL -3/ (_) (ﬁ) for ¢s > fe.
g b /

In the low-salt limit (fc/2cs « 1), the diffusion coefficient
scales as D oc N"* and for ¢; » fc/2, D oc N >°¢*". In salt-free
solution, D may also be estimated by modelling as cylinders

with length R having cross-sectional radius dg:'?¢"*®

2
KT 1n(5) +0.312+0.565%C—0.100(dc> } (29)

D ~ =
WSR dC R

Note that the last three terms of eqn (29), which are
important for short chains, are not included in many models.
Eqn (29) is known to give a quantitative description of the
diffusion coefficient of short, rigid DNA segments in excess
added salt"’ and is also supported by simulation results for the
diffusion coefficient of cylinders of varying aspect ratio.

The intrinsic viscosity [] of a polyelectrolyte can be given by
R3
the Flory equation: [] = ¢ﬁ, where @ is the Flory constant,

discussed in detail in Section 3.12.'%°

For sufficiently dilute
solutions, the reduced viscosity (fq) follows the Huggins

equation:

Nred = Wsp/c = ['7] + kH[W]ZCv [30)

where 1s, = (7 — 15)/51s is the specific viscosity and ky is the
Huggins constant, which is discussed in detail in Section S5
(ESIT). For other equations proposed to describe the dilute
solution behaviour of polyelectrolytes in excess salt, see ref. 141
and references therein. In salt-free solutions, eqn (30) holds
only at extreme dilution, as discussed in the next section. The
scaling prediction for the intrinsic viscosity in the high-salt

limit shows:
6/5 3/5
= (9) W (L)
B 2¢q

Extensions of the above models to account for the influence
of dipolar interactions or charge induced correlations, which
become more significant as the dielectric constant of the

(31)
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solvent is decreased, can be found in ref. 142-147 and are not
discussed here due to the lack of experimental data to test these
theories.

2.4.2 Worm-like chain (WLC) model. The WLC model can
also be used to calculate the dynamic properties of polyelectrolyte
solutions using the same procedure outlined in the previous
section for the end-to-end distance. Equations for the diffusion
coefficient (D,) and intrinsic viscosity ([i7],) of ideal worm-like
chains are given in ref. 148 and 149. Note that two of the
coefficients listed in ref. 148 contain an error, as noted in ref. 150.
The corresponding expansion factors (u, = D/Do, %, = ([/[nlo)"”,
where the subscript 0 refers to the quantity in the absence of
excluded volume effects) can be found, for example, in ref. 105
and 115. The equations for z, Z and K apply equally regardless of the
property being calculated.

2.5 Counterion condensation

Throughout Section 2, we have seen that the charge fraction fis a
key factor governing the conformation and dynamics of polyelec-
trolytes in solution. Polyelectrolytes can be regarded as salt mole-
cules covalently bound to each other. Therefore, one may assume
that all ion pairs of a polyelectrolyte chain dissociate completely into
cations and anions. However, many experimental parameters,""
such as electrophoretic mobility,">> osmotic pressure,”*'** and
shear viscosity’”” measurements, suggest that this scenario is valid
only when the charge density ¢ is lower than a certain critical value
which depends on the systems investigated. Instead, it is well-
recognized that some of the charges on the polyelectrolyte chain
are neutralised by their counterions, so that the charge fraction
becomes smaller than the charge density (i.e., f < ). This phenom-
enon is called the counterion condensation, paramount for discuss-
ing almost every aspect of polyelectrolytes in solution.

The idea of the condensation of counterions was first
introduced by Oosawa'* to explain the osmotic and activity
coefficient data of polyelectrolyte solutions. Subsequently, the
well-known classical counterion condensation model was
proposed by Onsager and formulated by Manning.”® In the
Manning model (see eqn (4) and (5) in ref. 13), we consider a
single and infinitely long line charge bearing a point charge of
+Zpe with a uniform distance b. between two neighboring
charges, and place a free counterion of —Z.e at a certain distance
from the line charge. Here, Z, and Z. denote the valence of the
point charge and the free counterion, respectively. With this
charge configuration, the model calculates the Helmholtz free
energy in order to discuss whether or not the counterion keeps
dissociated from or is bound onto the line charge. Manning
found that the system considered became unstable when the
product of Z.Z,uy, is greater than unity, leading to the conclusion
that a sufficient number of counterions will condense onto the
line charge, effectively reducing the product of Z.Z,uy to a value
less than one, thereby stabilizing the system. Here, uy; (= lg/b.) is
the so-called Manning parameter. Consequently, the Manning
model predicted that counterion condensation occurs when
ZZpuy > 1. For instance, for polyelectrolytes composed of
monovalent monomers (Z, = 1) and counterions (Z. = 1), con-
densation is predicted to occur when the charge distance b.
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becomes smaller than the Bjerrum length g, i.e., 4y = 1. Once the
counterion condensation comes into play, the Manning model
predicted the charge fraction fto be:

(32)

The Manning model predicted that the charge fraction was solely
dependent on three material parameters; the charge density, the
solvent dielectric constant, and solution temperature.

Manning’s two-state model has been elaborated over the
past half century by accounting for conditions ignored in the
original model,'#3144146:147,1557166  por example, Nyquist
et al.'® incorporated the chain connectivity effects on the
electrostatic interaction into the two-state model, showing that
the transition from the complete dissociation to the condensa-
tion regimes was broad instead of a sharp transition at uy; = 1
predicted by the Manning model. The charge fraction was also
found to decrease with increasing polymer concentration due
to the chain contraction. Deserno et al.'®* studied the effect of
the salt concentration on the counterion condensation and
found that the charge fraction was not largely affected by the
addition of salts, and therefore, the salt effect on the counter-
ion condensation was negligible at low c;. By considering the
dielectric mismatch between the bulk solution and the local
region around polyelectrolyte chains, Muthukumar'** found
stronger condensation at low & but weaker condensation at
high &, than predicted by the Manning model. As a result, the
Muthukumar model predicted that the dependence of f on &,
was stronger than that of the Manning model. The solvent
quality also made the condensation process more complex, in
particular in the case of poor solvents. We refer the readers to
ref. 146, 147 and 166 for more details. Reviews on this topic
have also been provided by Dobrynin and Rubinstein.”"°

3 Review of experimental data

This section is structured as follows: Section 3.1 discusses the
solubility of polyelectrolytes in various types of solvent media
and the phase behaviour of these polyelectrolyte solutions.
Sections 3.3-3.8 focus primarily on the behaviour of polyelec-
trolytes in salt-free solutions. Sections 3.9-3.12 examine
the behaviour of polyelectrolytes in excess added salt.
Special attention is paid to polystyrene sulfonate, the most
widely studied polyelectrolyte system. Section 3.13 discusses
the static and dynamic scattering of polyelectrolyte solutions.
Section 3.14 discusses the transition between salt-free solu-
tions, where polyelectrolytes are highly stretched, and excess
salt solutions, where they behave as neutral polymers in good
solvents. We conclude by discussing the ion-specific effects and
underscreening in Sections 3.15 and 3.16. Sections, 3.1, 3.2 and
3.12-3.16 can be read independently from one another.
For coherence, it is recommended that Sections 3.3-3.8 and
3.9-3.11 be read sequentially.
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3.1 Phase behaviour

3.1.1 Salt-free solutions. The large entropic gain arising
from counterions being released into solution (~ kg7 per counter-
ion) is usually assumed to be the leading factor promoting
polyelectrolyte solubility in salt-free media. The counterion
entropy does not depend on Nj; hence, the solubility of polyelec-
trolytes in salt-free solution is predicted to be almost indepen-
dent of their molar mass,"® in contrast to neutral polymers.*®
Here, we recall Manning’s prediction that the larger the solvent
dielectric constant, the larger the charge fraction."® Since the
number of dissociated counterions determines the entropic gain
upon polyelectrolyte dissolution, high solvent permittivities
should promote polyelectrolyte solubility. In fact, many polyelec-
trolytes can dissolve in high dielectric solvents, such as water at
& ~ 80. Dissolution of polyelectrolytes in low dielectric solvents
can be impeded by the attractive dipole-dipole interactions
between condensed counterions."**'*®'* This can be overcome
by reducing the charge density of a polyelectrolyte chain, e.g., by
replacing some of the charged monomers with non-ionic
monomers'”®™”* or by using hydrophobic counterions.'”

In contrast, poly(ionic liquid)s exhibited excellent solubility
in low dielectric solvents even if the charge density is high. Jousset
et al'’* investigated the solubility of poly([(2-methacryloyloxy)-
ethyl]trimethylammonium 1,1,2,3,3-pentacyanopropenide) (P(M-
PCP)). The P(M-PCP) did not dissolve in water but exhibited an
excellent solubility in various organic solvents with a broad range
of dielectric constants ¢, including N-methylformamide (NMF;
& = 182), propylene carbonate (PC; &, = 65), dimethylformamide
(DMF; ¢, = 37), acetone (AC; ¢, = 21), cyclohexanone (CH; ¢, = 16),
and triethyl phosphate (TEP; ¢, = 11).

Marcilla et al> investigated the effect of the chemical
structure of PILs on their solubility in five organic solvents,
including an ionic liquid, 1-vinyl-3-ethylimidazolium bis(trifluoro-
methanesulfonyl)imide (ViEtIm-TFSI). As can be seen in Table 1,
the difference in the alkyl chain length and the structure of
counteranions influenced the solubility of PILs, implying the
presence of ion-specific effects on the conformation and dynamics
of PILs in solution. For example, acetone did not dissolve PC,-BF,
with ethyl groups but dissolved PC,-BF, with butyl groups. Even for
PILs with the same cation, methanol dissolved PC,-TfO but not
PC,-BF,. Furthermore, they showed that PILs were soluble in pure
ionic liquids without non-ionic solvents.

The results in Table 1 show that the dielectric constant of
the solvent cannot be used to predict the solubility of poly(ionic
liquid)s. This agrees with the findings of Horne et al.,"”> who
showed that the capacity of solvents to swell a cross-linked
network of poly(1-(4-ethenylphenyl)methyl]-3-methylimidazolium
bistriflimide) did not correlate with their dielectric constant.
Instead, Horne et al. demonstrated that solvent’s dipole
moment (u) showed a strong correlation with a swelling degree
of polyelectrolyte gels. The data in Table 1 make it clear that the
dipole moment of the solvent does not predict solubility for the
systems considered. Several systems are soluble in solvents with
high p and insoluble in solvents with low u while others show
the opposite trend.
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Table 1 The solubility of poly(1-ethyl-3-methylimidazolium)-based, PC,-X,
and poly(1-butyl-3-methylimidazolium)-based, PCy4-X, poly(ionic liquid)s
with various counteranions X~ (= BF4 : tetrafluoroborate; PFg™: hexafluoro-
phosphate; TfO™: trifluoromethanesulfonate; TFSI™: bis(trifluoromethane-
sulfonyl)imide; PFSI™: bis(pentafluoroethanesulfonyllimide) against five
organic solvents including an ionic liquid, 1-ethyl-3-vinylimidazolium
bis(trifluoromethanesulfonylimide (ViEtim-TFSI). The data are taken from
Table 1 of ref. 55. The dielectric constant (g,) and dipole moment (u) of the
solvents are listed in brackets. All the PILs are insoluble in water (¢, = 80,
w=19D)

Ethyl

Methanol Acetone acetate

(=32, (=22, Tetrahydrofuran (¢, =6,  ViEtIm-
u=26D) u=2.7D) (¢=8,u=17D) u=1.9 D) TFSI
PC," BF,~ - - - - -
PFe~ - + - - -
TfO™ + + - - +
TFSI™ — + + — +
PFSI™ + + + + +
PC," BF,” — + - _
PF,~ - + + +
TfO™ + + + +
TFSI™ — + + +
PFST™ — — + +

(+): soluble; (—): insoluble.

Given the limited experimental data available for ionic
polymers in salt-free media,>*"”*"7*'"7 it is unlikely that solid
conclusions can be drawn with regards to which parameters
determine the polyelectrolyte solubility. The use of solubility
parameters'’*#° might help establish a framework to understand
monomer and counterion solvation, but these approaches require
extensive solubility datasets. Insightful work on the solubility/
swelling of charged polymers can be found in the literature on
ionomers and polyelectrolyte gels."”**®"**! Table 1 shows that the
solubility of polyelectrolytes in ionic liquids depends on the
chemical nature of the ionic groups. Since ionic liquids can act
as salt ions to regulate the electrostatic interaction, understanding
the influence of charge screening on the solubility of these systems
can be an interesting r