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The spectral response of wastewater samples allows, through the use of correlation models, to estimate

the pollutant load of the samples in a simple, fast and economical way. However, the accuracy of these

models can be affected by alterations in the spectral by external agents such as vibrations or temperature

changes. In these cases, approximating the spectral response to trend lines can sometimes provide better

estimates, while in other, it is better to work with the original spectral response. This research work

proposes a methodology to accurately estimate the pollutant load of wastewater using a hybrid

characterization model based on decision trees, which allows, in all cases, to obtain the best possible

characterization. This model, based on the analysis of the spectral response, determines which genetic

algorithm-based estimation model to make use of: the original spectral response or to the approximation

of this to global or individual trend lines for each colour group, to estimate the following parameters:

chemical oxygen demand (COD), biochemical oxygen demand at 5 days (BOD5), total suspended solids

(TSS), total nitrogen (TN) and total phosphorus (TP) in raw and treated wastewater respectively. The study

was conducted on 650 wastewater samples from 43 WWTPs. The results show that the hybrid

characterization model provides the best possible fit, achieving an improvement up to 5% in raw

wastewater samples, and up to 26.32% in treated wastewater with respect to the use of models that

employ point values of the original spectral response, being much more significant in the case of TN.

1. Introduction

Optical techniques, such as molecular spectroscopy, are
reliable for monitoring sanitation systems in real-time and
online.1–4 These techniques can be used in sewer networks
and treatment plants.5,6 They can be used alone or in

combination with other techniques to ensure accuracy7 here
is a growing demand for rapid characterization analyses
without pre-treatment or the addition of reagents in multiple
parts of the systems. This is due to increasing quality
requirements in wastewater treatment for water reuse and
protection of aquatic environments.8,9 UV-VIS spectroscopy
has been successfully used to determine various pollutant
species in wastewater, including oxygen demand, nutrients,
and solids4,10 where the use of a wide range of wavelengths
calibration procedure generally generates higher correlation
coefficients than individual wavelengths.11 Similar results
have been observed in the research works of ref. 12 for Cr
determination in water,13 combining the use of
spectrophotometry with chromatography to characterize
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1. Spectral response measurements from urban wastewater samples can be affected by external agents, making it difficult for models to provide accurate
estimates. 2. A hybrid characterization model based on decision trees can accurately estimate pollutant load using spectral response, achieving the best
possible estimate. 3. The hybrid model improves the adjustment levels of pollutant load estimates in both raw and treated wastewater samples by up to 5%
and 26.32%, respectively, with a greater improvement for Total Nitrogen (TN).
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dissolved organic matter in wastewaters, or ref. 14 which also
uses it to characterize dissolved organic matter in wastewater.
Also noteworthy are works such as ref. 15 which, using
fluorescent spectrophotometers, identify landfill leachate
contamination in groundwater.

The complexity of wastewater spectra makes it challenging
to associate them with specific wavelengths, and the UV-VIS
spectral shape lacks prominent peaks.16 This complexity
arises from the diverse chemical and physical characteristics
of the heterogeneous components in the water matrix,
including organic and mineral substances of varying sizes.17

Consequently, the recorded absorbance represents a
combination of light absorption primarily by organic
compounds and light scattering by solid particles. The
research of ref. 18 have identified the wavelength range of
373–374 nm as particularly suitable in the UV-VIS range for
characterizing parameters such as COD, TSS, and turbidity.

To address these challenges, techniques like slope-derived
spectroscopy can be employed to achieve a more concise
model. Slope-derived spectroscopy is favored for its ability to
eliminate irrelevant features and effectively incorporate
relevant information from spectral data at different
pathlengths11,16 propose the utilization of the first and
second derivatives of measured spectra to identify deviations
from expected patterns. These derivatives are effective in
reducing noise caused by various factors. In the analysis of
nitrogen species such as nitrate, nitrite, and total nitrogen,
ref. 19 and 20 utilize the second derivative. The spectral
response provides valuable information about the
physicochemical properties of the wastewater samples.

In order to relate the information obtained from the
spectral response to the pollutant load of the wastewater,
characterization models are needed. Although these models
can be calculated using various analysis techniques, the use
of artificial intelligence allows more complex and accurate
models to be obtained.21–23 Genetic algorithms are one of the
most widely used techniques, by providing, through an
evolutionary process analogous to that of any living being, a
mathematical expression that manages to accurately estimate
the response variable, and which has proven its validity as a
tool for optimizing the processes of a WWTP24,25 or the
estimation of pollutants.26

Another of the techniques with great use in this field are
decision trees, which allow performing classification tasks
and their high performance has been evidenced in works
such as ref. 27 that focuses on the identification and
prediction of filamentous bacteria in wastewater and sludge
volume index (SVI) as a function of sludge retention time
(SRT), NH4

+–N and COD, or works such as ref. 28 or 29 as a
tool for the optimization and improvement of purification
processes.

Viable and cost-effective devices enabled for the on-line
and real time quality monitoring in the visible spectra by
LED are proposed by ref. 22 and 30–33 where 3D printing is
making it possible to achieve low-cost, versatile spectroscopy
devices.34,35 The versatility of this technology has led to the

development of low-power equipment based on LED
technology, such as the one developed by ref. 36, for
detecting nitrates in natural waters and treated wastewater.

The spectral response of wastewater in the visible
spectrum exhibits a linear relationship, with variations in
slope and height depending on the pollutant load. However,
external factors such as vibrations or temperature changes
can introduce irregularities into certain portions of the
spectral response. As a result, it is sometimes more
appropriate to work with approximate linear models of the
spectral response to mitigate the impact of these
perturbations. On other occasions, utilizing the original
spectral response is preferred. Therefore, it is crucial to have
correlation models that can determine when to apply each
type of model, ensuring a more accurate characterization in
all scenarios.

This research work provides a methodology, over around
650 wastewater samples from 43 WWTPs, that allows to
achieve a better characterization of the pollutant load, from
the spectrophotometric response in the visible spectrum
(380–700 nm), for the following pollutant parameters:
chemical oxygen demand (COD), biochemical oxygen demand
at 5 days (BOD5), total suspended solids (TSS), total nitrogen
(TN) and total phosphorus (TP) in raw and treated wastewater
respectively.

A total of 27 characterization models based on genetic
algorithm (GA) are presented. For each pollutant parameter
and type of wastewater (raw and treated), three models have
been calculated: model based on point values of the
spectrum (380–700 nm), model based on approximation of
the spectral response to a single global trend line, and model
based on the approximation to individual trend lines for each
color group: (380–700 nm), violet (380–427 nm), blue (427–
476 nm), cyan (476–497 nm), green (497–570 nm), yellow
(570–581 nm), orange (581–618 nm), and red (618–700 nm).

In order to determine which model to apply in each case
to obtain the best possible estimation, a total of 9 hybrid
characterization models, as a combination of decision trees
and GA, are presented for raw and treated wastewater,
respectively (one for each pollutant parameter and
wastewater type).

The rest of this manuscript is organized as follows:
Section 2 provides a description of the experimental

campaign carried out, including a description of the
equipment developed for it as well as the properties of the
water, the software used for the study and its methodology.

Section 3 includes the different models for estimating
the pollutant load, as well as the decision trees to
select the optimal model for a certain sample. A
decision tree is also shown which, based on the slope
(M) and the ordinate at the origin (N) of the global
trend line of the spectral response, makes it possible to
determine whether a wastewater should be classified as
raw or treated, a crucial aspect for the development of
automatic systems for continuous monitoring of the
pollutant load of water.
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Finally, section 4 summarizes the general conclusions of
the results achieved in this research work.

2. Materials and methods
2.1. Experimental campaign

The present research work has been carried out on 43
wastewater treatment plants (WWTPs), whose main
characteristics, in term of average COD, BOD5 and TSS, are
described in Table S1 in ESI.† The WWTPs are located
throughout the Region of Murcia (Spain), where many of
them include tertiary treatment for agricultural purposes.
The samples were taken between January 11 and June 22,
2021, but the samples from the Cabezo Beaza WWTP, which
were taken during the period 2019 to April 2020. A total of
around 650 samples from both the inlet (raw wastewater) and
outlet (treated wastewater) of the plants were collected in a
homogeneous manner for 24 hours using a 500 mL h−1 in an
integrated sample.

Samples were not pretreated by any filtering process to
replicate the conditions of future automated continuous
sensor sampling.

The spectral response is closely related to the pollutant
load of the wastewater. Fig. S1 (ESI†) shows the spectral
response (transmittance) of eight different samples, with the
values of contaminant load measured in laboratories. For
instance, sample 1 is an example of raw water with a high
contaminant load, and sample 8 is treated water from tertiary
treatment. The tests were carried out in accordance with
standard methods (SM) and International Organization for
Standardization (ISO): ISO 6060:1989 for COD; SM 5210 D for
BOD5; SM 2540 F for TSS; SM 4500-NC for TN, and SM 4500-
P B for TP.

2.2. Spectrophotometry equipment developed

To carry out the spectral analysis of the samples, the authors
have developed an LED spectrophotometry equipment37

shown in Fig. 1, which is capable, by means of a rotating disk
of 33 LED lights of different emission range, to carry out the
analysis of the samples over 81 wavelengths comprised
between 380–700 nm (visible spectrum). The sample is
manually introduced into the equipment by means of a
standard spectrophotometric cuvette.

2.3. Symbolic regression

The generation of models based on genetic algorithms (GA),
has been carried out through the HeuristicLab software
developed by ref. 38. The modeling technique used was
offspring selection (OS),38 as it is one of the techniques that
provides the best results, as demonstrated by studies such as
ref. 39–41 or 30–33.

For the generation of the models, the ratio 66–34% has
been used for the training and test data, respectively. All GA
models have been calculated after eliminating outliers with a
mutation rate of 20%.

Fig. S2 of the ESI† shows a simplified diagram of the
process of generating the models based on genetic
algorithms.

In order to introduce new characteristics (genes) that may
be useful in the evolutionary process, random mutations are
introduced. The new individuals generated are evaluated in
terms of RMSE, and only the best ones will be the ones that
will generate the next generation. The process is repeated for
a certain number of generations until an individual (model)
is reached that is able to best model the response variable.

2.4. Global and individual trend lines by colour groups
approximation

Wastewater samples respond to visible light (380–700 nm)
with a line whose slope and height change based on the
amount of contamination. Greater contamination leads to a
steeper slope but lower overall height (less light transmitted).

Fig. 1 View of the equipment developed to carry out the
spectrophotometric analysis in the different WWTPs.

Fig. 2 Approximation of the spectral response (transmittance) plots of
a wastewater sample to global trend line and multiple trend lines for
each of the colour groups present in the 380–700 nm spectrum.

Environmental Science: Water Research & TechnologyPaper
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Fig. 2 shows the spectral response (transmittance),
between 380–700 nm, of a raw wastewater sample with a
COD of 779 mg l−1, which is shown in black.

Superimposed on the spectral response, the
approximation of the spectral response to a global trend line
(dashed line) is shown as an approximation formed by
individual trend lines for each colour group of the supported
visible spectrum carried by the developed equipment in Fig.
S2:† violet (380–427 nm), blue (427–476 nm), cyan (476–497
nm), green (497–570 nm), yellow (570–581 nm), orange (581–
618 nm) and red (618–780 nm). For clarity, each region has
been delimited with its characteristic colour, where the
extension of each zone corresponds to the wavelengths
installed in the developed equipment.

2.5. Hybrid characterization models. Decision trees

The spectral response of a wastewater sample provides very
relevant information to carry out its characterization through
estimation models. Depending on the characteristics of this
spectral response, it may be more appropriate to apply one of
these three GA models: one based on point values of the
spectral response, or an approximation based on trend lines,
either global (a line that fits the entire working spectrum) or
from multiple trend lines for each colour group.

In order to determine which model is most appropriate to
apply in each specific case, the development of hybrid
characterization models based on decision trees is proposed.

Decision trees, due to their characteristics, are more
suitable than other artificial intelligence techniques for
implementing these hybrid models, due to their
requirement of classification as presented in Fig. 3. First,
their computational efficiency is notably superior to other
techniques in terms of the present typology of study, such
as neural networks and genetic algorithms.42 This makes
them an ideal choice for working with large datasets and
for real-time applications.43 Once the decision tree is
trained, making predictions for new instances is fast
because it involves traversing the tree from the root to a
leaf node based on the feature values.44 Decision trees are
efficient data structures that allow for fast search and
retrieval of key variables. The tree structure also enables
quick access to the relevant features and their
corresponding decision rules, making decision trees
efficient for both training and prediction.45

In addition, decision trees are robust to irrelevant data
and noise, as they tend to ignore irrelevant features during
their construction. This capability simplifies data
preprocessing and makes them less sensitive to alterations or
outliers. On the other hand, its handling of missing data is
natural, avoiding the need to eliminate instances or impute
values, something problematic in other techniques such as
genetic algorithms or neural networks. Furthermore, from
the point of view of interpretation, decision trees are highly
understandable, unlike the “black boxes” of neural networks,
since they are based on a nested structure of conditionals

arranged as branches of a tree. Finally, their lower
consumption of computational resources makes them
particularly suitable for systems with low processing capacity,
which is crucial in the development of low-cost equipment
for wastewater analysis.

To clarify its operation, an explanatory flow diagram is
shown in Fig. 3. First, significant differences among the GA
predicted values of pollutants for the three cases (point value,
global and multiple individual trend lines) are searched. In
this case, differences equal or higher than 30% are
considered significant. If this is observed, the decision trees
are trained based on the values of root mean square
difference (RMSD) and sum of absolute differences (SAD)
between the original spectral response and its
approximations to trend lines, that will determine, for each
pollutant parameter and type of wastewater, which model is
more appropriate to apply in each specific case to achieve the
best estimates.

Decision trees have been developed by mean of the Python
Sklearn library.46 Two and three decision trees have been
developed to avoid overfitting. In order to achieve the best
possible model, 10 000 different trees have been generated
for each model, resulting from random recombination of the
data into training and test data, selecting the tree with the
best fit for test data, (which also implies a good fit with
training data). This makes it possible to select the model
with the best performance for both training and test.

2.6. Model performance indicator

The following performance indicators were used to analyze
the performance of the different models presented: percent
bias, PBias,47,48 measuring the average trend of the estimated
values to be higher or lower than the reference value,
R-squared (R2) and RMSE, indicators will be used, which are
shown in eqn (1)–(3) respectively.

PBias %ð Þ ¼
Pn
i

X referencei −Xestimatedið Þ
Pn
i
X referencei

× 100 (1)

R2 %ð Þ ¼ 1 −

Pn
i

X referencei −Xestimatedið Þ2

Pn
i

X referencei −X referenceið Þ2
× 100 (2)

RMSE mg l−1
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i

X referencei −Xestimatedið Þ2

nsamples

vuuut
(3)

where nsamples is the number of samples; and Xreference and
Xestimated are the values measured in the laboratory and those
calculated by the different models, respectively.

Also, to define and train the decision trees, the root mean
square difference (RMSD) and the sum of absolute
differences (SAD) indicators calculated with the differences
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Fig. 3 Flowchart of hybrid model generation and model application based on decision trees.
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between the original spectral measurement and its
approximations to trend lines, were used:

RMSD %ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i

Spoint valuei − Sglobal or multiple trendi

� �2
nwavelengths

vuuut
(4)

SAD mg l−1
� � ¼ Xn

i

S point valueið Þ − S global or multiple trendið Þ
��� ��� (5)

where nwavelengths is the number of wavelengths; and Spoint
value and Sglobal or multiple trend are the surrogates values
measured with spectrophotometer – i.e. transmittance and
absorbance – in the case of point value, or calculated in case
of global and multiple trend lines, respectively.

3. Results and discussion

This section presents the 27 different genetic algorithm
correlation models used, to estimate COD, BOD5, TSS, TN
and TP, 15 for raw and 12 for treated wastewater, respectively,
based on:

- Point values of the original spectral response (without
approximation).

- Approximation of the spectral response to a global trend
line.

- Approximation of the spectral response to multiple
individual trend lines for each color group of the visible
spectrum.

In the case of treated wastewater, the model for TP was
omitted, since the concentrations of this pollutant in the
effluent did not have the minimum variability to be
considered statistically significant to fit a model. This

explains the difference in quantity between the influent raw
wastewater and effluent treated wastewater models.

For each parameter and type of wastewater, additionally a
total of 9 hybrid models, based on decision trees, were also
included (5 for raw wastewater and 4 for treated wastewater)
to determine which of the three types of models – point
value, global or multiple individual trend lines – are most
appropriate in each case. Comparisons between the different
techniques and the one provided by the hybrid model are
also included to demonstrate that the hybrid model provides
the best possible estimate in most each case.

In order to clarify the exposition, Table 1 shows, as a
summary, the variables used for each of the types of
characterization models that will be presented in Tables 2
and 3 of this research work, related to raw and treated
wastewater, respectively.

For clarity, this manuscript will only show the models
related to COD, presenting the rest of the pollutant
parameters (BOD5, TSS, TN and TP) in summary form in
Table 2, while in the Supplementary Information all these
models are presented in detail as well as their main
indicators and a performance comparison with respect to the
reference values measured in the laboratory and those
estimated by the models.

3.1. Specific estimation model for raw wastewater samples

Table 2 shows a summary of the GA models calculated for
each of the pollutants studied, indicating their Pearson's
Coefficient for training and test, as well as their RMSE, PBias,
R2, and the R2

PV that is the Pearson's coefficient in case of
considering the GA model from the point values of the
original spectral response, i.e. without applying any

Table 1 Summary of the variables used in each of the models presented in Tables 2 and 3

Variables

Model

Variables

Model

Ha Gb Pc Sd Ha Gb Pc Sd

Transmittance 380–700 nm ✓ MGlobal ✓

Absorbance 380–700 nm ✓ NGlobal ✓

RMSDGlobal ✓ MViolet ✓

SADGlobal ✓ NViolet ✓

RMSDViolet ✓ MBlue ✓

SADViolet ✓ NBlue ✓

RMSDBlue ✓ MCyan ✓

SADBlue ✓ NCyan ✓

RMSDCyan ✓ MGreen ✓

SADCyan ✓ NGreen ✓

RMSDGreen ✓ MYellow ✓

SADGreen ✓ NYellow ✓

RMSDYellow ✓ MOrange ✓

SADYellow ✓ NOrange ✓

RMSDOrange ✓ MRed ✓

SADOrange ✓ NRed ✓

RMSDRed ✓

SADRed ✓

a Hybrid characterization model. b Model based on global trend line. c Model based on individual trend lines of the different groups of colours
of the visible spectrum. d Model based on point values of the original spectral response without approximation.
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approximation to it, as well as the mean error (ME) and
standard deviation of the error (SD).

As can be observe in Table 2, the use of characterization
models that make use of the approximation of the spectral
response to global (G) or individual trend lines for each
colour group (P), provide slightly lower levels of adjustments
than those obtained by models based on point values of the
visible spectrum. This can be observed, for example, in the
case of COD, the global model and the model based on
individual lines present an R2 of 70.89% and 72.65%
respectively, settings very close to those obtained by the
model based on point values of the spectrum (75.88%). This
is particularly relevant since, although the fit obtained is
lower, these models require much fewer input variables,
since they only use the values of slope (M) and ordinate at
the origin (N) instead of the point values of transmittance

and absorbance at the different wavelengths, which means
that a smaller number of wavelengths are required for their
determination.

The use of a hybrid estimation model provides the best
results, up to almost 5% with respect to the best model in
each case, especially in the case of BOD5, where it is observed
that the hybrid model (Fig. S11†) provides an R2 of 66.27%,
with respect to 61.5% of the model based on point values of
the spectrum, eqn (S1).†

The different GA models mentioned above, as well as the
hybrid model based on decision trees, are shown below for
COD, while the rest of parameters are shown in the ESI.†

In order to clarify the exposition, the value of the slope
and the ordinate at the origin of the overall trend line of the
spectral response of the sample has been designated as
MGlobal and NGlobal, and the values of slope and ordinate at

Table 2 Summary of the raw wastewater models

Pearson's coefficient

Eqn/tree Parameter Modela Training (%) Test (%) PBias (%) RMSE (mg l−1) R2 (%) ME (mg l−1) SD (mg l−1) R2
PV

b (%)

Eqn (6) COD G 72.09 70.55 2.890 212.91 70.89 155.77 145.37 75.88
Eqn (7) COD P 74.96 70.18 1.329 205.63 72.65 151.74 138.99
Fig. 4 COD H — — −1.578 187.59 77.40 128.74 136.65
Eqn (S1)† BOD5 G 66.36 51.47 0.546 154.67 60.86 105.89 112.59 61.50
Eqn (S2)† BOD5 P 67.86 54.17 0.306 150.54 62.92 101.52 111.14
Fig. S3† BOD5 H — — 0.069 143.36 66.27 95.74 106.86
Eqn (S4)† TSS G 61.90 70.37 −1.434 88.39 64.81 68.45 56.01 72.00
Eqn (S5)† TSS P 67.42 71.95 −1.622 83.17 68.84 64.4 52.72
Fig. S5† TSS H — — 0.569 75.73 74.17 56.04 51.02
Eqn (S7)† TN G 60.48 52.08 0.681 18.01 57.48 13.55 11.88 62.26
Eqn (S8)† TN P 68.12 53.86 −0.158 16.89 62.62 12.77 11.06
Fig. S7† TN H — — −0.234 16.48 64.40 12.17 11.13
Eqn (S10)† TP G 54.77 61.07 −0.975 2.66 56.66 2.01 1.74 58.88
Eqn (S11)† TP P 59.05 57.46 −0.813 2.61 58.40 1.89 1.8
Fig. S9† TP H — — 0.801 2.49 62.16 1.75 1.77

a G: model based on global trend line; P: model based on individual trend lines of the different groups of colours of the visible spectrum; H:
hybrid estimation model. b R2

PV is the Pearson's coefficient of the GA model from point value, which is collected in eqn (8) for COD, eqn (S3)†
for BOD5, eqn (S6)† for TSS, eqn (S9)† for TN and eqn (S12)† for TP.

Table 3 Summary of the treated wastewater models

Pearson's coefficient

Eqn/tree Parameter Modela Training (%) Test (%) PBias (%) RMSE (mg l−1) R2a (%) ME (mg l−1) SD (mg l−1) R2
PV

b (%)

Eqn (9) COD G 52.26 16.09 −0.472 12.74 29.39 9.82 8.12 48.78
Eqn (10) COD P 61.17 32.62 1.141 10.75 49.70 8.15 7.01
Fig. 7 COD H — — 0.271 10.30 53.84 7.71 6.84
Eqn (S13)† BOD5 G 23.84 20.77 −1.234 1.90 22.78 1.36 1.33 35.98
Eqn (S14)† BOD5 P 23.13 41.74 −0.553 1.78 32.27 1.22 1.3
Fig. S11† BOD5 H — — 1.418 1.56 47.91 1.06 1.15
Eqn (S16)† TSS G 28.85 29.45 −3.651 3.66 28.74 2.88 2.27 30.07
Eqn (S17)† TSS P 36.04 27.82 −2.357 3.59 31.42 2.83 2.22
Fig. S13† TSS H — — 2.446 3.16 46.82 2.4 2.06
Eqn (S19)† TN G 32.86 13.46 2.178 8.56 24.26 6.5 5.59 38.82
Eqn (S20)† TN P 56.98 31.04 −1.701 7.04 48.88 5.42 4.5
Fig. (S15)† TN H — — 3.541 5.86 64.55 4.06 4.23

a G: model based on global trend line; P: model based on individual trend lines of the different groups of colours of the visible spectrum; H:
hybrid estimation model. b R2

PV is the Pearson's coefficient of the GA model from point value, that is collected in eqn (11) for COD, eqn (S15)†
for BOD5, eqn (S18)† for TSS and eqn (S21)† for TN.
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the origin for a particular colour group as MColor, NColor,
respectively.

3.1.1. GA model based on global trend line for COD. Eqn
(6) shows the model for estimating COD from the global
trend line of the spectral response. This model has been
calculated from 327 samples after eliminating outliers,
obtaining a Pearson's coefficient of 72.09% for training and
70.55% for test.

COD mg l−1
� � ¼

c0
MGlobal

− c1 − c2 ×NGlobalð Þ
� �

c3 − c4 ×NGlobalð Þ − c5 ×NGlobalð Þ2 þ c6 (6)

c0 = 714.55; c1 = 986, 635.57; c2 = −848, 202.49; c3 = −782.28;
c4 = −1812.3; c5 = 83.71; c6 = 175.29.

3.1.2. GA model based on multiple individual trend lines
for each colour group for COD. The estimation model from
the trend lines of the different colour groups into which the
visible spectrum is divided is shown in eqn (7), which
presents a Pearson's coefficient of 74.96% for training and
70.18% for test.

COD mg l−1
� � ¼ c0 ×MCyan

MGreen
þ c1 ×NYellow þ c2 ×NBlueð Þ

� �
þ c3 ×NGreen þ c4ð Þ × c5 ×MBlue

� �
þ c6

(7)

c0 = −0.59; c1 = 141.91; c2 = −941.48; c3 = −361.62; c4 = 289.55;
c5 = 2120.06; c6 = 719.68.

3.1.3. GA model based on point values of the spectral
response for COD. Eqn (8) shows the model for estimating
COD from point values of the spectral response, achieving a
Pearson's coefficient of 76.50% for training and 75.28% for
test.

COD mg l−1
� � ¼ c0 ×T420 þ c1 × A627ð Þ þ c2 × A530

c3 ×T560 þ c4 × A415 þ c5 × T420 þ c6 ×T640

� �

þ c7

(8)

c0 = 2, 641, 761.1; c1 = −1, 126, 720.7; c2 = 2, 875, 300.6; c3 =
−2, 115.4; c4 = 598.9; c5 = 3,765.3; c6 = 524.16; c7 = −1, 204.9.

3.1.4. Hybrid characterization model based on decision
trees for COD. Fig. 4 shows the classification tree for the
hybrid model of combined water characterization for COD,
with a R2 of 70.83% for training and 78.05% for test.

The high estimation of all models can be seen in the
scatter plots in Fig. 5, where the scatter plot in Fig. 5C
(hybrid characterization model) shows a lower dispersion of
the data, which denotes an improvement in the ability to
characterize the sample with respect to the exclusive use of
other techniques.

Fig. 6 shows a comparison between 20 random raw water
samples taken at random, between the reference values

measured in the laboratory (blue), and the COD values
estimated from the global (eqn (6), orange) and multiple (eqn
(7), grey) trend line models, as well as with the model based
on spectral point, eqn (8), and hybrid model (green chart,
Fig. 4).

In some samples, it is observed that the model based
on multiple trend lines (eqn (7), grey) provides better

Fig. 4 Classification tree for hybrid model of raw wastewater characterization for COD.

(7)
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estimates than those provided by the model based on
point values of the spectrum (yellow), as, for example, is
the case of sample number 8, where for a reference value
of 230 mg l−1, the model based on multiple trend lines
estimates a value of 220 mg l−1, while the one based on
point values of the spectrum (yellow) provides an estimate
of 259 mg l−1.

The hybrid estimation model (Fig. 4), provides in
most cases the best estimate, since thanks to the
methodology presented in this research work, it is
possible to determine which is the best model to apply
in each specific case, as shown in Fig. 6 (green graph).
This is identical to what happens in the rest of the
hybrid models (Fig. S4, S6, S8 and S10†), as can be
seen in their respective scatter plots (Fig. S5, S7, S9 and
S11†) for each parameter supported in the present
research work.

3.2. Specific estimation model for treated wastewater
samples

Table 3 shows a summary of the different correlation models
calculated for treated wastewater samples for each of the
pollutant parameters considered.

As can be seen in Table 3, in most parameters, models
based on trend lines of the different groups of colours of the
visible spectrum, do provide a much higher fit than those
based on global line, and even that the models based on
point values of the spectrum.

Considering the RMSE of the models presented in
Table 3, it can be seen that they have a high accuracy, with a
particularly low RMSE in the BOD5 and TSS models, with a
value between 1.56 and 3.66 mg l−1.

As shown in Table 3, the hybrid model of
characterization presents a substantial improvement in the

Fig. 5 Scatter plot between laboratory measured COD values (measured) and those estimated by: (A) global model, eqn (6). (B)
Individual trend model, eqn (7). (C) Hybrid estimation model. (D) Model based on spectral point values by offspring selection technique,
eqn (8).
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treated water samples, achieving an improvement between
2.61% and 26.32% better fit with respect to the model
based only on point values of the spectrum. This
improvement is more noticeable in the case of the TN,
where an R2 of 64.55% has been achieved, compared to
48.55% of the model based on multiple lines (eqn (S26)†)
and 38.82% of the model based on point values of the

spectrum (section S4.2†). In term of RMSE, hybrid model
obtains an RMSE of 5.86 mg l−1, compared to 8.56 mg l−1

and 7.04 mg l−1 for the models based on global trend line
and multiple trend lines, respectively.

The different models calculated for COD in treated
wastewater are shown below, the rest of the parameters being
in section S2 of ESI.†

Fig. 6 Comparison for 20 samples of raw wastewater taken at random, between reference COD values measured in the laboratory and eqn (6),
(7), spectral point value model, eqn (8) and hybrid estimation model (Fig. 4).

Fig. 7 Classification tree for hybrid model of treated wastewater characterization.
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3.2.1. GA model based on global trend line for COD. The
model to estimate COD from the global trend line of the
spectral response, based on 289 treated wastewater samples,
after eliminating the outliers, is shown in eqn (9). The model
shows a Pearson's coefficient of 52.26% for training and
16.09% for testing.

COD (mg l−1) = c0 × MGlobal × (c1 − c2 × NGlobal)
× (c3 × MGlobal × c4 − (c5 − c6 × NGlobal)) + c7 (9)

c0 = −420.03; c1 = 649.90; c2 = 1, 022.53; c3 = −1, 130.88; c4 = 1,
124.62; c5 = 545.61; c6 = −43.60; c7 = 18.916.

3.2.2. GA model based on multiple individual trend lines
for each colour group for COD. The model of eqn (10) is
focus on estimating COD using the trend line of the different
colour groups, with a Pearson's coefficient of 61.17% and
32.62% for training and test, respectively.

COD mg l−1
� � ¼ c0 ×NBlue þ c1ð Þ × c2 ×MRed − c3 ×MVioletð Þ

c4 ×NRed − c5 ×NGreenð Þ þ c6 ×MViolet þ c7ð Þ
þ c8 (10)

c0 = −760.08; c1 = 144.18; c2 = −887.13; c3 = −220.21; c4 =
−15.6; c5 = −5.73; c6 = −23.10; c7 = 5.62; c8 = 47.53.

3.2.3. GA model based on point values of the spectral
response for COD. Eqn (11), shows the model for
estimating COD from point values of the spectral
response for treated wastewater samples, achieving a
Pearson's coefficient of 60.66% for training and 34.42%
for test.

COD mg l−1
� � ¼ c0 ×T586 − c1 × A660

c2
×
c3 × A415
A660

× c4 ×T430 þ c5 × A550ð Þ þ c6

(11)

Fig. 8 Scatter plot between laboratory measured COD in treated wastewater samples values (measured) and those estimated by: (A) global
model, eqn (9). (B) Individual trend model, eqn (10). (C) Hybrid estimation model. (D) Model based on spectral point values by offspring selection
technique, eqn (11).
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c0 = −6.79; c1 = −16.93; c2 = 2.90; c3 = 1.42; c4 = 0.66; c5
= −16.09; c6 = 0.76.

3.2.4. Hybrid characterization model based on decision
trees for COD. Fig. 7 shows the classification tree for the
hybrid characterization model for treated water for COD, with
a R2 of 56.85% for training and 66.20% for test.

Fig. 8 shows the scatter plot, where the high fit of all
models can be observed.

Fig. 9 shows a comparison for 20 real treated
wastewater samples taken at random from the 650
samples taken at the 43 WWTPs studied in this research
work.

Although the estimation levels provided by the three
are similar, the hybrid model (Fig. 7), provides the best
estimates in all cases (green chart). This is identical to
what occurs in the rest of the hybrid models (Fig. S11,
S13 and S15†), as can be seen in their respective scatter
diagrams (Fig. S12, S14 and S15†) for each supported
parameter in the current research work. This high
performance can be also seen in the scatter diagrams
for the rest of parameters supported (Fig. S12, S14 and
S16†).

Table S2 in ESI† shows an example application of the
hybrid characterization model based on the decision tree
shown in Fig. 7 for 20 treated wastewater samples taken at
random, where it is shown that the hybrid model determines,
in most cases, the most appropriate estimation model from
RMSD and SAD, achieving the best possible estimation in
each case.

In order to analyze the effect of external agents such as
temperature changes or vibrations on the spectral response,
an analysis of the performance of the different models

presented in this research work in terms of RMSE has been
carried out in Table S3 of the ESI.†

For this purpose, random noise has been introduced at
different intensity levels: 2, 5, 10, 15 and 20%, being the
latter disturbance levels higher than those that could be
observed in real operating conditions. This disturbance
levels were introduced by multiplying the transmittance
values associated to each wastewater sample by a random,
that achieves the maximum of the respective perturbation
level – from 2% to 20% – and is also multiplied by the
standard deviation of each of the transmittance
measurements. The results obtained indicate that the use
of the hybrid model allows to reach lower RMSE than using
any of the models presented in this research work, up to a
maximum perturbation of 10%, after which the best
characterization is achieved with the models based on
global trend lines.

This shows the good performance of the hybrid
characterization models in the face of spectral response
alterations under real operating conditions.

3.3. Wastewater type classification

In order to carry out the characterization of a water sample
automatically, a preliminary step is to determine whether the
sample is raw or treated wastewater, in order to decide which
set of hybrid models to apply. For this reason, Fig. 10
presents a model based on decision trees, which, based on
the ordinate at the origin (N) and the slope (M) of the global
trend line of the spectral response, is able to determine, with
an R2 of 95.46% for training and 96.8% for test, what type of
wastewater it is.

Fig. 9 Comparison for 20 samples of treated wastewater taken at random, between reference COD values measured in the laboratory and eqn (9)
and (10), spectral point value model, eqn (11) and hybrid model (Fig. 7).

Environmental Science: Water Research & Technology Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d 
on

 1
0/

15
/2

02
4 

1:
59

:0
6 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ew00410d


3002 | Environ. Sci.: Water Res. Technol., 2023, 9, 2990–3007 This journal is © The Royal Society of Chemistry 2023

This is especially relevant in automatic characterization
systems, so that they can operate indistinctly with samples of
raw or treated wastewater indifferently, determining, at each
moment, the best estimation model to apply.

4. Conclusions

The spectral response provides very relevant information
about the properties of a sample, which can be used, with
the help of correlation models, to estimate the contaminant
load. However, sometimes, the spectral response of a sample,
under real-time operating conditions, can be affected by
external elements such as vibrations or temperature changes,
which may cause irregularities in the spectral response,
making it difficult for correlation models to estimate the
pollutant load to provide accurate values.

The present research work presents a methodology to
improve the ability to estimate the pollutant load of
wastewater from the spectrophotometric response, even
under these conditions, achieving the best possible
characterization.

This consists of a hybrid characterization model based on
decision trees, which, based on the analysis of the spectral
response, determines which of the following characterization
models based on genetic algorithm are most appropriate to
apply in each specific case:

- Model based on point values of the original spectral
response (no approximation)

- Model based on the approximation of the spectral
response to a single global trend line.

- Model based on the approximation of the spectral
response to multiple individual trend lines for each color
group of the visible spectrum.

Once significant differences are observed between the
predictions of the GA models based on point value, global
trend line or multiple individual trend line, a decision tree is
trained using as tools the differences found between the
measured spectrophotometric surrogates, i.e. absorbance and
transmittance, and those obtained from the fits to the global
and multiple lines (as shown in Fig. 5). The analysis of the
spectral response is based on the root mean square
difference (RMSD) and the sum of absolute differences (SAD)

Fig. 10 Water type classification model from the values of ordinate at the origin (N) and slope (M) of the trend lines approximated to lines.
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between the original spectral response and the one
approximated to the global and individual trend lines for
each color group of the visible spectrum (violet (380–427
nm), blue (427–476 nm), cyan (476–497 nm), green (497–570
nm), yellow (570–581 nm), orange (581–618 nm) and red
(618–780 nm)), to determine, in each specific case, and for
each type of pollutant and wastewater, which of the above-
mentioned models to apply in each case to provide estimates
closer to the reference values, achieving in almost all cases to
provide the best possible estimate.

In this work, a total of 27 genetic algorithm models and 9
hybrid models based on decision trees have been calculated
to estimate, in raw and treated wastewater samples,
respectively, the following parameters: chemical oxygen
demand (COD), biochemical oxygen demand at 5 days
(BDO5), total suspended solids (TSS), total nitrogen (TN) and
total phosphorus (TP), measured over around 650 wastewater
samples from 43 WWTPs, taken, from both influent (raw
wastewater) and effluent (treated wastewater). The models
have been organized into two main categories: specific
models for raw wastewater and specific models for treated
wastewater.

Tests carried out in present work show that
characterization models based on spectral response
approximation (i.e., those based on a single overall trend line
or on multiple individual trend lines for each color group)
provide slightly lower levels of adjustments compared to
models based on point values of the visible spectrum.
However, these models require fewer input variables, since
they only use slope and ordinate at the origin.

The improvement of the hybrid characterization model
has allowed, in raw wastewater samples, an improvement
in the adjustment levels of up to 5% with respect to
using only models based on point values of the spectrum.
In the case of treated wastewater samples, the
improvement provided by the hybrid characterization
model is up to 26.32% with respect to only using the
model based on spectral point values, being this
improvement much more remarkable in the case of TN,
which goes from an R2 of 38.82% to 64.55% with the
hybrid models. In terms of RMSE, the hybrid
characterization model allows reaching values of 5.86 mg
l−1, compared to 8.56 mg l−1 and 7.04 mg l−1 for the
models based on global trend line and multiple trend
lines, respectively.

This greater precision of the models can be seen if a
comparison is made with other research studies. This can be
seen in the characterization of COD in raw water samples,
where the model in Fig. 4, presents an RMSE of 187.59 mg
l−1, compared to 128.40 mg l−1 of ref. 49, or in the case of
treated water, works such as ref. 50 and 51, or ref. 52, present
RMSE levels of 40, 19 and 11 mg l−1 respectively (where they
use spectrophotometric analysis in the range of 400–1700 nm
and 200–500 nm), higher than the 10.30 mg l−1 reached with
the model in Fig. 7 which only operates in the visible region
of the spectrum (380–700 nm).

The improvement achieved with the use of hybrid
models is most clearly observed in the case of treated
water. In BOD5, the model in Fig. 7, trained from samples
of 43 WWTPs, presents an RMSE of 1.56 mg l−1, much
lower than that observed for example in the work of
Inagaki et al.,55 2010 from NIR spectroscopy, with a high
RMSE of 29.40 mg l−1.

In the case of TSS, the highest performance of the hybrid
model is observed both in raw water samples (Fig. S5†),
where an RMSE of 75.73 mg l−1 is obtained, lower than other
works such as ref. 53 (83.26 mg l−1), and in treated water,
where an RMSE of 3.16 mg l−1 is reached, compared to other
works such as Carré et al.,18 2013 (3.5 mg l−1 from 179
wastewater samples).

For TN, the superiority of the hybrid models presented in
this research work is highlighted, in raw water (Fig. S7†), the
RMSE is 16.48 mg l−1, compared to 53 mg l−1 of ref. 54, while
in the case of treated water (Fig. 15), the level of fit achieved
is similar to that of other work such as ref. 55 with an RMSE
of 5.10 mg l−1.

The higher accuracy of the hybrid models, it is worth
noting that all of them have been trained with a much
larger number of 43 WWTP samples, which further
reinforces the robustness of the results achieved. In
addition, the models presented in this research work
use only wavelengths belonging to the visible region of
the spectrum (380–700 nm), contrary to the other
research works that make use of a wider emission range
that includes the ultraviolet and near-infrared spectrum,
which denotes a greater robustness of the models
presented.

On the other hand, most of the works presented make use
of a reduced number of samples, generally taken from the
same sampling point, which limits their usability.

The use of artificial intelligence techniques such as
genetic algorithms or decision trees, allow to achieve models,
not only more accurate and faster to run by any system with
low computing power (a key aspect in the development of
low cost systems), but also more easily understandable by the
user.

This methodology demonstrates the suitability of
variable wavelength spectrophotometry as a technique to
accurately characterize the pollutant load of wastewater,
making possible to carry out a characterization under real
operating conditions, achieving the best possible fit
despite the fact that external agents (temperature changes,
bubble formation, vibrations, etc.) may introduce certain
alterations in the spectrophotometric response of the
samples.

A more exhaustive comparison is shown in Table 4 of
Appendix A.
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Table 4 Comparison of characterization models organized by pollutant parameter and water type with respect to other research works

Source Parameter
Type of
wastewater

Number
of samples

Number
WWTPs/points Device/lab technique Wavelengths

Modeling
technique

PBias
(%)

RMSE
(mg l−1)

R2

(%)

Current
research
(Fig. 4)

COD Raw 325 43 LED
spectrophotometer
developed by the
authors

380–700 nm Decisions tree
and genetic
algorithms

−1.578 187.59 77.40

Ref. 49 84 Commercial
spectroscopy

400–1000
nm

128.40

Current
research
(Fig. S3†)

BOD5 Raw 325 43 LED
spectrophotometer
developed by the
authors

380–700 nm Decisions tree
and genetic
algorithms

0.069 143.36 66.27

Ref. 49 84 Commercial
spectroscopy

400–1000
nm

77.81

Current
research
(Fig. S5†)

TSS Raw 325 43 LED
spectrophotometer
developed by the
authors

380–700 nm Decisions tree
and genetic
algorithms

0.569 75.73 74.17

Ref. 49 84 Commercial
spectroscopy

400–1000
nm

83.26

Current
research
(Fig. S7†)

TN Raw 325 43 LED
spectrophotometer
developed by the
authors

380–700 nm Decisions tree
and genetic
algorithms

−0.234 16.48 64.40

Ref. 53 Commercial
spectroscopy

300–570 nm PCR 22 53
PLS

Current
research
(Fig. 7)

COD Treated 325 43 LED
spectrophotometer
developed by the
authors

380–700 nm Decisions tree
and genetic
algorithms

0.271 10.30 53.84

Ref. 50 40 1 Hyperspectral
camera

400–1700
nm

SPA — 40.4489 97
GA

Ref. 51 87 3 Near-infrared
reflectance
commercial
spectrometry

PLS 19 97

Ref. 52 150 — Commercial
spectroscopy

200–500 nm PLS — 10.384 0.945
Ref. 52 150 — 200–500 nm SVM — 11.472 0.931
Ref. 52 150 — 200–500 nm BP-NN — 10.650 0.979
Current
research
(Fig. 11)

BOD5 Treated 325 43 LED
spectrophotometer
developed by the
authors

380–700 nm Decisions tree
and genetic
algorithms

1.418 1.56 47.91

Ref. 55 BOD 55 1 NIR spectroscopy 80 29.40
Current
research
(Fig. 13)

TSS Treated 325 43 LED
spectrophotometer
developed by the
authors

380–700 nm Decisions tree
and genetic
algorithms

2.446 3.16 46.82

Ref. 56 179 1 240–400 Linear-PLS — 3.5
Current
research
(Fig. 15)

TN Treated 325 43 LED
spectrophotometer
developed by the
authors

380–700 nm Decisions tree
and genetic
algorithms

3.541 5.86 64.55

Ref. 55 55 1 NIR spectroscopy 78 5.10

SPA: successive projections algorithm. GA: genetic algorithms. PLS: partial-least-square. BP-NN: back-propagation neural network. PCR:
principal components regression.
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