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1 Introduction

Advanced analysis of magnetic nanoflower
measurements to leverage their use in biomedicine

Augustas Karpavi¢ius,1* Annelies Coene, © +°° Philipp Bender @ 1@
and Jonathan Leliaert @ *2

Magnetic nanoparticles are an important asset in many biomedical applications ranging from the local
heating of tumours to targeted drug delivery towards diseased sites. Recently, magnetic nanoflowers
showed a remarkable heating performance in hyperthermia experiments thanks to their complex
structure leading to a broad range of magnetic dynamics. To grasp their full potential and to better
understand the origin of this unexpected heating performance, we propose the use of Kaczmarz'
algorithm in interpreting magnetic characterisation measurements. It has the advantage that no a priori
assumptions need to be made on the particle size distribution, contrasting current magnetic
interpretation methods that often assume a lognormal size distribution. Both approaches are compared
on DC magnetometry, magnetorelaxometry and AC susceptibility characterisation measurements of the
nanoflowers. We report that the lognormal distribution parameters vary significantly between data sets,
whereas Kaczmarz' approach achieves a consistent and accurate characterisation for all measurement
sets. Additionally, we introduce a methodology to use Kaczmarz' approach on distinct measurement
data sets simultaneously. It has the advantage that the strengths of the individual characterisation
techniques are combined and their weaknesses reduced, further improving characterisation accuracy.
Our findings are important for biomedical applications as Kaczmarz' algorithm allows to pinpoint
multiple, smaller peaks in the nanostructure's size distribution compared to the monomodal lognormal
distribution. The smaller peaks permit to fine-tune biomedical applications with respect to these peaks
to e.g. boost heating or to reduce blurring effects in images. Furthermore, the Kaczmarz algorithm
allows for a standardised data analysis for a broad range of magnetic nanoparticle samples. Thus, our
approach can improve the safety and efficiency of biomedical applications of magnetic nanoparticles,
paving the way towards their clinical use.

treatments. Next to their success in various therapies, they are
also valuable for many diagnostic applications such as high-
throughput screening platforms and immunoassays that

Due to their ubiquitous use in biomedicine, magnetic nano-
structures have become indispensable tools in life science
applications."” For instance, these structures can locally heat up
cancerous tissues in cancer hyperthermia treatments,** or act
as medicine carriers that can be magnetically guided towards
diseased sites in drug targeting.® Because of the local nature of
these therapies, less systemic side effects and a higher thera-
peutic efficacy are achieved as compared to traditional
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exploit their sensitivity in finding and determining the
concentration of various biological entities. Also in magneto-
fection applications do they offer a sublime performance in
passing genes through cellular boundaries.*” Given the fact that
the human body is virtually devoid of ferromagnetic materials
and that magnetic signals are not attenuated by it, a range of
magnetic imaging techniques exist that directly capture the
nanostructures’ behaviour in terms of location and concentra-
tion. Among these techniques, Magnetic Particle Imaging
(MPI)** is the most known and matured towards clinical
applications such as vascular perfusion imaging,’ stem cell
tracking" and image-guided hyperthermia.’> Nevertheless,
other still-to-mature nanoparticle imaging techniques such as
magnetorelaxometry imaging (MRXi)"*** and magnetic suscep-
tibility imaging (MSI)*>'® have a promising future ahead. It is
also possible to increase the sensitivity and/or resolution of
established diagnostic imaging techniques by indirectly
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measuring the impact of the particles' magnetic fields on the
imaging signal. A prime example thereof is the use of magnetic
nanoparticles as contrast agents in magnetic resonance
imaging (MRI)."”*®

Previous applications each set different requirements on the
nanostructures resulting in the development of a large range of
nanoparticles types. For some applications, like MPI, there exist
clear requirements, based on theory, that work well in practise
to achieve good performance.” In this case, for instance, the
optimal particles have a size that is as large as possible, while
still maintaining a relaxation time lower than the inverse of the
used MPI frequency to resolve blurring issues in the image.
Additionally the size distribution should be as monodisperse as
possible. In magnetic particle hyperthermia,* however, the
situation is much less clear, because uniformly magnetised
particles do not necessarily offer the best performance. Instead,
there are indications that coherent reversal processes perform
worse than more complex dynamical processes,**** which
means that the suitability for hyperthermia strongly depends on
the microscopic details of the particles. Unfortunately, there are
no straightforward theories that can make predictions in this
regime, and a computationally intensive micromagnetic
approach® is necessary. However, for such an approach to give
practical results, the simulations should mimic the real particle
ensemble including the inter-particle variability in size, shape
and material parameters as closely as possible, which still lies
beyond today's capabilities.”

Given the complexity of this problem, it is not surprising that
also experimental data on different particle types and sizes are
not converging.>»*> Moreover, possible magnetic interactions
between the magnetic cores occur that manifest themselves
differently depending on the type of applied magnetic fields and
the surroundings of the particles. Next to this, when the parti-
cles are injected in the body also interactions with biological
entities occur. These types of interactions were shown to have
a significant impact on the particles' heating performance.>*>°
However, among the different particle types that are being
investigated, one type consistently stands out with excellent
performance:**-** magnetic nanoflowers.*® These are multi-core
particles with an irregular shape, consisting of a large number
of small crystallites.>* The collective properties of the interact-
ing crystallites result in different magnetic behaviour than their
single-core counterparts, allowing for a large magnetic moment
while still maintaining faster dynamics normally associated
with smaller particles. Due to their dense structure and single-
domain character, nanoflowers can also be regarded as indi-
vidual particles but with a very high defect-density in their
nanocrystalline structure. Together with other large but defect-
rich iron oxide nanoparticles, their excellent performance in
various biomedical applications recently motivated a new
design avenue for the synthesis of magnetic nanoparticles,
namely defect-engineering.**

To understand why certain nanostructures such as nano-
flowers and other defect-rich particles®***” achieve such powerful
heating, or why a certain nanostructure is an optimal imaging
tracer, and to ensure a safe and reliable operation of previously
mentioned applications, an accurate particle characterisation

1634 | Nanoscale Adv, 2021, 3, 1633-1645

View Article Online

Paper

of e.g. the particle core and hydrodynamic size distribution is of
paramount importance. Several optical and magnetic charac-
terisation methods, each with their unique advantages and
drawbacks, exist that try to tackle this challenge.®®

One common optical technique for determining the hydrody-
namic particle size is dynamic light scattering (DLS). The main
disadvantage of this technique is that the signal scales with the
square of the particle volume, and a few large particles can
therefore overshadow the details of the smaller particles in the
sample. A more accurate method is transmission electron
microscopy (TEM) and its high resolution variant (HRTEM),
which also gives access to the core sizes. As compared to other
methods, this has the disadvantage that it is relatively slow due to
the need for sample preparation (which potentially affects the
particle clustering). The ability to investigate individual particles
also comes with the downside that several measurements are
required to gather sufficient statistics to reliably describe samples
containing billions of particles. To circumvent this problem, one
can resort to X-ray based techniques like X-ray diffraction (XRD)
and small-angle X-ray scattering® (SAXS) which measure the
particle structures, averaged out over the entire ensemble.

Similar to SAXS, also small-angle neutron scattering (SANS)
can be used to determine the structural properties (i.e. the
average size, shape and configuration) of nanoparticle ensem-
bles.*»** Additionally, SANS allows one to access the internal
magnetisation profile,*** which renders it in general as an ideal
technique to characterise complex nanostructured magnetic
samples.** However, SANS is a highly complex technique which
can be only performed at large-scale facilities whose access
requires a long proposal application process, making it
impractical as a day-to-day characterisation method.

Next to these optical methods, there exist several magnetic
characterisation methods, which probe the magnetic properties of
the particles, and which we will focus on in this paper. Three
commonly used methods are DC magnetometry (DCM), magne-
torelaxometry (MRX) and AC-susceptibility (ACS). DCM is the
oldest of these methods, and interprets the magnetisation
measured as function of an externally applied static magnetic
field.** This method is complementary to MRX and ACS as it is an
equilibrium measurement. This contrasts MRX and ACS which
probe the dynamic response of the particles. In case of MRX, the
relaxation towards the paramagnetic state is measured after the
application of a magnetic field pulse that temporarily magnetises
the sample,” whereas in ACS* the particles are subject to
a continuously applied sinusoidally varying magnetic field with
low amplitude. The physical quantity derived by MRX and ACS is
the relaxation time, which is then interpreted in terms of a core
and/or hydrodynamic size of the particles. This translation
between relaxation times and particle sizes is based on the
assumption that the particles are single domain, non-interacting
spheres. Additionally, to keep this problem tractable,”
a lognormal size distribution is often assumed.*® In practice, it is
not feasible to consider a (correlated) lognormal distribution for
both the particle core sizes as well as their hydrodynamic size.
Therefore often additional assumptions are made such as a fixed
particle shell size or lognormal distribution parameters are
extracted from characterisation measurements under varying

© 2021 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0na00966k

Open Access Article. Published on 08 February 2021. Downloaded on 10/17/2025 6:16:13 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

particle conditions.”*>*® It is clear that these assumptions are
difficult to reconcile with the specifics of multicore particles or
nanoflowers, which are irregularly shaped particles consisting of
several core crystallites.

Moreover, because different magnetic characterisation
measurements probe different magnetisation dynamics of the
nanostructures in a complementary way, an advantage is to be
expected by combining multiple measurements to extract more
accurate results. Yet, this combined analysis of multiple char-
acterisation measurements remains almost unexplored. Only in
pulsed MPI, this aspect has been recently exploited by intro-
ducing a pulsed magnetic field in the imaging field sequence of
MPL.* This resulted in an improved resolution as compared to
traditional MPI. In line with this result, we recently improved the
characterisation performance of MRX by employing a pulsed
sinusoidal or circular field instead of a constant pulse to increase
the information content in the measurement data.’” These
results indicate that an additional characterisation improvement
is indeed achievable by combining measurement sets.

In this paper, we will investigate how nanoflowers can be
accurately characterised by interpreting measurement data using
Kaczmarz' algorithm,” which is an approach that does not
require one to make any a priori assumptions on the size distri-
bution. We will interpret four data sets, obtained using DCM,
MRX (on both immobilised and suspended nanoparticles) and
ACS. Our results will be compared with the typical approach
which is based on the assumption of a lognormal size distribu-
tion and with other results obtained with optical characterisation
techniques (DLS, XRD, TEM and HRTEM). Additionally, building
on the approaches presented in ref. 32 and 54, we are the first to
simultaneously exploit the information present in different
characterisation measurements using Kaczmarz' method for an
improved characterisation. Finally, we discuss the implications
of our results for biomedical applications.

2 Methods

2.1 Sample information

Our analysis is performed on the NF-3 sample of which the
synthesis and the measurement of magnetic properties are
presented in Gavilan et al.>®

2.2 Particle characterisation methods

We analyse data obtained from the sample using three different
experimental magnetic nanoparticle characterisation tech-
niques, namely DC magnetometry (DCM), magnetorelaxometry
(MRX), and AC susceptibility (ACS). In the following sections, we
detail the physical models used to interpret the measurement
signal in terms of the particle properties.

2.2.1 DC magnetometry. In a DCM measurement, the
magnetisation of the sample is recorded as function of the
amplitude of an externally applied magnetic field.>® Because
this is an equilibrium magnetisation measurement, we can
neglect all dynamic influences, like the magnetisation or rota-
tional dynamics.”” The recorded signal is a superposition of the
magnetisation of all particles in the sample, weighted by their

© 2021 The Author(s). Published by the Royal Society of Chemistry
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magnetic moment.”® For a single, non-interacting spherical
particle, with diameter d., the magnetisation is given by eqn (1),

M(H) = My, 2(%) (1)

where % denotes the Langevin function and Mg, is the satura-
tion magnetisation (which for our sample equals 444 kA m™"
(ref. 55))

() = coth(@) - @

& has an argument, £, given by:

My (0/6)d,* Hu,

¢ - T ®)

In this equation, H, denotes the magnetic field strength, u,
the vacuum permeability, d. the nanoparticle core diameter, kg
the Boltzmann constant and T the temperature. The signal
corresponding to a sample with core size distribution P(d.) is
then described by

M(H) = Msm[ P(d.) 7(£(d:))dd (4)

Ja.

Note that one has to be careful about the weighting of the
distribution (volume vs. number weighted). In this notation, the
distribution P(d.) is volume weighted.

2.2.2 Magnetorelaxometry. In contrast to DCM, magneto-
relaxometry is an out-of-equilibrium measurement that allows
to capture dynamic relaxation processes. A magnetorelaxometry
experiment starts with the application of a magnetic field pulse.
The measurement itself is initiated as soon as this pulse ends.*
From then on, the magnetisation relaxes towards its demag-
netised state via two different thermally driven relaxation
processes. The first relaxation is due to the physical rotation of
the particles as a whole and is called Brownian relaxation, with
relaxation time given by eqn (5).

_ W
B = kBT ; (5)

where V}, is the hydrodynamic volume of the nanoparticle and 7
is the effective viscosity of the suspending medium.

The second process is called the Néel relaxation and is
caused by thermal activation, allowing the magnetic moment
to jump over energy barriers, thus changing the magnetic
moment direction within the particle. In this case, the motion
of the magnetic moment is mechanically decoupled from the
physical particle, allowing this process to also take place in
immobilised particles, in which the Brownian relaxation is
blocked. The rate of this relaxation process is given by the Néel
relaxation time

KV,
TN = To €Xp (k T) . [6)
B

Here K is the uniaxial anisotropy constant (equal to 18 k] m >

for our sample®), 1, is the inverse of an attempt frequency and
equals about 10~ s, and V, is the particle core volume.
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When both the Brownian and Néel relaxation processes take
place simultaneously, the resulting relaxation can be described
by an effective relaxation time, 7.¢, which is dominated by the
fastest relaxation process. Thus, when we have a liquid suspen-
sion of relatively large nanoparticles, like the nanoflowers under
study, we expect the Brownian relaxation to dominate the
observed signal. This is corroborated by the fact that the immo-
bilised sample relaxes on a much longer timescale than the
liquid suspension, as can be seen by comparing Fig. 2a and 3a.

The relaxing magnetisation signal of a single particle is given

by eqn (7),

M(1) = My exp (—L) @)
Teff

with M, the initial magnetisation after the magnetisation pulse
is switched off. In a real measurement, a size distribution of
particles is present, and the signal will consist of a superposi-
tion of decaying exponential functions, as described by eqn (8)
for a relaxation time distribution P(z.g) which corresponds to
a core and hydrodynamic diameter distribution through the
size dependence of 7y and 7g.

P(ter) exp (—L> dregr (8

M) = MO,[ Teff

Teff

2.2.3 AC susceptibility. Similar to magnetorelaxometry, AC
susceptibility is an out-of-equilibrium measurement, which
measures dynamic magnetic properties. In this technique, the
particle ensemble is exposed to a sinusoidal time varying
magnetic field with a small, constant amplitude which is swept
through a broad frequency range.*

When the time scale of the measurement is longer than the
relaxation time of the particle ensemble, the magnetic response
will be in phase with the applied magnetic field. However, when
the measurement frequency is comparable to the inverse of the
relaxation time, the ensemble of particles will not be able to
follow the magnetic field and an out of phase component will be
present.® In the linear response regime, the resulting ampli-
tude and phase can be written as a complex AC susceptibility,
that is described in terms of a real (x’) and imaginary part (x"),
linked together by eqn (9)

x=x —ix )

The frequency (w) dependence of the real part (x) is
described by eqn (10)

()= —X°

B 1 + (CL)’Ceff)z7 (10)

where y, is the static susceptibility as described by eqn (11)

ponnt’

3kpT -

(11)

Xo =

Here n and m denote the particle number density and particle
magnetic moment (equal to M;,V.), respectively. The imaginary
part is described by eqn (12)
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WTeff

Om. (12)

X' (w) =x

The response of the particle again is determined by an
effective relaxation time t.¢, comprising both Brownian and
Néel relaxations, and similar as in MRX, the measured signal of
a sample containing a relaxation time distribution consists of
a weighted superposition of signals for each individual e,
described by eqn (13).

P(terr)
el FI0Tefr

x(w) = XoJ der + Xoo (13)
Here x. takes into account the offset typically present in the
real data part of ACS at high frequencies which is attributed to

intra-potential-well contributions.*>**

2.3 Size distribution reconstruction

We will use two different methods to analyse the measurement
data in terms of the particle size, or relaxation time, distribu-
tions. The first method assumes that the particles are described
by a lognormal distribution, whereas the second method does
not make any a priori assumptions and uses Kaczmarz' method
to extract the distribution. For both fitting methods we numer-
ically consider a size range between 1 and 200 nm, in 2000
linearly spaced intervals for the size distribution of the crystallite
cores d.. This is in line with HRTEM measurements of the
crystallite cores.*® As the nanoflowers have an irregular shape,
their hydrodynamic diameter cannot be easily represented by
a dy, distribution and therefore we consider a distribution of the
effective relaxation times instead. Note that for these particle
types the effective relaxation time corresponds to the Brownian
relaxation time 73, see Section 2.2.2. Typically these have values
that span several orders of magnitude, consequently, we
consider an interval of 2000 logarithmically spaced relaxation
times between 107 s and 10* s. The relaxation time values reflect
how the irregular shape of the flowers varies and can retrieve
possible cluster formations or particle interactions.

2.3.1 Lognormal size distribution. The lognormal distri-
bution, describing a variable whose logarithm is normally
distributed, is often taken as the functional form for magnetic
nanoparticle sizes and relaxation times.

The physical rationale behind this choice is based on two
assumptions, presented in ref. 62. First, the growth of the
magnetic particle volume in time ¢ due to atomic absorption is
proportional to the surface area A(¢) of the nanoparticle.

Following this assumption, a differential equation can be
written

dv ()
= aA(t 14
= ad), (14)
with proportionality factor «, granting a solution
V1) « £ = dJ(r) « t, (15)

which states that the core diameter grows linearly as function of
time.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Secondly, the residence time of the particles in the active
zone where they grow is lognormally distributed.

Because a lognormal distribution raised to any power
remains lognormally distributed, it follows from these
assumptions that both their size and relaxation time 7y follow
a lognormal distribution, described by eqn (16).

In®(x/ u))

P(x) (16)

202

= ex
V2Tox P (

In this equation, x denotes either the crystallite core diam-
eter d. or the relaxation time 7, while u and exp(s) can be
physically interpreted as the mean diameter/relaxation time
and the standard deviation of In(x), respectively. Eqn (4), (8) and
(13) can be fitted to measurement data by finding the optimal u
and o of the distribution P(x). For the model described in eqn
(13) an additional fit term x . is necessary besides the u and ¢ to
account for the offset at high frequencies.

In order to obtain the u and ¢ values that result in the best
agreement with the experimental data, we will employ
a nonlinear least-squares routine to fit the lognormal size
distribution.

2.3.2 Kaczmarz' method. In contrast to the least squares fit
used to find the lognormal size distribution, the aim of Kacz-
marz' iterative method is to calculate the individual weights of
the magnetic nanoparticle size distribution, without making
any a priori assumptions on its shape.*”***” In other words, we
try to unravel the measured data into a superposition of curves
representing the theoretical response of particles with different
diameters.

To this end, we introduce a weight vector W consisting of I =
2000 weights W; with i = 1, ..., I, each corresponding to the
different particle sizes/relaxation times. W is initialised to zero.

We use Kaczmarz' iterative method [eqn (17)] to update the
weights vector for each iteration k, until we find a good agree-
ment between the experimental and simulated data.

k
Wkl — wk 1 M; — (A/ >2< w )Zj (17)
141

Here, M; with j = 1, ..., J is a particular data point j in the
experimentally measured data M consisting of ] data points. 4; is
J'th row of the matrix A (dimensions I x J), which contains
a theoretical model for the data, as detailed for each measure-
ment technique below. 4; denotes the transpose of this matrix,
and one iteration is defined as a sweep over all rows j in
arandom order. In each of our fits, we employ 10 000 iterations.
We verified that for larger iteration numbers, the error did not
significantly decrease any further, and an artificial over-fitting

of the data starts to take place.

Using the matrix 4, we can generate the simulated data
points corresponding to the measured data points M; by per-
forming a matrix multiplication with the final weights vector,
containing all information on the particle size distribution

l

(ZMNOOOAJ-,->. By iteratively updating these weights, the

algorithm tries to minimise the difference between the

© 2021 The Author(s). Published by the Royal Society of Chemistry
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simulated and measured data, and find an accurate particle size
or relaxation time distribution.

To avoid negative weights, which would correspond to
unphysical effects like spontaneous remagnetisation of the
particles in the case of MRX,*” we introduced a non-negativity
constraint by resetting the weight to zero (W/*"* = 0) whenever
the update of the weight would result in a negative value.

The next 3 sections detail the values of the matrix A for the
different measurement types.

2.3.2.1 DCM matrix. In the case of DCM, the magnetisation
as a function of the applied field follows a Langevin function,
whose argument depends on the particle core size. The rows of
the matrix Aj; contain the theoretical field value for a given
particle size d..; in a magnetic field with strength Hj, as obtained
by combining eqn (1) and (3):

MOMsaI gdc,iSH/'

Aj,' = Msal coth kBT —

kgT
™
Mo Msal gdc,i3}1j

(18)

2.3.2.2 MRX matrix. Similarly, the MRX signal consists of
a superposition of decaying exponential curves, each corre-
sponding to different particle crystallite sizes (in case of the
MRX measurement data on immobilised particles, eqn (19)) or
to different relaxation time values (for the MRX measurement
data on suspended particles, eqn (20)).

I

A =exp | — KTCd ; (19)
To €Xp kB—T
l‘,
Ay = - 20
p=ew (- ) 0

2.3.2.3 ACS matrix. In the same manner as for magneto-
relaxometry, by introducing a superposition of curves for
different relaxation times and a weight vector we can rewrite the
real (x') and imaginary (x”) parts of the ACS curve as

l Xo,
X(@) =) Wi———:s, (21)
zi: 1+ (wTeﬂ',)
" WTeff;
X'(©) =) Wixe,— - (22)
Z 1+ (T,
which we use to define the corresponding two matrices.
real Xo;
A (23)
1+ (‘*)./'Teffr)
imag __ W Teff;
ji (24)

! 1 + (w/rCfft)z .

So that the susceptibility at any frequency j is described by

X () =Y _Wid"

(25)
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3 Results o
% 0.7 1 J
The results are subdivided into two sections because DC '(*:;
magnetometry and magnetorelaxometry of immobilised parti- g— 0.6 .
cles are mainly sensitive to the size of the individidual nano- Q
crystallites making up the nanoflower, whereas AC suceptibility g 0.5 1
and magnetorelaxometry of suspended nanoflowers mainly give 5
information on the hydrodynamic size of the nanoflower. Zo04r ]
3.1 Nanocrystallite size 10°® 107 107 102 107 10°
Fig. 1a and 2a show the DCM and MRX measurement data
respectively, together with the best fit obtained with Kaczmarz' b)
method and by the nonlinear least squares fit assuming —IKaczmarzl
a lognormal size distribution. The fitted parameters for the 08k ognommal |
lognormal size distribution are given in Table 1.
— 0.6 1
a)  x10° =
ul : : . . ' o
O DCM data O g4gt 4
35| —Kaczmarz |
—-—-lognormal
3r 4 0.2 1
E25¢ 1
< 0 =
i 27 1 10 25 30
= d_[nm
15} 1 o [nm]
i Fig. 2 (a) Best fit of the magnetorelaxometry measurement data of
immobilised sample using a lognormal distribution and using Kacz-
05t | marz' method. (b) The obtained size distributions corresponding to the
’ fits in panel (a).
0 FePaVas. s o . 1 . |
10 10" 102 10 10*  10°  10° 107
H[A/m] Table 1 The parameters u and ¢ of the fitted lognormal size
T T distribution
—Kaczmarz
—-—-lognormal # (nm) o
DCM 13.1 0.37
MRX (immobilised) 18.9 0.10
| Although both the lognormal fit and Kaczmarz' method are
able to fit the general shape of the DCM data, the restriction of
\ a lognormal size distribution does not allow one to find a good
\\ 1 agreement in the entire field range. In particular, at high magnetic
e fields, there is a noticeable difference between the measured and
S fitted curve, suggesting that the real size distribution in fact is not
30 40 50 described very well by a lognormal distribution. This contrasts the

d [nm]
Fig. 1 (a) DCM data with best fits obtained using a lognormal distri-

bution and using Kaczmarz' method. (b) The obtained size distributions
corresponding to the fits in panel (a).
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best fit obtained using Kaczmarz' method, which is in good
agreement with the measurement data over the entire field range.

To gain insight into the discrepancy between both fitted
curves, we turn our attention to Fig. 1b, which shows the size

© 2021 The Author(s). Published by the Royal Society of Chemistry
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distributions obtained from the DCM measurements displayed
in panel (a). The reconstructed size distribution using Kacz-
marz' algorithm exhibits several peaks: one main peak around
16 nm, and two smaller peaks between 1 nm and 10 nm. By
definition, the lognormal distribution only has one peak, and
we observe that the lognormal distribution that best describes
the data can not even completely envelope the multi-peak
distribution obtained with Kaczmarz' method due to the
restrictions on the shape of its small-particle tail. Nonetheless,
to account for the small-diameter contributions, the distribu-
tion is artificially broadened. This results in a substantially
shifted peak as compared to the distribution obtained with
Kaczmarz' method and the appearance of a long tail beyond
20 nm, which is the main cause of the discrepancies between
the experimental data and the best fit shown in Fig. 1a. As can
be seen in the remainder of this section, the tail, corresponding
to nanocrystallites with diameters above 20 nm, is also not
observed using any of the other measurement methods such as
MRX and optical alternatives.

The magnetorelaxometry measurements of the immobilised
nanoparticles, shown in Fig. 2a, at first sight tell a different
story. In this case, both the least squares fit using the
assumption of a lognormal size distribution, as well as the
Kaczmarz' fit describe the data reasonably well. The corre-
sponding size distributions, displayed in Fig. 2b, also are in
good agreement and show a large peak at 19 nm. In the case of
Kaczmarz' method the peak consists of two sub-peaks at 18 and
20 nm and is preceded by a smaller peak at 15 nm. Together,
these findings corroborate the main peak found in the distri-
butions based on DCM measurements. The absence of the
peaks at lower sizes is not an inconsistency between both data
sets, but can be attributed to the limited sensitivity of MRX
towards particles smaller than about 15 nm, corresponding to
a Néel relaxation time 1y = 10" s, which is the resolution of the
measurement.

We now compare these results with size estimates obtained
using optical methods. Gavilan et al.*® report a total size of the
nanoflowers of around 110 nm according to transmission
electron microscopy (TEM), and a hydrodynamic size of about
158 nm according to dynamic light scattering (DLS), and an
average crystallite size of 8 nm based on X-ray diffraction (XRD)
measurements and of 4 nm using HRTEM. The main peak of
the distribution obtained from DCM data is above the average
crystallite size but significantly below the total nanoflower size.
This indicates that the atomic moments of neighbouring crys-
tallites are exchange coupled to some extent, resulting in
effective magnetic moments for each nanoflower which are
larger than the moments of the individual crystallites. However,
these nanoflowers are not single-domains as was observed for
example for the nanoflowers investigated in Bender et al.** The
secondary peaks observed between 1 and 10 nm in our distri-
bution obtained from the DCM data are in good agreement with
the crystallite sizes determined by XRD and HRTEM. The
information on how the nanocrystallites influence each other's
magnetic dynamics is also important and useful when assessing
the performance of the nanostructure for different applications
as it for example has an impact on the observed heating of the
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structure for magnetic hyperthermia experiments and on its
imaging performance.®® Optical methods do not register the
impact of magnetic interactions on the crystallites and hence
only see the individual crystallites.

3.2 Hydrodynamic size

Magnetorelaxometry and AC susceptibility of suspended parti-
cles measure the Brownian relaxation rate of the particles,
which is the velocity of their mechanical rotation in the
suspension. To interpret this rotation in terms of diameters
[eqn (5)] we need to rely on the assumption that the particles are
spherical, which is not the case for the irregularly shaped
nanoflowers. Therefore, we will present the obtained distribu-
tions as distributions of the relaxation rates instead of diameter
distributions. Only when comparing the results with the ones
obtained from DLS and TEM will we convert them into an
effective diameter and take into account that only a very rough
agreement is expected. From an application's viewpoint, the
relaxation rates are also more practical to work with, because

a) T T T
O suspended MRX data|
—Kaczmarz

—-=-lognormal

o o I
~ o o
T T :

Normalized particle response [-]
o
o

10°° 10 10°
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P(Teff) [-]

04r

02t /

0 e

10°® 1072 10° 102 10*
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Fig. 3 (a) Best fit of the magnetorelaxometry measurement data of
suspended nanoflowers using a lognormal distribution and using
Kaczmarz' method. (b) The obtained relaxation time distributions
corresponding to the fits in panel (a).
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these indicate the optimal frequency that can be used in e.g
magnetic nanoparticle hyperthermia or imaging.

3.2.1 Magnetorelaxometry (MRX). The  magneto-
relaxometry measurement data and its best fits are shown in
Fig. 3a. Similar as for the crystallite distributions, the Kaczmarz'
method-based fit coincides very well with the input data, while
the lognormal fit shows slight deviations throughout the entire
relaxation time range. The resulting differences in the obtained
distributions are shown in Fig. 3b.

The distribution obtained using Kaczmarz' method consists
of three distinct peaks enveloped by the lognormal distribution.
The parameters of the lognormal distribution are shown in
Table 2. Due to the broadness of the distribution (ranging over
more than 5 orders of magnitude in relaxation times) it is not
straightforward to interpret u and o. Although u seems to be
very large (226 s), the actual peak value is given by exp(In(u) —
0®) = 16 ms, and corresponds to an effective diameter of
350 nm.

3.2.2 AC-susceptibility (ACS). In principle, AC-
susceptibility measures the same information as the MRX
measurements, ie. a signal based on the distribution of the
relaxation times of the suspended particles. To gain further
insight in this distribution, we therefore turn our attention to
the analysis of the ACS data, as shown in Fig. 4.

The complex AC-susceptibility consists of a real part [the
upper blue data points in Fig. 4a, c and e] and an imaginary part
[the lower blue data points in Fig. 4a, c and e]. In our analysis,
we will first analyse the real and imaginary part individually
[results shown in panels (a-d)], and subsequently analyse both
parts simultaneously [results shown in panels (e and f)].

In panels (a and c) the black dash-dotted lines correspond to
the lognormal distribution that best fits the real and imaginary
part of our data set, respectively. The corresponding parameters
wand o are shown in Table 2 and show that the obtained peaks
in relaxation time lie at 2.8 ms and 4.7 ms, corresponding to an
effective diameter of 194 nm and 231 nm.

The full red lines in the same figures indicate the fits ob-
tained using Kaczmarz' method and show that an excellent
agreement with both data sets is obtained. The dotted red lines
correspond to the predicted imaginary [panel (a)] or real part
[panel (c)] signal derived from the found distributions by fitting
to the real/imaginary part of the data using Kaczmarz' method.
Similar deviations were found when using the distribution ob-
tained through fitting of a lognormal, but these were omitted

Table 2 Fit parameters u and o of the lognormal relaxation time
distribution, together with the peak of the distribution and the effective
diameter corresponding to the peaks

Eff. diam.
w(s) I Peak (ms) (nm)
MRX 227 3.09 16 348
ACS (real) 0.014 1.27 2.8 194
ACS (imag) 0.055 1.57 4.7 231
ACS (both) 0.072 1.64 5.1 237
Combined 3.125 2.19 26 408
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from the figures for clarity reasons. Interestingly, it seems as if
the real and imaginary data are not mutually consistent as the
best fit with one of the data sets results in a rather poor fit to the
other data.

This picture is corroborated by the best fit obtained from
both data sets simultaneously [as shown in panel (e)], in which
an overshoot of the real data and undershoot of the imaginary
data is visible at low frequencies for the lognormal fit, and also
(to a lesser extent) in the fit obtained using Kaczmarz' method.
This means that these data are not well described by eqn (9) to
(12) at low frequencies. Possible explanations for this effect are
that the measurement is no longer in the linear response
regime at these low frequencies or that the measurement setup
lacks accuracy at lower frequencies.

We leave a quantitative discussion of the peak positions in
the obtained distributions shown in panels (b, d and f) for the
next section. Instead we first qualitatively describe a few
features visible in the reconstructed distributions: first,
continuing our previous argument, the best fit of the combined
real and imaginary part [panel (f)] obtained with Kaczmarz'
method displays a peak at longer relaxation times than any of
the peaks observed in the distributions of the individual data
sets. This spurious peak therefore likely is an unphysical arte-
fact in which the fitting algorithm numerically compensated for
the limitations of the physical model or the setup at low
frequencies.

Secondly, the lognormal distributions typically envelope the
distributions obtained with Kaczmarz' method (except for the
unphysical peak described above), but only in the real part of
the data is there a good agreement between both obtained
distributions. Unlike any of the other found distributions, the
one retrieved from the real part of our data displays only one
peak (with a broad shoulder towards longer relaxation times).
We argue that this originates from the relatively featureless
form of eqn (10) which at frequency f shows a convolution of all
signal contributions with t.¢ > f. Moreover, the real part of our
measurement data shows a large offset even up to the largest
measured frequencies that must come from frequencies above
our measurement limit of 1 MHz, see also eqn (13). Physically,
these high frequency contributions stem from the magnet-
isation dynamics within the potential energy wells of the mag-
netocrystalline anisotropy (as opposed to the thermal switching
between these wells) at above GHz frequencies.®* This inter-
pretation is corroborated in the distribution found by Kaczmarz
by the appearance of a plateau at very fast (<10~ s) relaxation
times in the reconstructed distribution. This contribution is
implicitly accounted for in the lognormal distribution because
of the additional fit parameter x. in the model [see eqn (13)].

All reconstructed distributions also show a number of small
peaks at fast relaxation rates, which we attribute to a small
artefact in our data. The data were measured in two different
frequency ranges, with two different setups: one ranging from
10 Hz to 10 kHz, and one ranging from 10 kHz to 1 MHz.
Because both data sets do not perfectly match numerically,
Kaczmarz' algorithm tries to compensate for this by adding
these spurious peaks. We verified that these peaks were not

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Best fit of the AC-susceptibility measurement data of suspended nanoflowers using a lognormal distribution and using Kaczmarz'
method, based on (a) the real part of the data, (c) the imaginary part of the data, (e) both parts of the data set. Panels (b, d and f) show the obtained
relaxation time distributions corresponding to the fits in panels (a, c and e), respectively.

obtained when only fitting to one frequency range of the data
set.

Finally, the imaginary part of our measurement data still
shows a large signal at the lowest available frequency, i.e.,
10 Hz. This means that our ACS data set does not contain
information of all dynamical processes present in our sample.
Luckily, whereas ACS is mainly sensitive to processes displaying
a fast relaxation time, MRX is more sensitive to processes which
display slower relaxation times. In the next subsection we will

© 2021 The Author(s). Published by the Royal Society of Chemistry

therefore combine both data sets into one analysis before dis-
cussing the location of the obtained peaks in detail.

3.2.3 Combined MRX and ACS. Remarkably, the nano-
flower sample displays dynamics on a large range of timescales:
in the MRX data, the magnetisation is still not fully relaxed after
1.4 seconds (our last data point) whereas the ACS data shows
a signal up to 10 kHz, meaning that our sample displays
relaxation times over 5 orders of magnitude. Because MRX gives
little information below 1 ms and the lowest frequency available
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to ACS is only 10 Hz, we present a new fitting method that allows
to use Kaczmarz' method on two different data sets to obtain
a combined fit.

In order to use Kaczmarz' method on two data sets, they are
combined into one array. Likewise, the two A matrices [see
Section 2.3.2] are merged in a way such that the weights of the
distribution, multiplied by A give rise to one single array con-
taining both reconstructed data sets, comparable to the
combined input data array. There are, however, two additional
steps necessary in order to ensure a good fit. First, each of the
two data sets needs to get the same weight in the reconstruction
to avoid that the obtained distribution is dominated by one of
the data sets. This is done by normalising each of the individual
A matrices such that the sum of all elements is the same for
both matrices. Next, the multiplication of the weights with A
only describes the shape of the data up to a prefactor. In the
individual fits, this prefactor is implicitly fitted together with
the weights. In a combined fit, this is not possible, because both
data sets do not necessarily display the same prefactor. We
therefore add an additional step after each iteration, in which
the individual measurement data sets are rescaled to the
reconstructed curve, to ensure that the same weights can be
used to find a good fit of both data sets simultaneously. Finally,
in this case it is even more important than in the other fits that
we iterate through all data points in a random order, to avoid
any biases that could arise by always iterating through each
complete individual data sets in the same order.

In the following, we will discuss the results of a combined fit
of the MRX measurement data and the imaginary part of the
ACS measurement data. We chose only to take the imaginary
part of the ACS data into account because it contains, in prin-
ciple, the same information as the real part, but as argued in the
previous section, the real part is less sensitive, contains a high
frequency offset, and seems inconsistent with the imaginary
part of the data at low frequencies.

The results of this combined fit are depicted in Fig. 5 and
show that both in the MRX data [panel (a)] and imaginary ACS
data [panel (b)] a good fit can be obtained using Kaczmarz'
method. This contrasts the best fit obtained using a lognormal
distribution which displays significant deviations from both
data sets.

The obtained parameters u and ¢ for the fitted lognormal
distribution are shown in Table 2. The lognormal distribution
again roughly envelopes the distribution obtained using Kacz-
marz' method and the obtained peak of the lognormal in the
relaxation time (26 ms) is similar to the peak obtained from the
MRX data alone (16 ms) and is significantly larger than the peak
position obtained from ACS data (between 2.8 and 5.1 ms).

We will now discuss the position of the peaks in the distri-
butions obtained with Kaczmarz' method, as collected in Table
3, in which we organised them so that peaks we identify as the
same are put in the same column.

Generally, there is very good agreement between the
different peak positions obtained from the different data sets.
Broadly speaking, there are 4 different peaks: at 1.16, 2.61, 17.1
and 640 ms (average value of each column in Table 3), corre-
sponding to an effective diameter of 145, 190, 365 and 1190 nm.
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Fig.5 Best combined fit to (a) the magnetorelaxometry measurement
data and (b) imaginary part of the AC-susceptibility measurement data
of suspended nanoflowers using a lognormal distribution and using
Kaczmarz' method. (c) The obtained relaxation time distributions
corresponding to the fits in panel (a and b).

Although there are small deviations between the different peaks
obtained in different fits, almost all identified peaks lie within
a factor 2 of their identified average, which is remarkable given
the fact that our sample displays dynamics over a timescale

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Peak positions extracted from the relaxation time distribu-
tions found using Kaczmarz' method, together with their average value
and corresponding effective diameter

Measurement Peak positions (ms)

MRX 1.29 15.26 728
ACS (real) 1.77 ¢

ACS (imaginary) 0.80 3.02 16.41

ACS (both) 0.89° 2.57 10.60 65.68°
Combined MRX & ACS 1.06 2.26 6.98 & 36.16 552
Average peak position (ms) 1.16 2.61 17.1 640
Average eff. diam. (nm) 145 190 356 1190

“ Broad shoulder next to previous peak. ? Shoulder instead of peak.
¢ Non-physical artefact.

spanning 5 order of magnitude. Moreover, even the lowest and
highest value obtained for the first peak, i.e. 0.8 and 1.77 ms,
correspond to an effective diameter of 128 and 168 nm
respectively, which lies about 15% from 145 nm, which we
identified as the peak position. This small uncertainty range
makes us confident that all obtained peak positions indeed
correspond to the peaks we identified them with.

The first peak, corresponding to an effective diameter of
145 nm, is in reasonable agreement with the nanoflower sizes
obtained with TEM (110 £ 13 nm) and DLS measurements (158
+ 53 nm).*® The other peaks probably originate in the aggre-
gation of two or more nanoflowers resulting in a larger hydro-
dynamic size and thus a slower relaxation. For the peak
observed around 2.61 ms, it can be argued that it probably
corresponds to the relaxation of two-particle-aggregates. The
relaxation time is about 2.3 times slower than that of the 1.16
ms peak which we attributed to the individual particle relaxa-
tions, whereas an ellipsoidal particle with long axis twice as long
as the short axes (a very rough approximate shape of a two-
particle aggregate) would relax at roughly a 3 times slower rate.**

The second peak, at 2.61 ms, was not picked up from the
MRX data alone, which can be explained by the fact that it lies
quite close to the first peak, and the MRX data, being a super-
position of decaying exponential functions, is notoriously hard
to decompose and probably the ratio between both peaks is
smaller than the resolution limit for this specific problem.®
This underscores the importance of our approach to simulta-
neously account for several independent measurement results
in our analysis. For the same reason, the third peak at 17.1 ms is
picked up as two separate (although not very distinct) peaks at
6.98 ms and 36.16 ms only in the distribution obtained from the
combined analysis of both data sets.

As argued in Section 3.2.2, the peak at 65.68 ms is not
physical. Finally, the peak corresponding with the slowest
relaxation rate is only recovered from analyses that contain the
MRX data, as this process is too slow to detect in an ACS
measurement, which only starts at 10 Hz. The amplitude of
these peaks is difficult to interpret, because, on the one hand
the volume-weighted nature of our measurement techniques
makes the peaks corresponding to aggregated nanoflowers
(with larger effective diameter) look larger. On the other hand,

© 2021 The Author(s). Published by the Royal Society of Chemistry
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the measured effective magnetic moment of aggregated nano-
flowers might be much smaller than the sum of the individual
magnetic moments making up the aggregates, due to e.g. ring
formation that closes any flux loops. Therefore, the peak
amplitudes are affected by competing effects for which the
analysis lies beyond the scope of this work.

4 Discussion and conclusions

We made a detailed comparison of the performance of two
different fitting methodologies to investigate the size distribu-
tion of magnetization data of a magnetic nanoflower sample.
On the one hand we performed a least squares fitting with the
common assumption of a lognormal distribution, while on the
other hand we used Kaczmarz' method, which does not make
any assumptions of the functional form of the distribution.

We analysed several data sets, obtained using different
magnetic characterisation methods. In general, it can be
concluded that the lognormal assumption results in a slightly
broader distribution, while Kaczmarz' approach allows to
pinpoint several smaller peaks enveloped by the lognormal.

When the peaks are spread over a larger distance, the
lognormal assumption is inadequate. The lognormal distribu-
tion for example becomes skewed with a large tail in its
approach to explain the data. This results in a wrong position of
its peak and in a significantly broader distribution. Also, the
mean or median values derived from such a distribution are
thereby rendered meaningless.

Moreover, we presented a method that allows one to use
Kaczmarz' method to analyse data sets from distinct (magnetic)
characterisation techniques simultaneously and showed that
the results are not only consistent with each of the individual
data sets, but overcome their limitations by extending the
dynamical range that is accessible to the fitting algorithm, and
increases the resolution of the peaks that can be discerned in
the range where both methods provided data.

Our results also have implications for life science applica-
tions as we clearly showed that an adequate characterisation of
magnetic nanoflowers needs numerical methods that go
beyond a best fit to a lognormal size distribution. Not only did
we show that, for this specific sample, the lognormal distribu-
tion did not give rise to a consistent estimate of the size
distribution, it could even lead to false conclusions on the
suitability of this sample for biomedical applications. For many
applications, a narrow size distribution is desired, whereas our
obtained lognormal distributions tended to become very broad
by enveloping the actual peaks in the size distribution. Espe-
cially in the case of the nanocrystallite size reconstructed from
DC magnetometry data, the lognormal distribution strongly
overestimated the largest size of the crystallites present in the
sample. In a biomedical setting, where there is an upper limit of
the size of the particles which are suitable to be injected into
a patient, such an overestimate might lead to the conclusion
that a sample is not suitable for its purpose, whereas it only
contains smaller particles in reality. Finally, in some applica-
tions like magnetic particle hyperthermia, the exact position of
the peaks in relaxation time need to be accurately known in
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order to optimise the excitation frequency that maximises the
heat production. In imaging techniques such as MPI the
relaxation rates need to be known to avoid blurring effects in the
image. In a complex sample like the nanoflowers under study
here, Kaczmarz' method allowed us to consistently identify four
such peaks in the different data sets. Moreover, by combining
the information from ACS and magnetorelaxometry in a single
Kaczmarz fit we could further resolve peaks into smaller
contributions, increasing insight in the nanoflowers’ interac-
tion and aggregation dynamics. The combined fit also acts as an
additional confirmation of the two individual found distribu-
tions thereby increasing the confidence in the two individual
distributions. An accurate knowledge of the peak locations is
also of interest to the applications as it allows to fine-tune
application settings towards specific core sizes, agglomerates
or relaxation rates. Moreover, possibly magnetic interactions
can be identified and by targeting or avoiding these interactions
by setting requirements on the applied magnetic fields in the
applications, the performance can be greatly improved.

In conclusion, we showed that the use of Kaczmarz' method
is preferred to a fitting method that makes a priori assumptions
like a lognormal size distribution, that do not have a sufficient
physical basis for the analysis of nanoflowers. Because Kacz-
marz' method gives a consistent and accurate characterisation
of multiple data sets, it is a great candidate for a standardised
data analysis of magnetisation data. Moreover, Kaczmarz'
method offers a nanoscopic view into the complex magnetic
behaviour of magnetic nanoparticles, allowing targeted appli-
cation optimisation which results in a significant performance
and safety increase of currently-existing applications, thereby
opening up the pathway towards their clinical use.
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