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Machine learning and analytical methods for
single-molecule conductance measurements

Yuki Komoto, ab Jiho Ryu a and Masateru Taniguchi *a

Single-molecule measurements of single-molecule conductance between metal nanogap electrodes

have been actively investigated for molecular electronics, biomolecular analysis, and the search for novel

physical properties at the nanoscale level. While it is a disadvantage that single-molecule conductance

measurements exhibit easily fluctuating and unreliable conductance, they offer the advantage of rapid,

repeated acquisition of experimental data through the repeated breaking and forming of junctions.

Owing to these characteristics, recently developed informatics and machine learning approaches have

been applied to single-molecule measurements. Machine learning-based analysis has enabled detailed

analysis of individual traces in single-molecule measurements and improved its performance as a

method of molecular detection and identification at the single-molecule level. The novel analytical

methods have improved the ability to investigate for new chemical and physical properties. In this

review, we focus on the analytical methods for single-molecule measurements and provide insights into

the methods used for single-molecule data interrogation. We present experimental and traditional

analytical methods for single-molecule measurements, provide examples of each type of machine

learning method, and introduce the applicability of machine learning to single-molecule measurements.

Introduction

Machine learning has made remarkable progress in recent
years and has attracted attention for its applications in a variety
of fields, including chemistry and nanoscience.1–4 New scientific

insights can be gained by using machine learning to obtain more
information from data. Single-molecule measurement is an area
where machine learning is desirable due to the amount of
data available, the variability of the data and the difficulty of
interpretation. Single-molecule measurement is a technique for
assessing the electrical conductance of a single molecule
between metal nanogap electrodes (Fig. 1).5–13 It originated from
the theoretical proposal of the molecular diode by Aviram and
Ratner.14 Subsequent advances in experimental techniques have
enabled researchers to actively pursue molecular electronics
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using functional molecular junctions as devices.8,11,15–21 Nota-
bly, molecular junctions composed of functional molecules have
been reported as essential components in devices such as
diodes,15–18 switches,19,20 and transistors.11,21 In the early stages

of research on single-molecule measurements, the primary
objective was to develop molecular devices as shown in Fig. 1b
and e. Since Di Ventra’s group theoretically proposed DNA and
RNA sequencing using single-molecule measurements, this novel
application of the technique has received attention as shown in
Fig. 1c and f.22–24 The research of single-molecule measurements
has developed to successfully measure the conductance of nucleo-
tides in DNA and RNA25–30 and amino acids.31–37 As the nature of
single-molecule measurements allows for the measurement of
the direct conductance of a single molecule, they are expected
to flourish as a new analytical method that is highly sensitive,
rapid, and requires no pre-treatment steps. Furthermore, single-
molecule measurements play a crucial role in the investigating
of novel physical and chemical properties in the nanoscale.
Recent research has focused on elucidating the mechanisms of
electrical38,39 and thermal conduction at the nanoscale,40,41 obser-
ving quantum interference,42–44 and detecting and enhancing
chemical reactions at the single-molecule level through the nano-
gap environment Fig. 1d and g.45–47 Regardless of the application,
accurately measuring the conductance and identifying the mole-
cular junction structure are critical. However, it is difficult to
precisely identify and understand the structures of single-
molecule junctions. The typical method of measuring the ensem-
ble average of molecules of the order of Avogadro’s number
cannot be applied to single-molecule measurements. Electrical
conductance measurements are the primary methods used to
determine the structure of single-molecule junctions. However,
the conductance of a single molecule varies widely, even for
repeated measurements of the same molecule.48–53 Moreover,
the order of magnitude of conductance differs among reporting
groups,54–56 mainly because of variations in single-molecule junc-
tion structures and migration of metallic electrodes.48–50,52,53

The molecule-electrode coupling and the energy alignment of
the conduction orbital of the bridging molecule determine the
single-molecule conductance. Changes in the electrode or adsorp-
tion structures of the molecule alter the coupling and conduction
orbital levels, which easily affect the conductance owing to noise
or external stimuli. Therefore, in single-molecule measurements,
conducting only a single trace is insufficient for discussing
the properties of single-molecule junctions. Both experimental
methods and data analysis need to be developed. Experimental
methods for reliable measurements and analytical techniques
for obtaining statistical data have been developed for single-
molecule measurements. One of examples of experimental devel-
opment is exploring more stable and well-defined contact
with direct bonding between molecule and electrodes via C–C
bonding.45,57,58 In aspect of analysis, in broader science, the
recent remarkable development of machine learning technology
has had a significant impact on a wide range of fields, including
nanotechnology.1–3 The development of deep learning, which
trains large amounts of data and has nonlinear and highly
expressive capabilities, has been particularly noteworthy.2 In
addition to deep learning, the accessibility of a wide variety
of machine learning analyses has been improved by user-
friendly software and the development of new methods such as
XGBoost and LightGBM.59–61 Consequently, machine learning-

Fig. 1 (a) Schematic image of single-molecular junction. (b–d) Schematic
view of purposes of single-molecule measurement, (b) molecular device,
(c) single DNA sequencing, and (d) single-molecule reaction. (e) molecule
reported as single-molecule diode. Reprinted with permission from Ref. 18.
Copyright 2023 American Chemical Society. (f) Current histogram of DNA
nucleobases. Different nucleobases represent different single-molecule
current. Reprinted with permission from Ref. 25. CC BY-NC-SA3.0. (g)
Example of detection of chemical reaction with single-molecule measure-
ment. Detection ratio between two classes increase with time. Reprinted
with permission from Ref. 107 Copyright 2023 Royal Society of Chemistry.
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based analysis has also attracted attention in the single-molecule
measurements field.62 This review focuses on the development of
analysis techniques for single-molecule measurements, particu-
larly those utilising informatics approaches, which have been
advancing rapidly in recent years.

First, the experimental technique is briefly described. The
most common method is the break junction (BJ) method,
which includes the mechanically controllable break junction
(MCBJ)63–67 and the Scanning Tunnelling Microscope (STM)-BJ
method68 represented in Fig. 2a and b, respectively. The MCBJ
method involves breaking metal wires on an elastic substrate to
create a nanogap, while the STM-BJ method measures the
conductance of a molecule between the substrate and STM tip.
The first report of single-molecule conductance using the MCBJ
method showed only several single-molecule conductance
measurements.66 The MCBJ’s ability to form stable and control-
lable nanogaps led to the development of methods to measure
the vibrational state of molecules by changing voltage, such as
point-contact spectroscopy (PCS) and inelastic tunnelling
spectroscopy (IETS).67,69–71 These techniques require low-
temperature environments for experiments, limiting them to
basic research. However, after the STM-BJ method was reported
in 2003, single-molecule measurements became executable in a
commercially available setup, and various molecules were sub-
sequently measured for their conductance.68 In this report, the
authors not only used STM but also performed a statistical
treatment of conductance through repeated breakup and for-
mation, thereby increasing the reliability of conductance mea-
surements. There are two types of conductance measurement

methods in the BJ method. One is the I–z method, which
measures current (I) during the process of breaking the junction
by continuously increasing the nanogap distance (z) as shown in
Fig. 2c, and the other is the I–t method, which measures
conductance-time (t) after nanogap formation by keeping the
nanogap distance constant as shown in Fig. 2d. Recently, not only
break junction of metallic contact but also the I–t method using
graphene electrodes have also attracted attention using, which
provide a stable measurement by direct C–C bonding.45,57,58 Sub-
sequently, methods other than conductance measurements have
been developed, such as current–voltage (I–V) characteristic
measurements,72–76 thermoelectric voltage measurements,77–80

and electrochemical measurement techniques9,81 to investigate
electronic structures. Raman spectroscopy is used for spectroscopic
measurements of vibrational states,82,83 and shot noise is used for
conduction channel measurements.84,85 These measurement tech-
niques have improved the amount of information obtained from
single-molecule measurements. However, these elaborate experi-
ments are experimentally costlier in comparison to simple con-
ductance measurements.

Histogram-based analysis

In single-molecule conductance measurements, a plateau observed
in the conductance trace is commonly interpreted as an indication
of single-molecule conductance. However, similar plateaus are also
observed in blank measurements. Although plateaus are more
frequently observed in samples containing molecules, a single trace
alone is insufficient to determine their presence. Therefore,
histogram-based analysis is the most fundamental and important
statistical analysis method for single-molecule measurements.5–13

Conductance histograms are typically created by accumulating
conductance traces during the rupture process, and single-
molecule conductance is then determined from the peak positions
of the histogram. Although the single-molecule conductance is the
most fundamental information, the peak width also contains
information about the molecular junction. A series of conductance
values determined from the histograms under different conditions
provides more detailed information. The decay constants for the
molecular series are determined using single-molecule conduc-
tance-molecular length plots. The decay constant depends on the
conduction orbital level of the molecular backbone and broadening
of the conjugated system.86,87 Experiments are also often per-
formed at varying temperatures. The temperature dependence of
the single-molecule conductance obtained at each temperature
provides information on the conduction mechanism.39 For
example, tunnelling conduction shows no temperature depen-
dence, while hopping conduction shows Arrhenius-type tempera-
ture activity. Therefore, the conductance histogram provides basic
information about the single-molecule junction under study.

In addition to conductance measurements, histograms are a
commonly used statistical tool for other parameters related to
junction stability. These parameters include the junction pla-
teau length, retention time, and snapback distance.88–91 The
snapback distance is the distance travelled by the electrode
immediately after breakage, which is defined by the difference
between the elongation distance after gold junction breakage

Fig. 2 (a and b) Schematic illustration of setup of single-molecule
measurement. (a) MCBJ, (b) STM-BJ (c and d) typical conductance profile
image of single-molecule measurement using (c) I–z method and (d) I–t
method. Red highlights represent single-molecule conductance.
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and the distance to metal junction re-formation. Additionally,
a conductance-stretch length 2D histogram can provide a
statistical representation of the overall trace shape.92,93 The
2D histogram displays conductance on the vertical axis and
elongation distance on the horizontal axis, which allows for a
visualization of the statistical behaviour; 2D histograms reveal
the presence of conduction states or illustrate the decay of
conductance with increasing distance.

2D correlation histogram

Additionally, the 2D correlation histogram (2DCH) has proven
to be a powerful tool for understanding molecular junctions
with multiple conduction states.94–97 First, n conductance
traces are individually converted into an m-dimensional con-
ductance histogram. From this n � m matrix, an m � m
correlation matrix is generated, which is then displayed as a
2D heat map in the 2DCH. The values in the 2DCH range from
1 for strong positive correlation, �1 for negative correlation,
and 0 for no correlation at all. The correlation between the two
conduction states related to the frequency of occurrence of the
other state when one state is observed can be easily determined
with the 2DCH. The examples for simulated test data is
represented in Fig. 3. The two datasets exhibit similar conduc-
tance histograms. In 2DCH, there is clear difference in cross
region between the two conductance states. This information is
valuable for inferring the relationship between conduction
states during the breaking process.

Machine learning

Although histograms are commonly used to analyse single-
molecule measurements, they do not capture all information
during the breaking process of single-molecule junctions as
represented in Fig. 4. To compensate for this large measure-
ment variability, the statistical analysis is applied for single-
molecule current profiles. Machine learning algorithms
improve the accuracy of discrimination, regression, and clustering
with multi-dimensional features. Statistical models are trained and
used to identify significant individual measurements to improve
data quality. As mentioned, repeated single-molecule measure-
ments can be collected via repeatedly breaking and forming the
junction despite the variability of the individual conductance
traces. This feature makes single-molecule measurements a pro-
mising research area for machine learning applications. In parti-
cular, deep learning algorithms can optimize a large number of
parameters to improve accuracy,2 a good fit for the large amounts
of data generated in single-molecule measurements.

Typical machine leaning categories are described in Fig. 5.
Machine learning is broadly categorised into supervised and
unsupervised learning. Supervised learning is used to predict
labels and numerical values for unknown data based on a data
set with known labels and values. On the other hand, unsu-
pervised learning is used to provide interpretation for data sets
without explicit labels or values. In the next section, we provide
examples of the application of machine learning to single-
molecule measurements and its use in related research fields.

Unsupervised learning

In unsupervised learning, no explicitly correct labels or numer-
ical errors are provided to the algorithm, and the probability
density of the data is estimated directly from the measured
data. The results of unsupervised learning are often evaluated
using physical interpretations, and validation is often heuristic.
The two main unsupervised learning methods used in single-
molecule measurements are clustering, which involves dividing
data into several groups,98–112 and feature extraction, which
involves reducing the dimensionality of multi-dimensional
data.95,99,106,107,113–115

Fig. 3 Examples of 2DCH. Two datasets constructed from 1500 simu-
lated data were analysed. (a and b) Typical conductance traces. (c and d)
Conductance histograms (e and f) 2D correlation histograms. (a, c and e)
and (b, d and f) were obtained from each dataset.

Fig. 4 (a) Typical conductance traces and (b) conductance histograms of
simulated data. The dataset is constructed from four classes with 1000
traces. Black, blue, red, and green histograms represent histograms of
each class. Gray histogram the cumulative histogram of all data. Gray
histogram cannot provide conductance information of each state.
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Clustering

Clustering is a method used to partition unlabelled data into
multiple groups. Commonly used algorithms include k-means,
Gaussian mixture models, and DBSCAN.116 The k-means method
clusters to determine the centre of gravity of the clusters as the
centroid and assigning data to clusters that are closest to the
centroid. The application example of k-means are quantization of
measurement images and clustering nanoparticle size by mass
spectra of nanoparticle.117,118 GMMs clusters by representing prob-
ability densities with multiple Gaussian distributions. GMM are
used for clustering FRET fluorescence responses and molecular
structures obtained from molecular dynamics calculations.119,120

The DBSCAN algorithm clusters data by its probability density
using a distance in the feature space. DBSCAN is applied to cluster

nanopore current data.121 k-means is simple algorithm and widely
applied, but cannot be applied to data with different variances
between clusters or data that are not spherically distributed since
the data are clustered by distance from the centre. GMMs are also
effective when each cluster has a different variance. k-Means and
GMMs require the number of clusters to be defined in advance.
DBSCAN requires distance between the data in advance. DBSCAN
can also define outliers or noise points.

The pioneering study of the application of clustering to
conductance traces of single-molecule measurements is a mul-
tiparameter vector-based classification process (MPVC)
reported by Lemmer et al.109 In which conductance traces are
treated as vectors and features for clustering are extracted by
transforming each trace into three characteristic quantities.
A reference trace is initially selected, and the traces are trans-
formed into a feature vector with three components: the
Euclidean distance, which represents the magnitude of the
difference between each trace and the reference vector;
the normalised inner product, which indicates the similarity of
the shapes; and the degree of fluctuation relative to the reference
vector. The vectors are then clustered using an unsupervised
learning algorithm. In this study, clustering was performed
using the Gustafson-Kessel Fuzzy clustering algorithm, which
successfully distinguished conductance traces in 3-D space from
the simulation data that peaked at the same location in a
conductance histogram. With Fuzzy clustering, data can be
assigned to multiple clusters. For the experimental data of
oligophenylene ethylene molecules, which did not exhibit a
distinct peak in the conductance histogram of all traces due to
a low bridging rate, the application of MPVC enabled the
identification of populations that displayed a distinct plateau.
This technique is not only applicable to conductance traces but
also to current–voltage characteristic curves obtained by sweep-
ing the bias voltage during junction formation. By clustering the
I–V curves of molecules with tripodal anchors, three states with
varying conductive and rectifying properties were distinguished,
and their respective structures were identified by comparison to
theoretical calculations.100

This MPVC method is visually intuitive because it utilises
mapping to a three-dimensional feature space that reflects the
shape of the trace. Nonetheless, some drawbacks exist, such as
the challenge of identifying reference vectors and managing
excessively lengthy traces when contrasting traces of varying sizes.
Normal clustering algorithms require feature vectors with iden-
tical dimensions. Hence, each conductance trace must be trans-
formed into a vector of the same dimensions. Fig. 6 displays other
clustering scheme of single-molecule measurement. The most
applicable conversion method is to create a conductance histo-
gram from a single trace, which can easily convert a trace of any
length into a vector with dimensions in bins.103,104,111 Vectors
representing the histogram are clustered using algorithms such as
k-means and spectral clustering. This method cannot distinguish
between traces where the single-molecule conductance transitions
from a high-conductance state to a low-conductance state and vice
versa. In numerous measurements of individual molecules, the
conductance tends to decrease as the distance increases.

Fig. 5 Types of machine learning, typical algorithms, examples and sche-
matic image of application. Reproduced with permission from Ref. 107.
Copyright 2023 Royal Society of Chemistry, Ref. 137. Copyright 2023
American Chemical Society, Ref. 109 CC BY-4.0.
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However, certain molecules, like alkanes, display a rise in
conductance just before breaking due to the presence of gauche
defects that lead to a decrease in conductance.79,122 It is essential
to consider the loss of information, such as conductance
increase, which may depend on the choice of feature vectors
during the analysis. Another method using deep learning has
been proposed, in which traces are treated as ordinary two-
dimensional images.99,106,110 This image-based method can
directly capture changes in conductance.

Clustering analysis provides valuable insights lost through
simple histogram generation. In our study, we utilised Grid-based
DBSCAN to analyse octanedithiol conductance traces and obtained
histograms that revealed multiple distinct peaks by clustering data
points within each trace.112 This approach enabled us to infer
changes in the single-molecule junction structure from conduc-
tance changes during the rupture process. Clustering, a machine
learning method, employs an algorithm to classify data without
relying on the researcher’s intention. It exposes insights that cannot
be extracted through conventional histogram-based analysis.

As previously stated, there is no definitive solution in
unsupervised learning, and the results are highly dependent

on both pre-processing and model selection.123 In the case of
clustering, a distance metric is utilised to group data points.
The pre-processing of normalisation also impacts the clustering
results. When dealing with multiple quantities of varying physical
dimensions, it is necessary to normalise the data to enable proper
clustering. Without normalisation, only those quantities with sig-
nificant numerical variations will be affected, resulting in subopti-
mal clustering outcomes. Standardisation is the most common
normalisation technique, which involves converting each feature’s
mean to zero and the standard deviation to one to mitigate size-
related differences in physical quantities. Additionally, some clus-
tering algorithms require a priori knowledge of the number of
clusters; however, choosing an appropriate number of clusters is
critical. Performance indices such as the least-squares error are not
ideal for determining the number of clusters because they tend to
improve as the number increases. A commonly used method
involves adjusting the number of clusters and selecting a value
that maximises or minimises the performance indicator, including
a penalty term that depends on the number of clusters. Examples
of such performance indices are the Calinski–Harabasz index,
akaike information criterion (AIC), and bayesian information cri-
terion (BIC).111,124 Using this approach, the molecules in chemical
reactions, the number of association states of nucleobases, and
recognition of small molecules have been clarified.124 Other meth-
ods for determining the number of clusters include identifying the
point at which the slope of the error decreases with respect to the
number of cluster changes, specifying a large number of classes,
and assigning physical meanings to each class,125 or determining
the classes from a physical model. Furthermore, machine learning
emphasises the importance of understanding the data’s character-
istics. Therefore, associating the data to be clustered with physical
interpretations is beneficial.123

Dimensionality reduction

Unsupervised learning involves dimensionality reduction and fea-
ture extraction. Principal Component Analysis (PCA) is the most
commonly used method for dimensionality reduction,99,106,113–115 in
which orthogonal axes are selected to capture large values of
variance in increasing order as shown in Fig. 7a. The number of
dimensions is reduced by PCA, which mathematically corresponds
to the variance-covariance matrix introduced above, a non-
standardised matrix of 2DCH, by adopting the eigenvectors of the
variance-covariance matrix in the order of increasing eigenvalues.
The magnitude of the eigenvalue corresponding to the eigenvector
represents the contribution of the component. PCA is widely used
because of its ability to provide a unique solution without parameter
selection and its ease of interpretation. In various related fields, PCA
is used for noise reduction and characteristic feature extraction
from GC/MS,126 EELS,127 Raman,128 and 13C-NMR spectra.129

To obtain a characteristic histogram, the histograms generated
from each single trace were analysed using PCA, making it useful
for spectral analysis. PCA is applied to Raman spectra measured
simultaneously during single-molecule measurements.115 Other
dimensionality reduction methods include sparse PCA, which
emphasises differences, and non-negative matrix factorisation
(NMF), which always decomposes data using a vector whose

Fig. 6 Analysis scheme of single-molecule data clustering. Experimental
conductance traces are converted into feature vectors choosing specific
features as reported in Ref. 109, using histograms or images. Feature
vectors are clustered according to the algorithms.
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components are non-negative.116 Although NMF is mathematically
incapable of defining a unique solution, it is convenient for inter-
preting physical data, such as conductance histograms and spectra
constructed using only non-negative values. Nonlinear representa-
tion methods such as t-SNE and U-MAP are also useful for under-
standing complex data.106,110 These methods are algorithms where
the closer the distance between data in the original feature space,
the closer the distance after dimensionality reduction. Hence, these
methods are powerful for visualisation of multi-dimensional data.
Neural networks have also been applied for dimensionality
reduction. Autoencoders are neural networks in which the input
and output layers are identical. Fig. 7b shows the network structure
of autoencoder. The intermediate layer of an autoencoder has a
lower dimension than the input layer, and the dimensionality is
reduced nonlinearly by the intermediate layer after reconstructing
the output from the input training data.95,107 A deep learning-based
noise reduction algorithm, known as Noise2Noise,130 has success-
fully reduced noise in nanopore measurements, leading to
improved comprehension.131 Noise reduction and feature extraction
through dimensionality reduction are effective tools for data visua-
lization and improve data interpretability.

Clustering of dimension-reduced data

Dimensionality-reduction techniques are commonly used as
pre-processing methods for clustering to address the curse of
dimensionality, which refers to the increase in computational
cost when clustering large input data. While supervised learn-
ing is the typical approach to discrimination, unsupervised

learning techniques, such as clustering, are used as a form of
supervised learning by transforming the density estimation
problem into a supervised function approximation problem
through the comparison of probability densities.116 In single-
molecule measurement research, clustering with dimensional-
ity reduction is used to solve discrimination problems, such as
chemical reaction detection.107 An autoencoder is applied for
dimensionality reduction. The input and output are both I–z
traces, and the number of nodes in the layer with the fewest
nodes in between is less than the dimensions of the input data.
The loss functions of the input and output were minimised to
obtain the intermediate layer encoding the input layer, which
served as the dimension-reduced feature for clustering using
k-means. In the concentration-ratio identification of mixed
solutions and the identification of chemical species during
chemical reactions, the clustering method is applied for classi-
fication with the order of probability densities known. This
technique enables the conversion of a conventional all-
accumulated histogram with no clear peaks into two histo-
grams with distinct peaks. In a Diels–Alder reaction system at a
molecular junction, the ratio of one class decreases and that of
the other class increases with time to represent the progress of
the chemical reaction. Machine learning is used to analyse the
individual trace information that disappears during histogram
creation.

There is a wide range of techniques for selecting features,
reducing dimensionality, and clustering, which have been
extensively researched in the context of clustering I–z
traces.106 To evaluate these methods, several traces from the
OPE experimental data were used to generate test traces with
multiple classes. Various methods were employed, including
2D histograms, the method with reference vectors reported
by Lemmer et al.,109 PCA, MDS, Samm, t-SNE, UMAP, and
Autoencoder as dimensionality reduction techniques, and SOM,
FCM, k-means, hierarchical, OPTICS, GMM, and GAL as cluster-
ing methods. The Folwkes–Mallows index was used to assess the
similarity of the clustering results obtained from all combinations
of the methods. The results indicated that GAL and GMM were
the best clustering methods. Hierarchical clustering was not as
effective, although it is sometimes easier to interpret from a
physical and chemical property standpoint. Therefore, it is impor-
tant to select an appropriate method based on the intended
purpose. Feature selection was found to have a greater impact
than clustering algorithms, with 2D histograms performing better
than raw data. Nonlinear dimensionality reduction methods,
such as t-SNE and UMAP, have been found to achieve higher
accuracy.106 These results highlight the importance of utilising
analysis methods with complex representations of feature selec-
tion for the analysis of single-molecule measurement data.

Supervised learning

In supervised learning, the model is provided with both the
training data and the correct answer, and it uses this informa-
tion to predict the objective variable for unknown data.

Fig. 7 Schematic illustration of dimensionality reduction of (a) PCA and
(b) autoencoder.
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Regression,132–135 which predicts continuous values, and
classification,33,136–147 which predicts categorical values, such
as chemical species prediction, are included in supervised
learning.

Regression

In related fields, regression has been employed to predict the
performance of organic solar cell devices148,149 and the toxicity
of nanoparticles.150 These prediction models aid in the estab-
lishment of efficient experimental procedures. Linear single
regression, the most straightforward regression method, is
widely used, including for single-molecule measurements.
Machine learning regression employs multi-dimensional input
data, such as vectors with multiple features that represent
molecular fingerprints or converting molecular structures into
vectors.151 Furthermore, graph neural networks, which directly
train and predict graphs, have been developed in the machine
learning field.152,153 The ability to predict physical properties
directly from molecular structures, without the need for a
chemist’s input, is evolving, given that molecular structures
can be represented as graphs.

In the field of single-molecule conduction, machine learning
plays an increasingly important role in theoretical calculations to
reduce calculation costs.132,135 Convolutional neural networks
trained on the outcomes of molecular dynamics (MD) and none-
quilibrium green’s function (NEGF) calculations are employed to
predict the experimental conductance more efficiently than con-
ventional, first-principles, direct calculations of transport proper-
ties. Additionally, the regression of experimental data for single-
molecule measurements has been reported, with a machine
learning-based regression model constructed to predict the con-
ductance of a molecule.134 To obtain information about the
molecule, descriptors are used as dependent variables, such as
the gradient of kinetic energy, surface integral of kinetic energy,
van der Waals surface area, bond stretch energy, and LUMO. 117
molecules were subjected to support vector machine (SVM)-based
training and regression, yielding a correlation coefficient of 0.95
for the training set and 0.78 for the blind test set between the
predicted and experimental conductance. The support vector
regression is an extension of the SVM classifier, which determines
discriminative boundaries to maximise the margin from each
data point. SVM usually requires tuning of hyperparameters such
as the regularisation parameter and the kernel selection. SVM is
effective when the sample size is not large. Furthermore, a
regression model was developed to predict the snapback distance
and plateau length based on the trace geometry and conductance,
with the aim of gaining insight into the phenomenon of single-
molecule junction breakage with XGBoost.133 XGBoost is the
algorithm that shows the highest accuracy of the many algorithms
applied in NMR chemical shift prediction models.154 The regres-
sion model was constructed using five features, including the
maximum conductance at the metal junction formation and
the length near 1G0, rather than more general features such as
the histogram obtained from a single trace in the clustering
section. The machine learning techniques utilised in this study,
namely, XGBoost, Adaboost, and Random Forest, train many

weak regressors with low accuracy on a subset of features and
make predictions by majority voting of these regressors. The
importance of these features was determined based on the errors
of the weak regressors. The importance comparison of the feature
values in this study revealed that the distance to a metal junction
rupture is a crucial factor in snapback distance prediction,
whereas the plateau length is not a particularly significant para-
meter. This supports a model in which the molecular junctions
are formed before the gold atom junction breaks. Thus, super-
vised learning can be applied not only to quantitative prediction
but also to the interpretation of physical phenomena.

Classification

Another common type of supervised learning involves classifying
data into categories. Machine learning classification is widely
employed in image recognition and other applications.155,156 As
an analytical technique, supervised learning for predicting a
definite correct answer is a powerful means of object identifi-
cation. Nanopore measurement is a technique that enables the
measurement of a single particle by detecting the changes in
ionic current that occur when a particle passes through a
nanopore.157–159 The data obtained through the I–t method,
which involves continuously measuring the conductance while
maintaining a fixed gap interval in single-molecule conduc-
tance measurements, are analogous to the current measure-
ment results obtained in nanopore measurements, as the
current changes are observed only when a single molecule or
particle passes through the nanopore. In nanopore measure-
ments, machine learning classification is used to learn and
categorise the viral species to train the current profile.160,161

DNA sequences are also analysed using recurrent neural net-
work (RNN) to measure the current change when DNA was
passed through the nanopore.162

Machine learning has proven effective in identifying signals
obtained from single-molecule measurements of DNA nucleo-
bases and amino acids. Lindsay et al. utilised the STM-BJ and
I–t methods of single-molecule measurements with molecular
modifications to measure the conductance of nucleobases,
achieving high accuracy in identifying DNA.136 Single-molecule
measurements, which directly measure the tunnelling current
through a single molecule in a gap, have the potential to be
applied to a variety of molecules. The conductance differences
among amino acids were also observed using single-molecule
measurement.32 The same method was applied to amino acids,
and using SVM,33 they successfully identified D-Asn to L-Asn, Gly
to mGly, and Leu to Ile with accuracies of 0.87, 0.95, and 0.80,
respectively. This method classified the single-molecule signals
by analysing cluster of signals not individual signals. One of the
ultimate goals of single-molecule measurements of DNA, RNA,
and amino acids is to develop sequencing methods to identify
individual signals rather than groups of signals. Our research
group identified individual single-molecule signals by classifica-
tion with supervised learning, random forests.137 For the
machine learning analysis, the feature was the average of each
region of the current signal partitioned along the time domain.
The four DNA nucleotides were classified with an F-measure of
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0.83. The F-measure is a performance measure for machine
learning classification and is defined as the harmonic mean of
sensitivity and specificity. This statistical process allowed the
identification of single signals derived from single molecules.
Furthermore, the targets of this method extend beyond the four
DNA nucleobases to include modified bases that are expected to
be cancer markers, oligo DNA with varying base lengths, and
neurotransmitters.141–144 This method also allows for single-
molecule measurements in cases where discrimination by con-
ductance alone is ineffective in the presence of multiple mole-
cules with similar conductance. Using this method, a mixture of
modified bases and dG, which are cancer markers, was mea-
sured, and the obtained signals were individually discriminated
using a machine-learning classifier trained on each solution as
shown in Fig. 8.143 Concentration ratios were determined by
predicting the class ratios. Mixed solutions of modified bases
and dG with concentration ratios of 1 : 3 and 3 : 1 were obtained,
resulting in 1 : 4.0 and 2.7 : 1, respectively.

Neural networks with high expressive power when trained
on big data have also been utilised for the identification of

single-molecule measurement data. Venkataraman et al. con-
verted each conductance trace obtained by the I–z method of
STM-BJ into a conductance histogram, and trained the con-
ductance histogram features with a neural network, resulting in
93% accuracy in discriminating molecular traces from tunnel
traces.140 In this study, the neural net classifier were trained
with more than 100 000 traces and achieved high classification
accuracy. This study demonstrates the potential of machine
learning for the efficient analysis of large amounts of data.
Classification using recurrent neural networks (RNNs) has also
been reported.146 In the I–z traces of the BJ method, metal and
molecular junction breaks are often occasional, and the lengths
of the data cannot be aligned. However, RNNs are applicable to
variable-length input data such as speech identification.163 In
this method, RNNs were trained on normalised minimum
cross-sectional time series data from MD simulations, and a
class of experimental conductance traces was predicted. The
results showed that RNNs classify variable-length traces and
provide a tool for recognising characteristic motifs in traces
that are difficult to find using simple data-selection algorithms.

Table 1 summarises the results of machine learning of
current data from single-molecule measurements. In general,
deep learning is considered capable of handling big data.
However, it is difficult to determine a general algorithm
because the classification results depend on the nature of the
data, such as the dimension and the similarity between classes.
It is also important to increase the interpretability of the data or
reduce computational costs, even if it slightly reduces discri-
mination accuracy. Clear purposes and the choice of a suitable
method for the purposes are necessary.

Weakly supervised learning

We identified two main types of machine learning, supervised
and unsupervised learning. However, there exists a third cate-
gory called weakly supervised learning that integrates features
from both the aforementioned categories. One example of
weakly supervised learning is the positive and unlabelled data
classification (PUC) approach.164,165 Its objective is to identify
data in the same manner as in supervised learning. However,
unlike in supervised learning—where the training data include
fully labelled data with known correct answers—in weakly
supervised learning, the training is conducted without com-
plete labels, that is, objective variables. The PUC was trained
using two types of samples. The first sample included only one
positive-signal class, similar to supervised learning, and the
origin of the data was known. The second sample contained a
mixture of positive and negative signals. However, the data
were unlabelled and indistinguishable between the two classes.
The PUC is trained on both samples and used to classify
the positive and negative classes of the unlabelled data as
represented in Fig. 9a. As the specific characteristics of
single-molecule junctions are often unknown based on the
available samples, this approach is useful because of its ability
to identify unknown data within the available data.124,137,144

Fig. 8 Example of single-molecule classification. (a) Molecular structures
of target molecules, dG and modified nucleobase N2-Et-dG. (b) Analysis
scheme of single-molecule classification. Machine learning classifier was
trained with the signals from pure dG, N2-Et-dG solution. The trained
classifier predicted the molecule obtained from mixtures individually and
determined mixing ratio. (c) Example of single-molecule current profile
obtained by MCBJ I–t method. (d) Confusion matrix of validation result of
pure solution signal classification. F-Measure is 0.78. (e) Predicted results
for N2-Et-dG:dG = 3 : 1, and 1 : 3 mixing solutions. Reproduced from
Ref. 143 Copyright 2023 Royal Society of Chemistry.
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The PUC proposed by Elkan and Noto,164 applied to single-
molecule measurements, trains a classifier that outputs the
probabilities of being initially labelled with positive and unla-
belled examples, under the assumption that labelled examples
are randomly selected from the positive examples. Then, the
class of unlabelled data is learned and predicted by weighting
by labels using learned classifier to predict probability of
labelled data. The algorithm can identify protein records that
should be included in an incomplete specialized molecular
biology database.164

Fig. 9b shows an example of the application of PUC in single-
molecule measurements. Our research group has developed a
novel approach to enhance the accuracy of DNA nucleotide
identification by eliminating signals that are present even in
blank measurements.137 During single-molecule measurements,
a telegraphic noise-like signal, which may be attributed to
changes in the electrode structure or contamination, is occasion-
ally observed even in blank measurements. These noise signals
are also presumed to be present in DNA nucleotide measure-
ments. However, it is difficult to distinguish between noise signals
and signals derived from the sample. To address this issue, we
utilised the PUC method to remove noise signals accurately. In
this approach, the noise signals are classified as positive and
the sample-derived signals are classified as negative. The blank
data contained only the positive class, whereas the sample data
included both the positive and negative classes that were unla-
belled and unknown. Noise-derived signals were removed from
the sample data by learning and discriminating using PUC. PUC-
based noise reduction improves the discrimination accuracy
described in supervised learning section. Although the conduc-
tance of noise signals is typically lower than that of molecular
signals in such measurements, identifying molecular signals
using a current criterion by extracting only the peak currents is
feasible. However, this machine learning-based approach reduces
the arbitrariness associated with criteria selection. Moreover,
this method detects false negative signals originating from the
sample. Our PUC-based analysis has the potential to identify
signals that cannot be analysed using conventional methods.

Table 1 Summary of machine learning classification results of single-molecule measurement current data

Target Class Method Modification Accuracy Algorithm Dataset sizea Ref.

dAMP, dGMP, dTMP, dCMP,
dmeCMP(5-methyl-cytosine)

5 STM-BJ 4(5)-(2-mercaptoethyl)-1H-
imidazole-2-carboxamide (ICA)

0.84 SVM 200 signals 136

D-Asn, L-Asn 2 STM-BJ ICA 0.87 SVM 3000 clusters 33
Gly, mGly 2 ICA 0.95 3000 clusters
Leu, Ile 2 ICA 0.8 3000 clusters
dAMP, dGMP, dTMP, dCMP 4 MCBJ — 0.83b RF 44000 signals 137
Oligo DNA of A 3 MCBJ — 0.54b XGBoost 43000 signals 141
dG, N2-Et-dG 2 MCBJ — 0.77b XGBoost 41000 signals 143
Dopamine, serotonin, norepinephrine 3 MCBJ — 0.52b XGBoost 43000 signals 144
ds-DNA(12-15mer) 6 STM-BJ — 0.99 XGBoost 4200 traces 138

8 — 0.99 5600 traces
1,6-Diaminohexane, 4,40-bis(methylthiol)biphenyl 2 STM-BJ — 0.976 CNN 4100 000 traces 140
4,40-Bis(methylthiol)biphenyl, 1,6-bis-(methylthiol)hexane 2 — 0.959 4100 000 traces
1,6-Diaminohexane, 1,6-bis-(methylthiol)hexane 2 — 0.896 4100 000 traces
Cis-,trans-[3]cumulene 2 — 0.884 4100 000 traces
Asp, Leu 2 MCBJ Mercaptoacetic acid 0.79b XGBoost 5280 signals 36

a Signals, clusters, and traces denotes I–t pulse signals, cluster of I–t pulse signals, I–z traces. b Performance index is F-measure.

Fig. 9 (a) Schematic illustration of PUC. Red and blue denote labelled
positive and unlabeled data, respectively. Circle and triangle represent
positive and negative class, respectively. Unlabeled data contain
both positive and negative data. PUC classifies the two classes with
positive and unlabeled data. (b) Application example of PUC to single-
molecule measurement data. P, U, and N denotes training/predicted
as positive.
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Furthermore, it is important to note that noise signal con-
tamination is not solely caused by the nature of single-molecule
measurements. Since single-molecule measurements provide the
advantage of directly measuring molecules, a direct measurement
technique for biological samples is highly desirable. Consequently,
single-molecule measurements are often conducted in the presence
of various molecules other than the target molecule, contributing to
noise signals. Our research group successfully identified neuro-
transmitters in biological samples using PUC to learn from samples
derived from both biological and pure substances.144 By training
pure solutions as positive and biological samples as unlabelled, the
neurotransmitter signals in biological samples were extracted. The
extracted neurotransmitter signals were then discriminated using
supervised learning to obtain the concentration ratios of neuro-
transmitters in the biological samples. This approach is promising
for analysing complex biological samples and enables the direct
detection of target molecules.

PUC is a powerful analytical technique for identifying novel
states. Its application to data obtained from single-molecule
measurements has enabled quantitative evaluation of the aggre-
gation ratio between small molecules and nucleobases.124 In a
solution containing a mixture of small molecules and nucleo-
bases, both aggregated and unaggregated molecules are present.
The experimental isolation of the aggregated state is difficult.
The signals of the small molecules and nucleobases were
separately measured as positive and the mixed solution as
unlabelled. PUC can classify and detect signals of the aggrega-
tion state present only in the mixed solution. Through this
analysis, we confirmed, at the single-molecule level, that the
aggregation ratio was larger for small molecules with more
hydrogen bonding sites for guanine. The number of associated
states was determined by clustering the signals of guanine and
guanine recognition molecules using unsupervised learning,
and the optimal cluster was determined using the BIC. Single-
molecule measurements with machine learning-based analysis
provide insights into molecular interactions at the microscopic
level and the development of molecular design guidelines for
new drugs. Therefore, machine learning has the potential to not
only classify known labelled signals, but also contribute signifi-
cantly to the discovery of unknown states.

Conclusions and future perspective

In summary, the use of machine learning to develop analytical
techniques for single-molecule measurements has resulted in a
substantial increase in the amount of information obtained
beyond conductance, which is typically determined using con-
ventional histogram-based analysis. Discriminating between
multiple similar states obtained from the measurements of a
single type of molecule, extracting characteristic features from
multiple measurement data, and identifying the molecular
species measured with single-molecule measurements have
been achieved through machine learning-based analysis. These
methods play a major role in understanding single-molecule
conduction and utilising single-molecule measurements as a

new biomolecule detection technique. The development of
analytical techniques is essential for the ultimate goals of
single-molecule measurement, such as the creation of molecu-
lar devices, investigation of novel phenomena at the nanoscale,
and discovery of novel molecule detection, owing to the advan-
tage of single-molecule resolution.

Unsupervised learning

Measurement of various physical properties, including thermal and
vibrational spectra, are performed in single-molecule experiments.
The impact of noise is expected to be significant during measure-
ment due to the microquantity of these physical properties. Numer-
ous noise reduction methods have been developed in the field of
informatics and applied to chemical measurements.126–131,166,167

Basic techniques involve dimensionality reduction via
PCA,126–129 whereas more advanced techniques include dimen-
sionality reduction using autoencoders and Noise2Noise men-
tioned above.167,168 Noise reduction methods can further be
applied to single-molecule experiments.

Since single-molecule measurement data often consists of var-
ious types of current traces, clustering is useful for understanding
single-molecule phenomena. Since clustering is a heuristic method
with no explicit answer, it is essential to select appropriate features.
It is desirable to establish an appropriate feature selection method
according to the physical properties of the target molecules.
Furthermore, clustering methods that directly calculate the distance
or similarity between current traces will be utilized for proper
interpretation.

Supervised learning

Classification and identification of single-molecule current
data is expected to expand to a variety of measurement targets.
Further research is necessary for practical applications. It is
desirable to identify nucleobases and amino acids in DNA,
RNA, and protein sequences. In addition to the conventional
identification of individual molecules, identification technol-
ogy for molecules in sequences is essential. Furthermore, since
generalization performance needs to be improved for a wide
range of applications, it is necessary to eliminate differences
among devices. For this purpose, refinement of the device
fabrication process or learning of large-scale data including
device differences will be effective. Physical insights gained
from feature-dependence in discrimination accuracy would
also be helpful for versatile application.

Regression models are useful for investigation for high-
performance single-molecule junction as molecular devices or
identifying the origin of the unknown signals found with PUC.
Although regression model for predicting the single-molecule
conductance has already been reported,134 a more precise
model is necessary and can be achieved by training on a larger
dataset. To enable the identification of unknown substances, a
machine learning model capable of analysing complex data is
required to develop a data assimilation method and a large
database of single-molecule conductance measured using a
precise single-molecule measurement methodology.
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The purpose of applying regression models is not only to
predict precise values from large data sets, but also to efficiently
search for optimal conditions from small data sets. In the related
fields, Gaussian process regression has been reported to obtain
high-yield or optimized results with minimal trials of experi-
ments or calculations.169,170 Application of Gaussian process
regression to measurement conditions and device fabrication
method leads to more efficient and stable experiments.

Weakly supervised learning

Single-molecule junctions possess two metal–molecule inter-
faces, with the metal surface displaying properties distinct from
the bulk, such as catalytic activity.13 Additionally, an immense
electric field is applied by a bias voltage in the nanometre-scale
gap.47 The unique nature of single-molecule junctions is
expected to yield unparalleled chemical reactions. The previous
study reported the amplification of chemical reaction rates of
Diels–Alder reaction attributable to the electric field across the
nanogap using the STM-BJ method.47 In this study, molecule
identification before and after the reaction is solely predicted on
conductance. The implementation of machine learning-based
analytical techniques will improve discrimination accuracy and
facilitate the discovery of unknown phenomena. New techniques
to identify novel phenomena, such as PUC, are applicable for
discovering new chemical reactions, not only for the determina-
tion of reaction rates of the same reaction as in bulk. Further-
more, these methods are helpful in identifying molecules that
perform specific roles in a sample comprising a multitude of
molecules.

Application of novel methods

In related fields, there have been efforts to efficiently search
for optimal experimental conditions through the utilisation
of reinforcement learning.171,172 These applications have the
potential to aid in the discovery of appropriate experimental
conditions for single-molecule measurements and facilitate the
generation of more reliable data.

Machine learning has significantly improved the accuracy of
discrimination in single-molecule measurements. In addition
to expanding the applications of analytical techniques, explor-
ing suitable experimental environments for measurement and
analysis is becoming increasingly important. We previously
demonstrated that modifying nanogap electrodes improves
identification accuracy, even for molecules that cannot be
distinguished using conventional machine learning methods
alone.36 Further progress in both statistical analysis method
and novel and precise measurement technique development
will be necessary to achieve these goals.
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Chem., Int. Ed., 2021, 60, 6609–6616.

102 B. H. Wu, J. A. Ivie, T. K. Johnson and O. L. A. Monti, J. Chem. Phys.,
2017, 146, 092321.

103 P. Yu, L. Chen, Y. Zhang, S. Zhao, Z. Chen, Y. Hu, J. Liu, Y. Yang,
J. Shi, Z. Yao and W. Hong, Anal. Chem., 2022, 94, 12042–12050.

104 L. A. Zotti, B. Bednarz, J. Hurtado-Gallego, D. Cabosart, G. Rubio-
Bollinger, N. Agrait and H. S. J. van der Zant, Biomolecules, 2019, 9,
1–13.

105 L. Domulevicz, H. Jeong, N. K. Paul, J. S. Gomez-Diaz and J. Hihath,
Angew. Chem., Int. Ed., 2021, 60, 16436–16441.

106 M. El Abbassi, J. Overbeck, O. Braun, M. Calame, H. S. J. van der
Zant and M. L. Perrin, Commun. Phys., 2021, 4, 1–9.

107 F. Huang, R. Li, G. Wang, J. Zheng, Y. Tang, J. Liu, Y. Yang, Y. Yao,
J. Shi and W. Hong, Phys. Chem. Chem. Phys., 2020, 22, 1674–1681.

108 M. S. Inkpen, M. Lemmer, N. Fitzpatrick, D. C. Milan, R. J. Nichols,
N. J. Long and T. Albrecht, J. Am. Chem. Soc., 2015, 137, 9971–9981.

109 M. Lemmer, M. S. Inkpen, K. Kornysheva, N. J. Long and
T. Albrecht, Nat. Commun., 2016, 7, 1–10.

110 D. Lin, Z. Zhao, H. Pan, S. Li, Y. Wang, D. Wang, S. Sanvito and
S. Hou, Chem. Phys. Chem., 2021, 22, 2107–2114.

111 L. Lin, C. Tang, G. Dong, Z. Chen, Z. Pan, J. Liu, Y. Yang, J. Shi, R. Ji
and W. Hong, J. Phys. Chem. C, 2021, 125, 3623–3630.

112 B. Liu, S. Murayama, Y. Komoto, M. Tsutsui and M. Taniguchi,
J. Phys. Chem. Lett., 2020, 11, 6567–6572.

113 Q. Ai, J. Zhou, J. Guo, P. Pandey, S. Liu, Q. Fu, Y. Liu, C. Deng,
S. Chang, F. Liang and J. He, Nanoscale, 2020, 12, 17103–17112.

114 J. M. Hamill, X. T. Zhao, G. Mészáros, M. R. Bryce and M. Arenz,
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