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ssessment of carbon-,
biomaterial- and inorganic-based adsorbents for
the removal of the most hazardous heavy metal
ions from wastewater

Nashra Sheraz,a Afzal Shah, *a Abdul Haleem b and Faiza Jan Iftikharc

Owing to the high cost of recycling waste, underdeveloped countries discharge industrial, agricultural, and

anthropogenic effluents without pretreatment. As a result, pollutant-loaded waste enters water bodies.

Among the diverse toxic contaminants, heavy metal ions are the most detrimental because of their

chronic toxicity, non-degradability, prevalence, and bioaccumulation. The growing shortage of water

resources demands the removal of heavy metal ions from wastewater. Three SDGs of the sustainability

agenda of the United Nations appeal for clean water to protect life beneath water and on land

depending on the water sources. Therefore, efficient environmentally friendly approaches for wastewater

treatment are urgently required. In this regard, several methods have been developed for the removal of

heavy metal ions from wastewater, including adsorption as the most widely used method owing to its

eco-friendly, cost-effective, and sustainable nature. The present review discusses the progress in the

preparation and application of various adsorbents based on carbon, micro-organisms, agricultural waste

and inorganic materials for the extraction of toxic metal ions such as Pb2+, Cr6+, As3+, As5+, Hg2+ and

Cd2+. Herein, we provide information on the role of the homogeneity and heterogeneity of adsorbents,

kinetics of the adsorption of an adsorbate on the surface of an adsorbent, insights into adsorption

reaction pathways, the mechanism of the sorption process, and the uptake of solutes from solution. The

present review will be useful for researchers working on environmental protection and clean environment.
1. Introduction

The pervasive presence of toxic heavy metals in different
ecosystems poses environmental challenges, which needs to be
promptly addressed to safeguard both human health and
ecological balance. It is a public obligation to develop methods
for treating wastewater to protect water dwelling species and
human life. Heavy metal ion water contamination is one of the
most serious environmental issues. It is the result of inappro-
priate, unregulated industrial wastewater and agricultural and
irrigation drainage schemes that dump sewage directly into
water bodies. This irresponsible approach of waste disposal has
led to the concentrations of water pollutants exceeding the
recommended safety limit. For example, the steel sector
releases lead ions. Lead is also released into the environment
from acid batteries, the combustion of leaded gasoline, the
illegal use of tetraethyl lead as an anti-knock agent in gasoline,
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volcanic eruptions and natural weathering of rocks.1 Cadmium
enters the environment through mining activities, coal
combustion and excessive use of chemical fertilizers.2 The
eruption of volcanoes and weathering of rocks are natural
sources introducing heavy metals into the environment.
Anthropogenic sources include industrial waste, combustion,
mining, casting, and the use of pesticides and fertilizers. Water
contamination has serious consequences on marine life, public
health, and food quality. Accordingly, if proper pretreatment
approaches are not adopted, then the scarcity of clean water and
toxicity of seafood will become a global challenge in the near
future.

The advent of industrialization and urbanization is signi-
cantly benecial to the society, but together with its numerous
advantages, it also poses serious problems.3,4 Toxic metal ions
not only contaminate the water present in seas, lakes, ponds
and reservoirs but also reach the underground water. Heavy
metals can be absorbed by living organisms due to their high
solubility in the aquatic environment. Consequently, heavy
metals enter the food chain, posing a serious threat to the
ecological balance. Even minor exposure to heavy metals can
lead to dermatological problems and respiratory diseases.
Furthermore, when the uptake of these metals exceeds the
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d4ra00976b&domain=pdf&date_stamp=2024-04-08
http://orcid.org/0000-0002-9465-9185
http://orcid.org/0000-0003-4034-6498
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra00976b
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA014016


Review RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
A

pr
il 

20
24

. D
ow

nl
oa

de
d 

on
 8

/1
7/

20
24

 9
:5

3:
23

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
permissible limits, they cause serious health disorders.5–7

Hence it is crucial to monitor and regulate heavymetal exposure
to safeguard human well-being. TheWorld Health Organization
(WHO) and US Environmental Protection Agency (US EPA) have
set permissible limits for heavy metals in drinking water. These
guidelines are crucial for ensuring the safety of communities by
minimizing exposure to harmful substances. Numerous
elements fall into the category of heavy metals but in this
review, we focus on the top ve toxic metals including mercury,
cadmium, lead, arsenic and chromium and understanding
their impact, which is crucial for effective management and
mitigation strategies.

Cadmium is present in the Earth's crust, but anthropogenic
activities such as electroplating, mining, stabilizing plastics,
alloy, cement, pigment, and battery manufacturing, fossil fuel
combustion, use of high-phosphate fertilizers, and municipal
and sewage sludge incineration yield a huge amount of
cadmium. Specically, 150–2600 tons of cadmium is released
into the environment annually.8 Similarly, due to the volatile
nature of mercury, it is mostly used in batteries, thermometers,
barometers, and dental amalgams. Mercury can exist in three
forms, i.e., elemental form (Hg), organic form (CH3Hg), and
inorganic form (Hg2+). It was reported by the United Nations
Environment Program (UNEP) that in 2015, around 2200 tons of
mercury was emitted from anthropogenic sources, which
included the iron and steel industry, gold industry, and direct
mercury production industries. Forest res and volcanos are
natural sources of mercury.9,10 Arsenic is a naturally occurring
metalloid having a germicidal nature and resistance to decay.
Due to this property, it is used as an insecticide, herbicide, and
also the preservation of wood.11 Similar to mercury, chromium
also exists in three thermodynamic stable forms Cr(0), Cr(III),
and Cr(VI). The metallic form of chromium is chiey used in
iron-based alloys. The chemical industry, production of dyes,
wood preservation, leather tanning, chrome plating, and
manufacturing of various alloys utilize chromium, and then
discharge it without processing, leading to environmental
pollution.12 Lead is widely applied in various industries such as
production of acid batteries, production of lead additives for
gasoline, ceramic and glass manufacturing, metal planting and
nishing, printing, and tanning.13,14 This is the rst report
presenting the sources of metal-based water contaminants,
their toxicity mechanisms and methods for their efficient
removal by recoverable adsorbents to avoid any chances
secondary pollution. The current review presents remediation
technology based on environmental-friendly protocols and is
expected to advance renewable and sustainable water treatment
strategies. This review is expected to play a critical role in the
implementation of solutions for controlling pollution levels,
which is necessary to protect human health and ensure the
quality standards of aquatic environment.

2. Harmful effects of heavy metal ions

Various routes facilitate the entry of heavy metals into the
human body including dermal exposure, inhalation and
ingestion via contaminated food or drinking water. Overall, the
© 2024 The Author(s). Published by the Royal Society of Chemistry
effects of heavy metal ions on different parts of human body are
shown in Fig. 1.15 Once inside the body, these metals can react
with chlorine or oxygen and exert toxic effects. Prolonged
exposure to heavy metals may result in their substitution for
vital elements within the body such as calcium substituting
lead, zinc replacing cadmium and the majority of trace
elements substituting aluminum. The accumulation of heavy
metals causes an imbalance in antioxidants. Enzymatic func-
tion and hormonal activity are also inuenced by exposure to
heavy metals. Studies have reported that oxidative stress is
produced due to the generation of reactive oxygen species
irrespective of which molecular pathway is undertaken. Oxida-
tive stress leads to kidney damage, cancer, neurological disor-
ders and abnormalities related to the endocrine system.16

Besides the various benets of heavy metals in plants and
humans, these heavy metals are also responsible for the mal-
functioning of cells by displacing the original metals from their
natural binding sites in proteins, which ultimately leads to
toxicity. The binding of heavy metals to the nuclear protein and
DNA is the prime reason for the oxidative deterioration of bio-
logical macromolecules.17

Cadmium (30 mg kg−1) has been reported to cause acute
toxicity, which primarily includes abdominal discomfort,
headaches, muscle cramps, fatigue, and even death. However,
its dangerous effect on various organs in the body such as the
lungs, liver, placenta, and endocrine tissues, kidney damage,
skeletal and cardiovascular dysfunctions, and reproductive
problems at higher concentration has also been reported.
Cadmium replaces calcium inminerals due to their comparable
ionic radius and chemical behavior, consequently reducing the
uptake of Ca and affecting the bones.8 Cd also affects the bio-
logical activity of terrestrial and aquatic organisms. In plants,
cadmium causes chlorosis and stunted growth. Moreover, it not
only decreases the chlorophyll content and photosynthetic
activity but also inhibits carbon xation in plants. Osmotic
stress in plants is also induced due to exposure to Cd in soil.
This results in a decrease in the relative water content in leaves,
stomatal conductance, and transpiration. Damage to plant
membranes and destruction of cell biomolecules and organ-
elles are consequences of the overproduction of reactive oxygen
species (ROS) induced by the presence of cadmium.18 The
oxidative stress may be attributed to an imbalance in the
production of ROS and the ability of plants to detoxify them.

Mercury can exist in three forms, i.e., elemental form (Hg),
organic form (CH3Hg), and inorganic form (Hg2+). Elemental
mercury in vapor form can easily be absorbed by the lungs and
causes damage to the body. Among the three different forms of
mercury, the organic form (CH3Hg) causes neurological alter-
ations in humans due to the increase in reactive oxygen species.
Reactive oxygen species are also responsible for injuries in the
central nervous system (CNS). The organization of microtu-
bules, which is important in CNS development, is also inhibited
by methylmercury. Inorganic mercury mainly causes car-
diotoxicity.9,10 Heavy metals also affect the biological activity of
terrestrial and aquatic organisms. For instance, Cd and Hg
cause chlorosis and shunted growth in plants. The xation of
carbon is also inhibited due to presence of Cd, together with
RSC Adv., 2024, 14, 11284–11310 | 11285

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra00976b


Fig. 1 Harmful effects of heavy metal ions on human beings.15
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a decrease in chlorophyll content and photosynthetic activity.
Osmotic stress in plants is also induced due to exposure to Cd in
soil. Damage to plant membranes, destruction of cell biomol-
ecules and organelles is also reported due to the excessive
generation of reactive oxygen species. Boston fern (Nephrolepis
exaltata) and Indian mustard (Brassica juncea) aer exposure to
Hg show loss of cell shape, decrease in intercellular spaces, and
vascular abnormality in their leaves. The amount of chlorophyll
is also reduced because the biosynthesis of chlorophyll depends
on the activity of NADPH, where protochlorophyllide oxidore-
ductase (POR) is inhibited by Hg stress.19,20

Arsenic has the ability to attach to small particles in the air
and remain suspended in the air for prolonged periods. It can
change its forms and interaction with oxygen or other mole-
cules present in the air, water, or soil, as well as with soil
bacteria. The toxicity of arsenic depends on its oxidation state.
The toxicity of arsenic has been reported to follow the order of
AsH3 > As(III) > As(V) > organic As.11 Arsenic is classied as a class
1 human carcinogen by The International Agency for Research
on Cancer. Drinking water containing arsenic causes skin
cancer and lung, bladder, liver, and kidney damage. Non-
insulin-dependent diabetes mellitus is also caused by
increased exposure to arsenic.21 Peripheral neuropathy is the
consequence of long-term exposure to inorganic arsenic.
Changes in behaviors, confusion, disorientation, memory loss
and cognitive impairment are other effects associated with
arsenic.22

Chromium(VI) is carcinogenic and the most mobile form of
chromium in the environment. The chemical form of this
metal, its oxidation state, and the route of exposure determine
11286 | RSC Adv., 2024, 14, 11284–11310
the type of toxicity in humans. Cr6+ reacts spontaneously with
intracellular reductants aer entering the cell and generates
Cr5+ or Cr4+, free radicals, and Cr3+ eventually. The limited
membrane permeability of Cr3+ causes it to be retained inside
the cell and interact with DNA. Reactive oxygen species are
generated aer the one-electron redox reaction of Cr5+, which
react with DNA–protein multiplexes, triggering multiple
possible apoptotic signaling pathways in various cell types.
Also, Cr causes irritation and inammation of the skin.23

Lead poisoning has common impacts, which include severe
damage to the kidneys, liver, brain, reproductive system, and
nervous system. Sterility, abortion, and neonatal death are
caused by long-term exposure to lead. An elevated blood-lead
level is the root cause of the rise in mortality and alteration of
puberty in girls. In children, it is reported that exposure to lead
causes impaired development, lower intelligent quotient,
shortened attention span, hyperactivity and mental systolic
blood pressure together with causing hearing impairment,
intelligential impediments, and deterioration.14,24

When heavy metals enter the body through ingestion, upon
reaching the stomach, they undergo conversion into their stable
oxidation states (Zn2+, Pb2+, Cd2+, As2+, As3+, and Hg2+) due to
the presence of acid in the stomach. These stable oxidation
states react with the biomolecules in the body and form stable
bonds. One of the most common bonding groups is the thiol
group. This interaction plays a crucial role in the bioavailability
and toxicity of heavy metals within the body.

Heavy metals have been reported to replace hydrogen or the
methyl group in enzymes or proteins and inhibit their normal
functioning.21 Heavy metal-bound enzymes are not utilized by
© 2024 The Author(s). Published by the Royal Society of Chemistry
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the body. Consequently, these enzymes are inactivated and
their persistence in the body causes various abnormalities and
internal damage.25,26 The aggregation of proteins is also caused
by heavy metals.25,26 Hence, to protect living organisms, it is
imperative to nd effective approaches for wastewater puri-
cation from lethal heavy metal ions. Herein, we present
numerous adsorbents for addressing the challenges related to
the removal of heavy metal ions, which are potential hazards for
creatures living on land and in water bodies.

3. Techniques for the removal of
heavy metals

To mitigate the effects of heavy metals, various methods have
been employed for their removal. The methods used for the
removal of contaminants include biological treatment, coagu-
lation membrane, ltration, electrochemical treatment, elec-
trodialysis, ion-exchange, photocatalysis, oxidation and
adsorption, as shown in Fig. 2.27–29 Over the past few decades,
intensive efforts have been devoted to the development of
cheaper and more effective technologies and sorbent materials
to improve the quality of treated effluents.6 Each method has its
own advantages and disadvantages. Conventional methods
have major disadvantages such as incomplete removal, high-
energy requirements, and production of toxic sludge. Thus,
the selecting of a suitable technique depends on the charac-
teristics of the effluents, targeted specic heavy metal, scale of
treatment, standards promulgated by government agencies and
cost effectiveness. Fig. 2 presents the various treatment tech-
niques for water purication.30

This work reviews the adsorption method for the removal of
heavy metals ions from wastewater. This water treatment
Fig. 2 Treatment techniques for the removal of heavy metals from wate

© 2024 The Author(s). Published by the Royal Society of Chemistry
approach has garnered signicant attention in recent years.
Adsorption treatment of heavy metals is preferred due to its
signicant metal removal efficiency, easy operation, low sludge
production, and utilization of low-cost adsorbents.31,32 However,
the adsorbents eventually become saturated with metal ions,
and hence developing efficient regeneration methods is crucial.
This is a comprehensive review on the removal of ve hazardous
heavy metals (Pb2+, Cr6+, As3+, As5+, Hg2+ and Cd2+) via synthetic
and natural adsorbents.
4. Adsorption process

Adsorption is a surface phenomenon in which pollutants are
adsorbed on the surface of a solid substance. The substance
that becomes adsorbed on the solid surface is termed the
adsorbate, while the solid surface itself is referred to as the
adsorbent. Adsorption can be monolayer or multilayer
depending on the applicable model (Langmuir or Freundlich).
The Langmuir isotherm describes a monolayer adsorption
process, in which the adsorbate is directly attached to the
surface of the adsorbent. Alternatively, the Freundlich isotherm
is a widely used model to describe the multilayer adsorption on
heterogeneous surfaces. Typically, physical forces drive
adsorption although weak chemical bonds may also play a role.
Three major steps are involved in adsorption including diffu-
sion of the adsorbate from solution towards the surface of the
adsorbent, adsorption on the solid surface and diffusion inside
the adsorbent particles.

Adsorption is broadly classied into two types, i.e., physico-
sorption and chemisorption, as shown in Fig. 3.33 In the case of
physico-sorption, the adsorbate adsorbs on the surface of the
adsorbent through weak van der Waals forces. This type of
r.

RSC Adv., 2024, 14, 11284–11310 | 11287
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Fig. 3 (A) General mechanism of adsorption, (B) monolayer adsorption, (C) multilayer adsorption, (D) physical adsorption, and (E) chemical
adsorption.
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adsorption is reversible but not specic. Alternatively, in
chemisorption, chemical bonds (ionic or covalent bond) are
formed between the adsorbate and adsorbent, which make
them irreversible due to chemical reaction. In the adsorption
process, different adsorbing materials are used such as
synthetic and natural materials. The term bio-sorption is used
for the type of adsorption in which the adsorbate adsorbs on
natural materials (biological systems).34 Herein, we focus on
carbon-based materials, biomaterials and inorganic materials
for the removal of the ve most hazardous heavy metals for
wastewater treatment.
4.1. Factors affecting the adsorption process

The adsorption process is inuenced by several key parameters
including temperature, nature of the adsorbate and adsorbent,
pH, concentration of pollutants, contact time, synthesis route,
and particle size.

4.1.1. Inuence of pH. The adsorption capacity of heavy
metals is affected by a change in pH. The pH value at which the
charge on the adsorbent surface is zero is termed pHPZC (point
of zero charge). When the pH is lower than pHPZC, the adsor-
bent surface becomes positively charged. As a result, it attracts
anionic species from the solution. Alternatively, when the pH is
11288 | RSC Adv., 2024, 14, 11284–11310
greater than pHPZC, the adsorbent surface becomes negatively
charged. This charge facilitates electrostatic interactions,
particularly with cationic species such as heavy metals. Conse-
quently, the adsorption capacity of metals is enhanced at higher
pH compared to lower pH.35 Understanding this pH-dependent
behavior is crucial for optimizing the adsorption process in
water treatment and environmental remediation.

4.1.2. Inuence of contact time. The removal of heavy
metals is also affected by the contact time. Initially, the removal
efficiency increases with an increase in contact time, but aer
reaching the maximum value, a further increase in contact time
does not yield signicant improvements. This phenomenon
occurs because initially, the concentration gradient is high and
the adsorption sites are vacant.36 However, as saturation occurs,
additional contact time does not lead to a substantial
enhancement in adsorption. During the adsorption of Pd(II) on
a cryogel, it was observed that in the rst 2 h, the adsorption
capacity reached 140 mg g−1, while 360 min was the longest
time to reach the point of equilibrium. The results of this test
prove that during the initial stages, the adsorption capacity
increases with an increase in contact time because of the greater
availability of binding sites, and nally reaches equilibrium
when the active sites are fully occupied.37
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra00976b


Review RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
A

pr
il 

20
24

. D
ow

nl
oa

de
d 

on
 8

/1
7/

20
24

 9
:5

3:
23

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
4.1.3. Inuence of porosity of adsorbent. Various porous
materials have been employed for the adsorption of pollutants
from water bodies. Porosity is an important factor to be
considered during the development of any adsorbent because
large pores can facilitate the diffusion of pollutants, which is
benecial to reach the targeted functional groups.38

4.1.4. Inuence of adsorbent dose. To obtain economical
optimization in an adsorption system, the adsorbent dose plays
a crucial role. Generally, the removal efficiency increases with
higher adsorbent doses due to the enhanced availability of
adsorption sites.39 However, at the same time, a decrease in
metal adsorption capacity has also been reported at a very high
adsorbent dose. For instance, the copper adsorption capacity
decreased when the concentration of the adsorbent increased
up to 40.5 mg g−1. This is due to the partial aggregation of the
adsorbent particles.40

4.1.5. Inuence of temperature. Temperature signicantly
inuences adsorption and its effects vary based on whether the
process is exothermic or endothermic. When the process is
exothermic, an increase in temperature retards the adsorption
capacity. Specically, higher temperatures hinder the adsorp-
tion of substances. Conversely, in an endothermic process, an
increase in temperature increases the adsorption capacity. At
elevated temperatures, heavy metal ions exhibit mobility, and
more active sites are available for adsorption.41

4.1.6. Inuence of initial concentration of adsorbate. The
initial concentration of heavy metals signicantly inuences the
extent of adsorption and is considered a key parameter for
evaluating the efficiency of an adsorbent. Generally, with an
increase in the initial concentration of heavy metal ions, the
removal percentage decreases. However, an increase in the
initial concentration of heavy metal ions corresponds to an
increased adsorbent capacity. This inverse relationship between
removal percentage and initial concentration stems from the
saturation of the adsorption sites on the adsorbent surface. The
direct relation between the adsorbent capacity and initial
concentration of heavy metal ions originates from the strong
driving force for mass transfer.42

4.1.7. Inuence of particle size. Particle size has a prom-
inent effect on the adsorption performance. Particles with
a smaller size have greater adsorption efficiency in comparison
to larger particles. This foundation is based on surface area.
Smaller particles have a greater surface area in comparison to
larger particles. Therefore, smaller particles are always consid-
ered more suitable for adsorption in comparison to larger
particles.43

4.1.8. Inuence of synthesis route. The synthesis route is
a prominent factor that affects the adsorption performance.
This factor can be explained as follows: in the case of conven-
tional polymers synthesis, higher or room temperature is used
but the fabricated polymers have a condensed and packed
structure, in which the diffusion of pollutants is very difficult to
reach the targeted functional groups. Alternatively, cryogels
(porous polymers) prepared at a negative temperature
(temperature below the freezing point of the solvent) have the
ability to facilitate the easy transport of pollutants to the
© 2024 The Author(s). Published by the Royal Society of Chemistry
targeted point. This observation conrms that the synthesis
route has a prominent effect on the adsorption process.44
4.2 Equations related to isotherms, kinetics and
thermodynamic study of adsorption

Isotherm studies explore the homogeneity and heterogeneity of
adsorbents. An adsorption isotherm represents the relationship
between the amount of pollutant adsorbed and its concentra-
tion in water at equilibrium.45 Specically, the Langmuir
adsorption isotherm assumes that the active sites are homo-
genously distributed. When a site is occupied, further adsorp-
tion ceases. This model is particularly applicable to
monomolecular layers.46 The separation factor RL is used to
access the favorability of adsorption based on the initial
concentration of the adsorbate, which can be dened as follows:

RL ¼ 1

ð1þ bCoÞ
where RL is a dimensionless constant. If RL is between 0 and 1, it
means that the process is favorable, whereas if equal to zero,
then adsorption is irreversible. Linear adsorption is indicated
by RL equal to 1. RL greater than one shows that the process is
unfavorable.47 Similarly, adsorption occurring on a heteroge-
neous surface is investigated using the Freundlich isotherm.
According to Freundlich, the adsorption isotherm becomes
linear, indicating favorable adsorption when n = 1, favorable
when n < 1, and unfavorable when n > 1.48 The distribution of
the binding energy can be explained by the Temkin model. This
model considers the variation in the heat of adsorption across
the surface. The temperature dependence is related to the
Dubinin–Radushkevich isotherm. It also estimates the free
energy of a heterogeneous surface and porosity of the adsor-
bent. The nature of biosorption can be determined, which refers
to the adsorption of biological materials on surfaces. If the
sorption energy value is in the range of 8 to 16 kJ mol−1, it
suggests chemical or ion exchange, whereas for energies less
than 8 kJ mol−1, physical adsorption is dominant.41 The value of
the linear regression correlation coefficient R2 indicates which
model is appropriate to give the best t.

To understand the adsorption process, investigating the rate
at which the adsorbate adsorbs on the surface of the adsorbent
is crucial. The major kinetic models employed in adsorption
studies include pseudo-rst-order, pseudo-second-order, intra-
particle model, and Elovich model. Additionally, thermody-
namic studies estimate the changes in enthalpy, entropy and
Gibbs free energy, which are essential for evaluating the feasi-
bility of the process.49 The linear forms of different isotherms,
kinetics models, and thermodynamic study used to determine
the different parameters related to adsorption are presented in
Table 1.

A variety of techniques such as UV-visible spectrophotom-
etry, atomic absorption spectrophotometry, and inductive
coupled plasma spectrometry is used for the measurement of
the adsorbate concentration in the liquid phase. UV-visible
spectrophotometry is based on the principle of the Beer–
Lambert law and is the simplest and most cost-effective method
RSC Adv., 2024, 14, 11284–11310 | 11289
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Table 1 Linear forms of different equations used in isotherm, kinetic, thermodynamic and batch studies

Equations used in adsorption study

Isotherms Kinetic equations Batch study Thermodynamic equations

Langmuir isotherm Pseudo-rst-order
qe ¼ ðCi � CeÞ

m
� V ln Kd ¼ �DH

RT
þ DS

RTCe

qm
¼ 1

qmKl
þ Ce

qm

ln(qe − qt) = ln qe − K1t

Freundlich isotherm Pseudo-second-order
%R ¼

�
Ci � Ce

Ci

�
� 100

log qe ¼ log KF þ 1

nðlog CeÞ
1

qt
¼ 1

qe2K2

þ 1

qe
t

Temkin isotherm Elovich model

qe ¼ RT

b
ln KT þ RT

b
ln Ce qe ¼ 1

b
lnðabÞ þ 1

b
t

Dubinin Radushkevich isotherm Intraparticle model
ln qe = ln qm − KDR 32 qe ¼ Kid

ffiffi
t

p þ C
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for the detection of heavy metals. The common heavy metals
quantied using this technique include Ni2+, Cu2+, Cr3+, Cr6+,
Fe2+, and Fe3+.50 Atomic absorption spectrophotometry requires
the sample to be in atomic gas form and can determine
concentrations of over 65 elements. It exhibits high sensitivity,
especially when measuring at parts per million (ppm). Another
method employed for measuring the concentration of adsor-
bates in the liquid phase is inductively coupled plasma spec-
trometry. It is comprised of two further modications, i.e.,
inductively coupled plasma mass spectrometry (ICP-MS) and
inductively coupled plasma atomic emission spectrometry (ICP-
AES). ICP-MS is 10–100 times superior to ICP-AES.43 The
adsorbents utilized can originate from mineral, organic or
biological sources, including zeolites, industrial by-products,
agricultural waste, biomass, and polymeric materials. Adsor-
bents can be broadly classied into natural adsorbents, bio-
adsorbents, commercially available adsorbents and
Fig. 4 Types of adsorbent and their sources.

11290 | RSC Adv., 2024, 14, 11284–11310
adsorbents made from agriculture and industrial waste, as
depicted in Fig. 4.51

Commercially available adsorbents predominantly consist of
carbon-based adsorbents such as graphene, carbon nanotubes,
and activated carbon. Graphene has a two-dimensional (2D)
structure and is available in various forms such as pristine
graphene, graphene oxide and reduced graphene oxide. When
rolled up, graphene sheets form carbon nanotubes, which may
be single walled or multi-walled depending on the number of
rolled-up graphene sheets. All these materials fall in the cate-
gory of nanomaterials and can be employed as adsorbents for
the removal of heavy metals due to their stable nature and high
surface properties.

Inorganic-based adsorbents primarily include natural
adsorbents such as clays, zeolites and silica. Mesoporous silica
is characterized by a regular two-dimensional hexagonal array
of channels. It has a highly ordered structure, which can be
© 2024 The Author(s). Published by the Royal Society of Chemistry
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modied with functional groups such as carboxylic acid and
sulfonic acid. Zeolites are employed as adsorbents due to their
good ion exchange properties, high surface area and hydro-
philic character, which make them suitable for the removal of
metals, e.g. cadmium. It has been observed by researchers that
modied zeolites show better efficiency compared to natural
zeolites.52

Adsorbents made from agriculture waste are used as alter-
natives to conventional methods for the removal of pollutants
from water bodies due to their cost effectiveness, highly effi-
cient and environment-friendly nature, reduction of biological
or chemical sludge, absence of need for extra nutrients, bio-
sorbent regeneration, and potential for metal recovery. Ioniz-
able functional groups such as carboxyl, amine, and hydroxyl
create possible adsorption binding sites. The major compo-
nents of agricultural waste biomass include hemicellulose,
proteins, simple sugars, lignin, extractives, lipids, water
hydrocarbons, and starch, which contains different functional
groups that facilitate the formation of complexes with metals.
To enhance the adsorption capacity of adsorbents, some
researchers also modied the adsorbents by functionalizing
them. Because coal-based AC is limited in its usage due to its
high cost, multiple strategies have been used to create activated
carbon from diverse agriculture-based sources. The selection of
agriculture waste-based adsorbents is based on many factors
such as local availability, easy desorption, high regeneration
capability, high binding capacity and selectivity for heavy
metals, cost-effectiveness, and the negligible release of unre-
quired compounds into aqueous solutions.53,54

Algae, fungi, bacteria and yeast can also be used as adsor-
bents, which are termed as bio-adsorbents. These microorgan-
isms play a crucial role in sequestrating pollutants from water
bodies. Their enzymatic activity enables them to transform or
degrade pollutants. Non-living biomass needs simple and cost
effective treatment. Whether free or immobilized, both forms
can be used as microbial biomass. The resultant efficacy rates
are inuenced by environmental factors, physicochemical
characteristics of the microbes used, and the target
environments.55,56

Various other materials serve as adsorbents including
biopolymers, biopolymeric nanocomposites, metal organic
frameworks, covalent organic frameworks, and organic
membranes. Biopolymers are more selective towards the
adsorption of heavy metal ions with cellulose derived from the
cell wall of various plants, being a common choice as
a biopolymer. Chitosan, which is obtained by de-acetylating
chitin, and sodium alginate, extracted from brown algae, are
also notable adsorbents for heavy metal ions.57 Employing
cheap and renewable materials such as chitosan-calcium
carbonate nanocomposites (Cs/CaCO3) show signicant
adsorption capacity of 62.11 mg g−1 for Cr(III), 83.33 for Cd(II),
and 98.03 for Pb(II) within short removal times.58

Metal organic frameworks (MOFs) are organic–inorganic
hybrids composed of metal clusters and organic linkers. MOFs
have variable porosity and high surface area, making them
versatile for applications such as sensing, drug delivery,
adsorption and water splitting. Shi-Wen Lv et al. synthesized
© 2024 The Author(s). Published by the Royal Society of Chemistry
MIL-101-NH2, which showed an adsorption capacity of 1.1 mM
g−1 for Pb(II) ions.59,60 Similarly, UiO-66-NHC(S)NHMe exhibited
a remarkable uptake capacity of 769 mg g−1 for Hg(II) ions.61

Nathan D. Rudd et al. synthesized luminescent metal–organic
frameworks (LMOFs) for the detection and removal of the metal
ions. The as-synthesized LMOF-263 was reported to demon-
strate an adsorption capacity of 380 mg g−1 for Hg(II) ions.62 The
rapid and selective removal of Hg(II) and Pb(II) ions were ach-
ieved using a metal–organic framework/polymer composite, i.e.,
Fe-BTC/PDA. This cos-effective and water-stable composite
exhibited an uptake efficiency of 1634 mg g−1 for Hg(II) and
394 mg g−1 for Pb(II) ions.63 Similarly, covalent organic frame-
works (COFs) typically consist of lowmolecular weight elements
with robust covalent linkages. Their porous nature, tunable
pore size, crystallinity, and easily tailored functional groups
enable them to be used as adsorbents for heavy metal ions. In
this regard, TPB-DMTP-COF-SH showed the highest adsorption
capacity reported thus far for the removal of Hg(II) and Sn(II)
ions at rates of 4395 and 4350 mg g−1, respectively.64

Membrane technology offers promising avenues for the
separation of a wide variety of pollutants from wastewater due
to their tailored pore size. However, many commercial
membranes currently available are non-degradable, posing
environmental concerns. Biodegradable plastics have gained
attention owing to their ability to degrade under controlled
conditions. Although biodegradable plastics have superior
properties compared to conventional polymer membranes they
have low mechanical, thermal and water stability. Thus, to
overcome these limitations, novel approaches for membrane
development are being explored, including blending of nano-
particles with polymers, copolymerization and cross-linking.
Additionally, emerging biodegradable plastics other than
cellulose and chitosan are gaining attention for their potential
applications in wastewater treatment, including poly(butylene
succinate)-based membranes, poly(3-caprolactone)-based
membranes, poly(lactic acid)-based membranes and
poly(hydroxyalkonate)-based membranes.65 These advance-
ments hold promise for the development of more sustainable
and effective membrane technologies.

5. Carbon-based adsorbents

Carbonaceous materials such as activated carbon (AC), biochar,
carbon nanotubes (CNTs), and graphene oxide (GO) are
considered the most cost-effective and highly efficient materials
for the removal of heavy metals from various environmental
matrices. Their favorable surface properties, uniform adsorp-
tion, non-toxic nature, ease of synthesis, and high adsorption
capacities have prompted researchers to investigate the use of
carbon-based materials as adsorbents.66 CNTs exhibit a stable
nature, large specic area and excellent mechanical and elec-
trical properties. These attributes have attracted attention from
researchers for utilizing them for the removal of heavy metals.67

Similarly, GO possesses a huge surface area and oxygenated
functional groups. Researchers are keen on employing GO as an
adsorbent for the removal of heavy metals. Coal-based AC is
expensive, limiting its widespread use. Thus, concerted efforts
RSC Adv., 2024, 14, 11284–11310 | 11291
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have been employed to develop AC from various sources beyond
coal. Any material with a high carbon content can potentially
yield activated carbon.68 The adsorption of heavy metals on
carbon-based adsorbents can take place via different mecha-
nisms, which are inuenced by the functional groups present
on the surface of adsorbents. The major functional moieties
include hydroxyl, amine and carboxyl groups (see Fig. 5). These
carbon-based materials offer diverse options for efficient heavy
metal removal, each with their unique advantages and appli-
cations. Adsorption can be physisorption or chemisorption
depending on the type of interaction the between adsorbent and
adsorbate. The large surface area and highly porous nature of
carbon-based adsorbents are helpful for the formation of van
der Waals interactions between heavy metal ions and adsor-
bents. Functional groups such as carboxyl, which bear the
opposite charge to the adsorbate (heavy metal ions) are
responsible for the electrostatic interaction between them.
Sometimes the functional moieties present on the surface of
adsorbents have exchangeable ions, for example, in the carboxyl
group, hydrogen can be replaced by the neighboring metal ions,
which is known as the ion exchange mechanism. To enhance
the adsorption capacity of carbon-based adsorbents, metal
binding agents are used to modify their surface. These modi-
cations lead to the precipitation and redox mechanisms. If the
thiol group is attached on the surface of adsorbent, it will
facilitate the precipitation of lead ions. If the surface is modied
by a reducing agent or oxidizing agent, then the metal ion will
either oxidize or reduce itself, respectively.69

Numerous researchers have implemented carbon-based
materials for the removal of heavy metal ions for wastewater.
Bandaru et al. synthesized thiol-derivatized single-walled
Fig. 5 Mechanism of adsorption of heavy metals on carbon-based adso

11292 | RSC Adv., 2024, 14, 11284–11310
carbon nanotubes (SWCNT-SH) and investigated their poten-
tial as an adsorbent for the removal of Hg(II) ions. Notably, the
Langmuir parameter showed a maximum adsorption capacity
of 131 mg g−1 for the functionalized SWCNTs, highlighting
their effectiveness to treat mercury pollution. The enhanced
adsorption capacity for Hg(II) ions is due the presence of thiol
groups, which undergo the selective formation of a complex
with Hg(II) ions via so acid-so base interaction.70 Another
study highlighted the efficacy of calf/cow bone charcoal (CBC)
as an adsorbent for removing Hg(II) ions from water. With
a surface area of 112 m2 g−1, CBC demonstrated the maximum
adsorption capacity of 38.08 mg g−1. The thermodynamic study
showed the endothermic, spontaneous and reversible nature of
adsorption.71 Similarly, many other carbonaceous materials
demonstrate the ability to remove Hg(II) ions by adsorption
including camel bone charcoal,72 sheep bone charcoal,73 and
coconut shell-based granulated activated carbon.74

Janik et al. synthesized various amino silanes containing
one, two, or three nitrogen atoms in the molecule for the
modication of GO. Interestingly, despite having a different
number of nitrogen atoms, the resulting GO derivatives
exhibited similar maximum adsorption capacities for Cr(VI) in
the range of 13.3–15.1 mg g−1. The detection limit was found to
be 0.17 ng mL−1. The adsorption process followed a pseudo-
second-order rate kinetic model, and the Langmuir and
Freundlich isotherm data showed that adsorption is monolayer.
Specically, the anionic species of Cr(VI) form electrostatic
interactions with the protonated amino groups on the surface of
GO derivatives.75 Similarly, AC-functionalized multi-walled
carbon nanotubes (AC/f-MWCNTs) have excellent potential for
chromium resistance. The highest adsorption capacity achieved
rbents.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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using AC/f-MWCNTs as an adsorbent was 113.29 mg g−1.76

Another study reported that GO prepared from the chemical
exfoliation and oxidation of layered graphite showed the
adsorption capacity of 240.3 mg g−1. The strong adsorptive
interaction between the GO surface and Cr(VI) is conrmed by
the adsorption energy (290.32 kcal mol−1) for Cr(VI).77 Similarly,
graphene oxide functionalized with alpha cyclodextrin and
modied with polypyrrole (GO-aCD-PPY NC) showed the
maximum adsorption capacity of 666.67 mg g−1 at 45 °C for the
removal of Cr(VI) ions.78

Šolić et al. reported that ox-MWCNTs act as an effective
adsorbent for the removal of Cd(II). The duration of the func-
tionalization processing impacted the capacity of the adsor-
bent. Thus, ox-MWCNTs functionalized for 6 h showed the
maximum adsorption capacity of 13.5 mg g−1 for Cd(II).79 In
another study, MWCNTs used as an adsorbent demonstrated an
impressive adsorption capacity of 181.81 mg g−1 for the removal
of Cd(II) ions.80 Alsaadi and team synthesized novel adsorbents
for the removal of As3+ from water. This study used a deep
eutectic solvent (DES) as the functionalization agent for CNTs.
KM-CNTs (CNTs functionalized with KMnO4 and MTPB-based
DES) showed the maximum adsorption capacity of 23.4 mg
g−1.81 Besides this, microwave-assisted economic MWCNTs
having a surface area of 9.1 m2 g−1 showed 92% and 91%
removal of arsenate and arsenite, respectively.82 Additionally,
many other carbonaceous materials have been employed to
adsorb As ions including iron oxide nanoparticle-coated
SWCNTs,83 chitosan magnetic graphene oxide (CMGO),84 iron
oxide–graphene oxide nanocomposite,85 and graphene oxide/
copper ferrite foam (GCFF).83

Momčilović et al. used AC prepared from the cones of
European black pine as an adsorbent for the removal of lead(II)
ions, which showed the maximum adsorption capacity of
27.53 mg g−1.13 Another study investigated hybrid nanobers
based on ZnO-loaded activated carbon nanobers (ZnO-
ACNFs). These activated NFs exhibited an adsorption
capacity of 92.59 mg of Pb(II)/g within a contact time of
45 min.86 Moreover, GO prepared from waste dry cell batteries
showed an impressive performance for the removal of Pb(II)
ions, achieving a 98.87% removal efficiency. The oxygenated
groups present on the surface of GO were responsible for the
adsorption of Pb ions.87 Similarly, diethylenetriamine-
modied MCNTs(d-MWCNT),88 CNT modied with four
generations of poly-amidoamine dendrimer (PAMAM/CNT),89

graphene oxide–MnFe2O4 magnetic nanohybrids (GO–
MnFe2O4 nanohybrids)90 were reported as carbon-based
adsorbents for the removal of Pb(II) ions from water. The
above-mentioned literature survey conrmed that carbon-
based materials are excellent sorbents for the removal of
heavy metals from water bodies due to the presence of various
functionalities in their network. These studies underscore the
importance of optimizing the functionalization process to
enhance the adsorption efficiency. Carbon-based materials
and the different factors affecting their performance such as
pH, adsorption capacity, applicable isotherms and kinetic
models are shown in Table 2.
© 2024 The Author(s). Published by the Royal Society of Chemistry
6. Agriculture waste-based
adsorbents

Different parts of plants such as their bark, stem, leaves, root,
ower, fruit biomass, husk, hull, skin, shell, bran and stone fall
under the category of agriculture waste, as shown in Fig. 6.93

These types of adsorbents have the ability to remove organic
and inorganic pollutants through different interaction modes
owing to their various functional moieties. Adsorbents derived
from agriculture waste exhibit abundant availability of binding
groups, demonstrating a strong affinity and selective capability
to attach heavy metals. These adsorbents contain structural
polysaccharides and various functional groups such as carboxyl,
phenolic, amido, amino, and sulphydryl carboxyl groups. These
groups have the ability to effectively bind heavy metals either by
substituting hydrogen with metal ions or by donating electron
pairs to form complexes.94 Agriculture waste-based adsorbents
can be used directly as well as modied with acids, such as
hydrochloric and phosphoric, or with alkaline solutions, such
as sodium hydroxide, and potassium hydroxide, or cross-linked
with other materials. Due to the high selectivity, porosity, and
surface area of activated carbon, biochar, and charcoal
produced from agricultural solid residuals, they have become
emerging adsorbents for the removal of heavy metals.95

Jeyaseelan et al. utilized green tea leaves (Camellia sinensis)
as a natural adsorbent for the removal of Cr(VI) from water,
achieving an impressive 99% removal efficiency under the
optimized conditions including pH of 2, contact time of
180 min, and adsorbent dosage of 0.8 g L−1.96 Similarly, Euca-
lyptus bark (Eucalyptus globulus tree species) showed more than
99% removal efficiency at a concentration of 200 ppm.
Furthermore, at a Cr(VI) concentration of 250 mg L−1 in the
effluent, the adsorption capacity was reported to be 45mg g−1 of
adsorbent.97

In another study, Jatropha oil cake demonstrated a remark-
able removal efficiency of 97% at pH 2. The adsorption capacity
was reported to be 4.76mg g−1 at an adsorbent dose of 2.5 g L−1.
Additionally, FTIR analysis conducted before and aer the
adsorption showed a signicant shi in the position and shape
of the –OH group, indicating that Cr(VI) binding primarily
occurs with –OH groups.98 Other agriculture waste bio-
adsorbents include Caesalpinia bonduc plant leaves and their
ashes,99 magnetic biochar derived from peanut hull,100 and
leaves and stems of Eclipta prostrata,101 all of which have the
ability to remove Cr(VI) ions. In the case of magnetic biochar
derived from peanut hull, it was observed that there was no
change in the crystal lattice of g-Fe2O3 and no new shape crys-
tals were formed. This observation clearly suggests that the
maghemite layer attracts Cr(VI), leading to the formation of
a monolayer.

Dubey et al. reported that Portulaca plant biomass (PPBM),
obtained from its leaves and stems, has signicant potential to
remove Cd(II) ions from water, achieving 72% maximum
adsorption efficiency at pH 6. The RL value of 0.429 indicates the
favorable adsorption of Cd(II) ions.102 Similarly, another study
revealed that the sawdust of Pinus sylvestris also has the capacity
RSC Adv., 2024, 14, 11284–11310 | 11293
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Fig. 6 Agriculture waste-based adsorbents and their interaction with organic and inorganic pollutants.93
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to bind Cd(II) ions. At pH 5.5, the maximum adsorption effi-
ciency of 96% was observed. The adsorption process followed
pseudo-second-order kinetics.103 Agriculture waste such as
orange residues contains different functional components
including cellulose, pectins, hemicellulose, chlorophyll
pigments and other low-molecular weight compounds,
including limonene. It has been observed that the carboxylic
groups in pectins and the alcoholic hydroxyl groups in cellulose
act as active binding sites for metals. The maximum adsorption
capacity of orange waste was found to be 0.43 mmol g−1 at pH 6
for Cd(II) ions.104 Additionally, other adsorbents derived from
Fig. 7 Schematic illustration of proposed mechanisms for heavy metal

© 2024 The Author(s). Published by the Royal Society of Chemistry
agriculture waste including sugarcane bagasse (SCB), maize
corncob (MCC) and Jatropha oil cake (JOC),105 bagasse y ash,106

cashew nut shell,107 urea-modied wheat straw (MWS)108 show
enhanced adsorption towards Cd(II) ions. In their investigation,
Akbar and colleagues (Fig. 7) studied the use of natural ax ber
tows (FFT) as an adsorbent for removing Cu2+, Pb2+ and Zn2+

ions from water. The dominant mechanism for the adsorption
of heavy metals in natural materials is the ion exchange
mechanism. In ax bers, which are lignocellulosic materials,
the bound atoms (Na+ and Mg2+) are exchanged with the heavy
metal ions present in wastewater and responsible for the good
adsorption on flax fiber tows.109

RSC Adv., 2024, 14, 11284–11310 | 11295
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adsorption capacity of ax bers tows. It was observed that the
adsorption rate for these ions increased rapidly and the optimal
removal efficiency was achieved within 60 min. The Langmuir
model well-described the adsorption isotherm and a signicant
reduction in metal levels (97.4% for Pb, 79% for Cu and 73.28%
for Zn) aer FTT treatment was reported. The economic viability
and potential for urban runoff water treatment make FTT
a promising bio-based material.

Recent studies highlighted the potential of raw and alkali
metal ion-free banana peel as an effective adsorbent for the
removal of Hg2+ ions, showing a maximum loading capacity of
46.8 and 52.2 mg g−1, respectively. This study emphasized that
the protonation step enhances the removal efficiency of Hg2+

ions from aqueous solution.110 Giraldo et al. explored calcinated
sugarcane bagasse (CSB) as an alternative adsorbent. CSB
showed the maximum adsorption efficiency of 13.6 mg of Hg(II)/
g. The kinetic studies suggested that the adsorption process
follows chemisorption, conrming the strong interactions due
to complexation through coordinated bonds.111 Moreover,
magnetic carbon composites (MCC) prepared from pinewood
sawdust showed an adsorption capacity of 167.22 mg g−1 for
Hg2+ ions.112 Palm leaves,113 Eucalyptus leaves,114 and adsorbents
derived from date pits115 serve as an effective sorbents for the
removal of Hg(II) ions.

Rao et al. synthesized activated carbon prepared from Ceiba
pentandra hulls and used them as a sorbent for the removal of
lead, exhibiting a maximum removal efficiency of 99.5%.116

Another study focused on sunower residue, which showed an
adsorption capacity of 182 mg g−1 for Pb ions.117 Recent inves-
tigations have shown that banana stem scutcher shows
a remarkable adsorption capacity of 179.9 mg g−1 for Pb(II) ions.
FTIR and XPS analysis highlighted the signicance of func-
tional groups (C–OH, C–O–C) as major binding groups.118

Sugarcane bagasse,119 Musa paradisiaca peels,120 tea waste and
peanut shells,121 maize cob,122 orange and banana peel123 are
some other reported agriculture-based adsorbents for the
removal of Pb(II) ions.

Javanshir and colleagues synthesized iron nanoparticles
using a mixed extract of two plant species, namely Prangos fer-
ulacea and Teucrium polium. These green nanoparticles showed
an arsenic removal efficiency of 93.8% with a maximum
adsorption of 61.7 mg g−1.124 In another study, magnetite
nanoparticles were synthesized from onion peel (MNp-OP) and
corn silk extract (MNp-CS), having a specic surface areas of 243
m2 g−1 and 261 m2 g−1, respectively, which demonstrated the
ability to effectively remove As from water. The Langmuir
isotherm model showed the maximum adsorption capacities of
1.86 mg g−1 for MNp-OP and 2.79 mg g−1 for MNp-CS.125 Other
agriculture-based sorbents include iron nanoparticles synthe-
sized from black tea leaves (Camellia sinensis), oak tree leaves
(Quercus virginiana), green tea leaves (C. sinensis), pomegranate
leaves (Punica granatum), and eucalyptus leaves (Eucalyptus
globulus).126 Additionally, iron nanoparticles (BB-Fe NPs)
produced using blueberries extract,127 modied green tea
waste,128 and nanoparticles synthesized from mint leaves129

demonstrated the capacity for arsenic removal. Table 3 lists the
various reported agriculture waste-based adsorbents together
11296 | RSC Adv., 2024, 14, 11284–11310
with their capacities for removing different metal ions and
relevant parameters.

7. Micro-organism-based adsorbents

Many microbial species such as bacteria, fungi, yeast and algae
are known to be capable of adsorbing heavy metals on their
surface. These microbial species have special surface properties
such as adhesion and occulation abilities. The number of
effective adsorption binding sites increases with the modica-
tion of functional groups on the cell surface. Various functional
groups such as carboxylic, hydroxyl, amines, and phenolic
groups endow microorganisms with a negatively charged cell
surface, enabling them to bind various cationic species such as
heavy metals. Microbial cells have several protection mecha-
nisms against heavy metal toxicity, such as active efflux of metal
ions and reduction of metal ions. Ambient factors, sorbing
materials, and metals to be removed are factors affecting the
biosorption efficiency of microorganism-based adsorbents.136,137

Umer Shaque and team utilized Pleurotus ostreatus as
a bioadsorbent for the removal of chromium(VI) owing to its fast
metal removal rate, remarkable biosorption capacity and high
regeneration ability. The maximum adsorption of Cr(VI) takes
place at pH 2.5, while the maximum bio-sorption capacity of
fungus was 10.75 mg g−1. FTIR analysis revealed that amine and
carboxylic acid groups play a major role in the adsorption
process.138 In another study, Staphylococcus saprophyticus
bacteria were found to be procient for the removal of chro-
mium, showing the maximum adsorption of 88.66 mg for Cr(VI)
at pH 2, temperature of 27 °C, and an initial ion concentration
193.66 mg L−1.139 Dadrasnia et al. used Bacillus salmalaya as
a biosorbent, showing a maximum sorption capacity of
20.35 mg g−1 for Cr(VI). The adsorption process followed
a pseudo-second-order mechanism and the Langmuir isotherm
model provided the best t to the data. The thermodynamic
parameters showed that it is an endothermic process.140 Simi-
larly, Chlorella vulgariswas used as an adsorbent for the removal
of chromium(VI) ions, showing a removal efficiency of 99.75%
under the optimum conditions. The value of RL conrmed the
favorable adsorption process.141 Moreover, Spirulina platensis
possesses enriched functional groups, which aid in the
adsorption of metal ions. Sulfate, phosphate, hydroxyl, carbonyl
and other charged groups present in algae contribute to heavy
metal binding. Waste algal biomass of Spirulina platensis, ob-
tained aer biodiesel production, was successfully employed as
an adsorbent for the removal of chromium(VI) ions with an
adsorption capacity of 45.5 mg g−1. This approach demon-
strated the potential for reusing algal biomass waste as an
adsorbent.142

Mahmood et al. reported the adsorption potential of dead
biomass of Sargassum sp., a brown marine alga, for the removal
of heavy metals, specically Cd(II). Remarkably the removal
efficiency reached 95.3%.143 Additionally, Bacillus subtilis coated
with maghemite nanoparticles was used as a biosorbent for the
removal of Cd(II) ions. It showed a maximum removal efficiency
of 84% and a high recovery percentage (76.4%), making it
a sustainable method. The adsorption data correlated well with
© 2024 The Author(s). Published by the Royal Society of Chemistry
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the Langmuir and Freundlich isothermmodels and the pseudo-
second-order equation provided a good correlation with the
obtained adsorption data.144

Three different mechanisms are observed for the removal of
heavy metals by algae.145 The most common mechanism is the
biosorption of heavy metals. The cell wall of algae contains
different functional groups such as carboxyl, hydroxyl, sulfate
and amino groups, which are responsible for ion exchange,
electrostatic interaction and complexation of heavy metals.
Cyanobacterial extracellular polymers contain a variety of
polymers such as nucleic acid, polysaccharides, and proteins,
which play a vital role in biosorption. Polysaccharides help to
bind heavy metals to the surfaces, lipids, and proteins of algae.
The transport of metal ions across the cell wall is another
mechanism for adsorption on algae, which is known as bio-
accumulation. Energy is required to accumulate intracellular
Scheme 1 Mechanism for the removal of heavy metals by algae.34

11298 | RSC Adv., 2024, 14, 11284–11310
heavy metals. In this process, as microorganisms grow, they
accumulate heavy metals intracellularly and allow metals to
concentrate, oen exceeding the levels in the surrounding
environment. Another type of mechanism used for the detoxi-
cation of heavy metals in the cells of algae is biotransforma-
tion, which is related to the enzymatic or biochemical
transformation of heavy metals. In the case of enzymatic
transformation, the enzymes present inside the cells of algae
convert the non-degradable heavy metals into less hazardous
inorganic complexes. A schematic representation of these
mechanisms is shown in Scheme 1.

In a separate study, Pseudomonas aeruginosa B237 bacteria
exhibited a maximum Cd2+ adsorption capacity (qmax) of
16.48 mg g−1. The Langmuir isotherm model effectively
described the Cd2+ ion adsorption by this bacterial biomass
with its favorable process indicated by the low RL value of
© 2024 The Author(s). Published by the Royal Society of Chemistry
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0.002.146 Aspergillus niger (A. niger)147 and Spirulina platensis
also have the capability to serve as sorbents for the removal of
Cd(II) ions. Wen et al. synthesized a novel adsorbent by immo-
bilizing the endogenous bacterium Bacillus licheniformis with
magnetic polyvinyl alcohol (PVA) and sodium alginate for the
removal of lead ions, showing a maximum adsorption capacity
of up to 113.84 mg g−1.148 Furthermore, the fungus Mucor
indicus was found to have the ability to remove lead with
a maximum biosorption capacity of 22.1 mg g−1.149 Similarly,
the red marine algae Jania rubens pretreated with formaldehyde
showed the highest adsorption capacity of 774 mg g−1 for Pb(II)
ions and that for Jania pretreated with CaCl2 reached 1089.6 mg
g−1.150 Other microorganism-based biosorbents including
Aspergillus niger and Aspergillus terreus fungus isolates on luffa
sponge,151 Cystoseira compressa, Sargassum vulgare, Turbi-
naria, Agaricus campestris,152 as well as the green alga Ulva
lactuca153 have been used for removal of lead ions.

Ahmet Sarı and coworkers investigated the efficiency of dead
green algae (Mougeotia genuexa) biomass for the removal of
As(III) from water. The Langmuir model showed a maximum
monolayer biosorption capacity of 57.48 mg g−1. Additionally,
the mean free energy calculated from the D–R model
(10.2 kJ mol−1) indicated that the adsorption occurred through
chemical ion exchange.154 A mixture of green (Chlorophyta) and
Table 4 Comparison of different microorganism-based adsorbents for

Adsorbate Type Adsorbent

Cr(VI) Fungi Pleurotus ostreat
Bacteria Bacillus salmala
Chemically modied algae/waste algal
biomass

Biodiesel-extrac
Rhizoclonium ho
Sargassum siliqu
Sargassum sp.

Bacteria Bacillus megater
Yeast Yeast

Cd(II) Bacteria Bacillus subtilis
nanoparticles
Pseudomonas ae

Fungi Aspergillus niger
Algae-based bioadsorbents Red algae Galax

Red algae Chond
Red algae Hypne
Alginate-PEI mo
vesiculosus (brow

Pb(II) Bacterium Bacillus lichenifo
Fungus Mucor indicus
Algae Jania rubens pre

formaldehyde
Algae Jania pretreated

As(III) Algae Mougeotia genu
Algae Mixture of green

green (Cyanobac
Bacteria Yersinia sp. stra
Bacteria Bacillus thuringi
Fungus Saccharomyces c

Hg(II) EPS-K and EPS-B
Bacteria Brevundimonas s
Yeast Yarrowia spp.
Algae Sargassum glauc
Algae Chlorella vulgari

© 2024 The Author(s). Published by the Royal Society of Chemistry
blue-green (Cyanobacteria) algae showed the maximum sorp-
tion capacity of 35 mg g−1 for As(III). FTIR conrmed the pres-
ence of hydroxyl and carboxyl groups on the surface of the
adsorbent, thus playing a key role in capturing metals.155

Similarly, some bacterial stains such as Yersinia sp. strain SOM-
12D3 showed the adsorption capacity of 159 mg g−1 towards
As(III).156 Other microbial adsorbents including Bacillus thur-
ingiensis strain WS3,157 mixed dried biomass of Bacillus thur-
ingiensis strain, Pseudomonas stutzeri strain and Micrococcus
yunnanensis strain,158 and Saccharomyces cerevisiae61 exhibited
enhanced ability to remediate As(III) ions.

Xia et al. reported that extracellular polymeric substances
(EPS) extracted from Klebsiella sp. NT8 and Bacillus sp. NT10
(EPS-K and EPS-B) have the maximum sorption capacity of
2597.62 and 2617.23 mg g−1, respectively, for Hg(II) ions. The
adsorption followed pseudo-second-order kinetics and t the
Langmuir isotherm model.159 Another study showed that Bre-
vundimonas species IITISM22 has the potential to remove Hg
ions, achieving a maximum adsorption capacity of 666.6 mg g−1

at pH 6.5.160 Additionally, yeast Yarrowia spp.,161 Sargassum
glaucescens (brown algae),162 Sargassum bevanom,163 Chlorella
vulgaris,164 etc. show promise as effective sorbents for Hg(II)
ions. Table 4 provides a comparison of various microorganism-
heavy metals

pH Adsorption capacity (mg g−1) Ref.

us 10.75 138
ya 20.35 140
ted Spirulina platensis 45.5 142
okeri (0.1 M HCl) 67.3 142
osum 66.4 142

58.2 142
ium 30.7 165

86.95 166
coated with maghemite 4 71.4 144

ruginosa 6 16.48 146
(A. niger) 4 15.50 147
aura oblongata 5 85.5 167
racanthus chamissoi 4 85.4 168
a valentiae 6 28.6 169
died with Fucus
n algae)

3.5 97.8 170

rmis-based adsorbent 6 113.8 148
5.5 22.1 149

treated with 774 150

with CaCl2 1089.6 150
exa 6 57.48 154
(Chlorophyta) and blue-
teria) algae

4–5 35 155

in SOM-12D3 7 159 156
ensis strain WS3 7 95.238 157
erevisiae 113.9 61

2597.62 and 2617.23 159
pecies IITISM22 6.5 666.6 160

32.2 161
escens 5,7 147.05 162
s 6 42.0 164
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based adsorbents used for the removal of heavy metal ions
together with their important parameters.
8. Inorganic-based adsorbents

Inorganic-based adsorbents are ideal and effective adsorbents
for the removal of heavy metal ions, which include clay, soil,
minerals and zeolites. Their high affinity for heavy metal ions
stems from their properties such as solubility (Ksp), charge
density, electronegativity, and hydrolysis constant (pKH).
Minerals and soil readily precipitate metal carbonates and
hydroxides due to these properties.171 Ahmadi et al. investigated
bentonite clay (BC) and bentonite clay@MnFe2O4 composite
(BCMFC) for the removal of Cr(III) and Cr(VI). The adsorption
followed the Freundlich isotherm model and quasi-second-
order kinetic model and demonstrated physical, spontaneous,
and exothermic nature of adsorption.172 Similarly, red mud,173

natural clay and clay/Fe–Mn composite,174 and iron oxide-
coated acid-treated activated red mud175 have been proven to
be effective for the removal of heavy metals ions.

Natural and modied zeolites also contribute to the reme-
diation of heavy metals. Their ion exchange properties and
molecular sieve-type structures make them suitable candidates
for the removal of heavy metals. Further, they offer advantages
such as selectivity, low sludge production and compliance with
strict discharge standards. Modication of natural zeolites
enhances their surface properties.176 Thus, Neolaka et al. re-
ported the use of an activated natural zeolite-magnetic
composite (ANZ–Fe3O4) as an adsorbent material with a Cr(VI)
adsorption capacity of 2.850 mg g−1.177 Recent studies showed
that a zeolite-Ag2S nanohybrid material exhibited an
Fig. 8 Major processes of mercury adsorption in zeolite-Ag2S nanoh
mechanism: (1) and (2) represent physisorption and (3) represents chemi
Elsevier. All rights are reserved.

11300 | RSC Adv., 2024, 14, 11284–11310
extraordinary adsorption capacity of 390 mg g−1 towards Hg(II)
ions in wastewater with higher removal rates than pure
zeolite.178 It was found that the zeolite component of the
nanohybrid material provided a porous structure with high
surface area, while the Ag2S NPs enhanced its adsorption
capacity, as shown in Fig. 8. Thus, Ag2S interacted with Hg(II)
ions, forming stable complexes via –OH− and –COO− groups on
the nanohybrid surface. The sulphur atom can act as a ligand
and attach the Hg(II) ion. Electrostatic interactions are respon-
sible for the stabilization of metal ions on the surface of
nanohybrids. Zeolites are aluminosilicates and the interaction
of Hg(II) with the oxygen atom present in zeolites or with the
sulphur atom present in metal suldes represents phys-
isorption, as shown in pathway 1 and 2. In pathway 3, the
hydrogen atom from one hydroxyl group is removed and metal
ions form a bond between two hydroxyl atoms, which represent
chemisorption.

Due to chemisorption, strong chemical bonds are formed
between Hg(II) ions and the functional groups on the nano-
hybrid surface. The simple synthesis, high effectiveness and
stability of functionalized nanohybrids make them excellent
candidates for wastewater remediation.

Similarly, an Na–Y zeolite demonstrated the maximum
adsorption capacity of 0.81 mmol g−1 for Cd(II) ions. The
adsorption process is favorable, as indicated by the separation
factor. Physical sorption mechanisms were responsible for the
process, as supported by the mean free energy value of less than
8 kJ mol−1.179 Other zeolite-based adsorbents including zeolites/
MgAl-LDHs,180 magnetic zeolite,181 and dithizone-immobilized
natural zeolite (DIZ)182 have been employed for the removal of
heavy metals via the adsorption process.
ybrid materials from wastewater. The proposed chemical reaction
sorption. Reproduced with permission from ref. 178. Copyright [2023],

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Additionally, silica-based materials such as mesoporous
silica as adsorbents offer advantages due to their porosities,
large surface areas, and reasonable mechanical thermal stabil-
ities.183 Snoussi and coworkers employed polyethylenimine-
functionalized mesocellular silica foam as an adsorbent,
showing more than 90% removal efficiency towards Cd(II)
ions.184 Another study showed that a silica gel material modied
with nitrilotriacetic acid (NTA-silica gel) exhibited the
maximum adsorption capacity of 76.22 mg g−1 for Pb(II) ions.
Equilibrium and kinetic studies conrmed that the adsorption
followed the Freundlich and Langmuir isotherm models
together with a pseudo-second-order kinetic model. The posi-
tive DH° values and negative DG° values show that the adsorp-
tion of lead is an endothermic and spontaneous process,
respectively.185 Bao et al. reported the use of mercaptoamine-
functionalised silica-coated magnetic nanoparticles (MAF-
SCMNPs) as an adsorbent for the removal of Pb(II) ions. The
mechanism involved chelation through the amine group and
ion exchange between heavy metal ions and the thiol functional
groups on the nanoadsorbent surface. The maximum adsorp-
tion capacity of 292 mg g−1 for Pb(II) ion showed that silica-
based adsorbents can play a role in removing inorganic
pollutants such as heavy metals from aqueous medium.186

Fig. 9 (ref. 187) shows the mechanism of adsorption and
desorption of Pb(II) on mesoporous silica. The understanding of
adsorption and regeneration is vital for the synthesis of new
adsorbents in the future. Electrostatic interaction is responsible
for the adsorption of positively charged lead ions and negatively
charged silica. The pHzpc of mesoporous silica is 3.2, above
which, it is negatively charged and the concentration of H+
Fig. 9 Mechanism of the adsorption and regeneration of Pb(II) on mesop
Elsevier. All rights are reserved.

© 2024 The Author(s). Published by the Royal Society of Chemistry
decreases. The maximum adsorption of Pb(II) takes place at pH
6 through electrostatic interactions. When the pH of the solu-
tion is lower than the pHzpc value, the process of desorption
from lead-loaded mesoporous silica is dominant.

The other reported silica-based adsorbents include meso-
porous silica modied by iron-manganese binary oxide
(FeMnOx/SBA-15) with 76.5% FeMnOx mass fraction,188 silica-
based hybrid organic–inorganic adsorbent (MNPs@SiO2-TSD-
TEOS),189 diatom silica microparticles functionalized with n-(2-
aminoethyl)-3-aminopropyl-trimethoxysilane (AEAPTMS),190

and functionalized mesoporous silica/poly(m-amino-
thiophenol) nanocomposite191 for the removal of heavy metal
ions. Table 5 summarizes the different inorganic-based adsor-
bents for the removal of heavy metals, together with their
important adsorption parameters.
9. Advantages and disadvantages of
different adsorbents

� The possibility of regeneration and recovery of metal ions are
major benets associated with biological adsorbents. These
adsorbents are eco-friendly, easily accessible, and depending on
the biomass source and pretreatment techniques, their
adsorption capacities may vary, impacting their selectivity.
Mechanical instability and challenges in separating biomass
aer the removal process are the major disadvantages associ-
ated with using microorganisms. Thus, to eliminate these
disadvantages, the method of immobilization of microorgan-
isms on a carrier is used which, increases the productivity,
orous silica. Reprinted with permission from ref. 187. Copyright [2015],

RSC Adv., 2024, 14, 11284–11310 | 11301
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Table 5 Comparison of various inorganic-based adsorbents for the removal of heavy metals

Adsorbate Adsorbent pH Adsorption capacity Ref.

Cr(VI) Bentonite clay (BC) 3 95.74% 172
161.3 mg g−1

Bentonite clay@MnFe2O4 composite (BCMFC) 3 98.65% 172
178.6 mg g−1

Activated natural zeolite-magnetic composite (ANZ-Fe3O4) 2 2.850 mg g−1 177
Zeolites/MgAl-LDHs 121.85 mg kg−1 180
Zeolites/ZnAl-LDHs 272.10 mg kg−1 180

Cd(II) MgO-ATP 5 25.3 mg g−1 192
Magnetic zeolite 204.2 mg g−1 181
Na–Y zeolite 5–6 0.81 mmol g−1 179
Polyethylenimine-functionalized mesocellular silica foam 5 90% 184

As(III) and
As(V)

Mesoporous silica modied by iron-manganese binary oxide (FeMnOx/SBA-15)
with 76.5% FeMnOx mass fractions

Below 9 90% of As 32.89 mg g−1 As(III) 188
35.71 mg g−1 As(V)

Red mud 7.25 for
As(V)

96.52% for As(V) 173

Natural clay and clay/Fe–Mn composite 3–4 86.86 mg g−1 and 120.70 mg g−1 for
As(V)

174

Zeolitic imidazolate framework-8 (ZIF-8) 7 As(III) and As(V) were 49.49 and
60.03 mg g−1, respectively

185

Pb(II) Iron oxide-coated acid-treated activated red mud 6 27.02 mg g−1 175
Mercaptoamine-functionalised silica-coated magnetic nanoparticles 6–7 292 mg g−1 186
NTA-silica gel 76.22 mg g−1 185
(MNPs@SiO2-TSD-TEOS) 5 417 mg g−1 189

Hg(II) Diatom silica microparticles functionalized with n-(2-aminoethyl)-3-aminopropyl-
trimethoxysilane (AEAPTMS)

169.5 mg g−1 190

Functionalized mesoporous silica/poly(m-aminothiophenol) nanocomposite 242.42 mg g−1 191
Dithizone-immobilized natural zeolite (DIZ) 5 13.1 mmol g−1 182
Zeolite-Ag2S nanohybrid 390 mg g−1 178
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improved mechanical strength, and increased chemical
resistance.

� Nanomaterial-based adsorbents have a high surface area
and enhanced reactivity. However, modied carbonaceous
materials face challenges related to complexity, their modi-
cation and the need to balance their high adsorption capacity
with other desirable properties. Difficulty in the recovery of
nanoparticles aer adsorption is another limitation associated
with nanomaterials. However, magnetic nanoparticles allow
easy separation when a magnetic eld is applied. Biopolymers
such as chitosan are valuable for wastewater treatment due to
their hydroxyl and amino groups, facilitating the adsorption of
contaminants from wastewater. However, they suffer from
drawbacks such as instability, low selectivity, solubility in acidic
media, poor mechanical properties and challenges in control-
ling their pore size. Thus, to address these limitations and
capitalize on the strengths of both nanomaterials and biopoly-
mers, bio-nanocomposites have emerged. Examples include
cyclodextrin-polycaprolactone/TiO2-NPs, chitosan/clay, and
cellulose nanocrystal/ZnO-NPs, which offer combined proper-
ties for effective wastewater treatment.

� Agriculture-based adsorbents such as vegetable and fruit
peels are easily available, cost effective, and have abundant
functional groups and high metal adsorption capacity, which
make them popular adsorbents nowadays. Moreover, they are
easily processed, applied, and recovered without causing any
harmful effect to the environment. Chemical modication of
agricultural waste-based adsorbents improves their adsorption
11302 | RSC Adv., 2024, 14, 11284–11310
capacity by exposing functional groups. This process involves
removing lower molecular weight lignin, waxes and natural fats
from the adsorbent, while also creating surface roughness.
However, it is important to note that modifying agriculture-
based adsorbents can sometimes lead to environmental
toxicity. Also, it is worth noting that employing green tech-
nology for the treatment of wastewater must not compromise
agricultural production, which can potentially exacerbate the
food shortage. Thus, the adsorbent from green resources
should be carefully selected to ensure they have no value as food
sources.

� The abundant clays and clay-based composites have
natural physicochemical properties, high specic surface area,
extraordinary cation exchange capacity (CEC), surface hydro-
philicity, surface electronegativity and cation exchange selec-
tivity, due to which they have gained attention for the
remediation of pollutants from water bodies. However, despite
the easy availability, low cost and high surface area of clay-based
adsorbents, the regeneration of these adsorbents through
desorption techniques is not feasible. One more disadvantages
is controlling the pH of clay.34,58,193,194

� MOFs have a high surface area, highly ordered pore size
and shape, which can be tuned by changing the linkage and the
type of linkers used. However, despite their remarkable efficacy
and selectivity in adsorbing heavy metal ions, many MOFs
suffer from poor water and chemical stability.61

� Naturally available inexpensive resources for biopolymers
have multiple active sites for adsorption but the efficiency of the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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adsorption process is hindered by their low mechanical
strength, low surface areas, and poor stability.57 Also, biopoly-
mers may undergo degradation under harsh treatment condi-
tions, compromising their effectiveness. Although biopolymers
offer sustainability benets, their drawbacks must be addressed
to ensure efficient contaminant removal in wastewater
treatment.
10. Conclusion, future prospective
and challenges

Among the variety of wastewater treatment methods, the
adsorption process is the preferred choice owing to the
adsorption potential of different adsorbents for the removal of
heavy metals. Among the various carbon-based adsorbents,
CNTs modied with four generations of poly-amidoamine
dendrimer demonstrated the highest adsorption capacity
(4870 mg g−1) towards Pb2+ ions. It was found that adsorbents
based on micro-organisms such as extracellular polymeric
substances (EPS) extracted from Klebsiella sp. NT8 and Bacillus
sp. NT10 (EPS-K and EPS-B) exhibit the maximum sorption
capacity of 2597.62 and 2617.23 mg g−1 for Hg(II) ions, respec-
tively. This review concludes that efficient adsorption depends
strongly on the interaction between the adsorbate and the
adsorbent, which is mostly inuenced by various factors such as
pH, initial adsorbate concentration, adsorbent mass and
temperature. The majority of the adsorption process data best
t the pseudo-second-order kinetic model, which follows either
the Langmuir or Freundlich isotherms. By utilizing low-cost
adsorbents such as waste materials and agriculture residues,
the environmental hazards associated with heavy metal ion
removal can be addressed to meet the WHO standards for
drinking water quality. Waste materials can serve as an alter-
native to replace activated carbon for application in water
purication due to their easy availability and low cost. It is ex-
pected that low-cost adsorbents will become important for the
removal of heavy water from wastewater in the near future.
Overall, this review offers guidelines to new researchers on how
to develop useful adsorbents with a better adsorption capacity
for heavy metal ions in wastewater.

Due to the escalating water contamination crisis, a range of
adsorbents is under extensive investigation for treating metal-
contaminated waters owing to their extraordinary properties,
as outlined in this review. However, despite the advancements,
further studies are necessary to optimize the performance of
adsorbents. In the future, potential directions for improving
adsorbent development and utilizing the adsorption process for
industrial applications include:

� A comprehensive investigation into the mechanisms
behind the selective and specic adsorption of metal ions is
imperative. This endeavor will facilitate the design of targeted
removal strategies for the treatment of wastewater, thereby
enhancing the efficiency in addressing water contamination
issues.

� Although researchers primarily emphasize the exceptional
adsorption capacity of various adsorbents, they oen overlook
© 2024 The Author(s). Published by the Royal Society of Chemistry
their potential environmental impacts. Thus, to address this
oversight, it is recommended that the biodegradability of these
materials, together with the conditions for their degradation
and proper disposal post-use be thoroughly investigated. This
holistic approach will contribute to the development of envi-
ronmentally sustainable adsorption technologies.

� Current studies show that modied adsorbents are more
effective compared to unmodied adsorbents. However, the
high cost of modication and the use of toxic additives impose
limitations on their widespread usage. Therefore, future studies
should prioritize the development of alternative modication
methods that are both cost effective and environmentally
benign.

� The complexity of the adsorption process compounded by
the presence of mixed pollutants poses a signicant challenge
to practical applications. Currently, research efforts focus on
single pollutants, thereby limiting the applicability of ndings.
However, industries are now actively pursuing low-cost adsor-
bents capable of simultaneously removing multiple coexisting
pollutants. This area of research is currently highly active and
aims to address the pressing need for comprehensive pollution
mitigation solutions.

Conflicts of interest

Authors declare no conict of interest.

Acknowledgements

Afzal Shah acknowledges the support of Quaid-i-Azam Univer-
sity and the Higher Education Commission of Pakistan.

References

1 N. Rascio and F. Navari-Izzo, Heavy metal
hyperaccumulating plants: how and why do they do it?
And what makes them so interesting?, Plant Sci., 2011,
180, 169–181.

2 M. Zaynab, R. Al-Yahyai, A. Ameen, Y. Sharif, L. Ali,
M. Fatima, K. A. Khan and S. Li, Health and
environmental effects of heavy metals, J. King Saud Univ.,
Sci., 2022, 34, 101653.

3 R. Singh, N. Gautam, A. Mishra and R. Gupta, Heavy metals
and living systems: an overview, Indian J. Pharmacol., 2011,
43, 246.

4 H. A. Hegazi, Removal of heavy metals from wastewater
using agricultural and industrial wastes as adsorbents,
HBRC J., 2013, 9, 276–282.

5 Y. Zhang, K. Yan, F. Ji and L. Zhang, Enhanced removal of
toxic heavy metals using swarming biohybrid adsorbents,
Adv. Funct. Mater., 2018, 28, 1806340.

6 M. Barakat, New trends in removing heavy metals from
industrial wastewater, Arabian J. Chem., 2011, 4, 361–377.

7 H. N. M. E. Mahmud, A. O. Huq and R. binti Yahya, The
removal of heavy metal ions from wastewater/aqueous
solution using polypyrrole-based adsorbents: a review,
RSC Adv., 2016, 6, 14778–14791.
RSC Adv., 2024, 14, 11284–11310 | 11303

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra00976b


RSC Advances Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
A

pr
il 

20
24

. D
ow

nl
oa

de
d 

on
 8

/1
7/

20
24

 9
:5

3:
23

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
8 Z. Khan, A. Elahi, D. A. Bukhari and A. Rehman, Cadmium
sources, toxicity, resistance and removal by
microorganisms-A potential strategy for cadmium
eradication, J. Saudi Chem. Soc., 2022, 26, 101569.

9 K. G. Pavithra, P. SundarRajan, P. S. Kumar and
G. Rangasamy, Mercury sources, contaminations, mercury
cycle, detection and treatment techniques: a review,
Chemosphere, 2022, 312, 137314.

10 Q. Wang, D. Kim, D. D. Dionysiou, G. A. Sorial and
D. Timberlake, Sources and remediation for mercury
contamination in aquatic systems—a literature review,
Environ. Pollut., 2004, 131, 323–336.

11 J.-Y. Chung, S.-D. Yu and Y.-S. Hong, Environmental source
of arsenic exposure, J. Prev. Med. Public Health, 2014, 47,
253.

12 A. Zhitkovich, Chromium in drinking water: sources,
metabolism, and cancer risks, Chem. Res. Toxicol., 2011,
24, 1617–1629.
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