Open Access Article. Published on 03 July 2019. Downloaded on 11/9/2025 3:23:55 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

ROYAL SOCIETY
OF CHEMISTRY

Chemical
Science

View Article Online

EDGE ARTICLE

View Journal | View Issue,

Designer artificial membrane binding proteins to

i") Check for updates‘
direct stem cells to the myocardium+

Cite this: Chem. Sci., 2019, 10, 7610

Wenjin Xiao,1® Thomas I. P. Green,° Xiaowen Liang, ;< Rosalia Cuahtecontzi Delint,?”

Guillaume Perry, ©9 Michael S. Roberts,® Kristian Le Vay,?® Catherine R. Back,
Raimomdo Ascione," Haolu Wang,© Paul R. Race’ and Adam W. Perriman*@9

8 All publication charges for this article
have been paid for by the Royal Society
of Chemistry

We present a new cell membrane modification methodology where the inherent heart tissue homing
properties of the infectious bacteria Streptococcus gordonii are transferred to human stem cells. This is
achieved via the rational design of a chimeric protein—polymer surfactant cell membrane binding
construct, comprising the cardiac fibronectin (Fn) binding domain of the bacterial adhesin protein CshA

fused to a supercharged protein. Significantly, the protein—polymer surfactant hybrid spontaneously
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affinity for immobilized fibronectin. Moreover, we show that this cell membrane reengineering approach

DOI: 10.1039/c95c02650a significantly improves retention and homing of stem cells delivered either intracardially or intravenously
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Introduction

There has been significant interest in the development of cell-
based therapies for the treatment of disease, due to the major
and increasing burden on health outcome and life expectancy.
However, challenges remain in relation to cellular delivery mode,
efficacy, off-target effects and therapeutic mechanism of action.
For example, studies using stem cells in vivo to regenerate
myocardium post ischemia have postulated many potential
mechanisms linked to cell type, including functional integration
with cardiomyocytes, paracrine effects from secreted factors,
tissue matrix remodelling via metalloproteases, as well as
recruitment of monocytes and macrophages to repair micro-
vessels.’ For the majority of these mechanisms, it is clear that
the therapeutic cells need to be recruited/retained at the site of
injury in significant numbers and for a sufficient duration to be
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to the myocardium in a mouse model.

able to have an effect. Accordingly, increasing cell homing and
retention is likely to be advantageous, especially as myocardial
retention of cells delivered via intravenous (IV), intra-arterial (IA),
or intramyocardial (IM) injections are associated with only 0%
(Iv), 2% (IA) and 10-15% (IM) retention up to 3 days post-
injection, followed by rapid signal loss over 24 hours.**

Such low levels of viable cell retention in the myocardium can
be rationalized by a number of factors, including a lack of adhe-
sion of the cells to the site of injury, poor targeting by selected
delivery mode, high turbulent hemodynamic flow, aggressive or
hypoxic environments, and presence of inflammatory cyto-
kines.**” To combat these effects, several cell immobilization
approaches for in vivo site-directed tissue repair have been
developed. Cells have been transplanted in soft biocompatible
matrices for enhanced retention using gelatin,® alginate® and
decellularized extracellular matrix (ECM) hydrogels."® Synthetic
matrices comprising cell-supporting scaffolds produced from
polyglycerol-sebacate (PGS)"* and poly(octamethylene maleate
(anhydride) citrate) (POMaC)'* have also been utilized for
implantation. Although these approaches provide the added
benefit of high cell numbers, they generally require more invasive
surgical procedures when compared with direct cell injection,
while the carrier biomaterials may feature unmatched biome-
chanical properties when compared with the myocardium.*

Cell membrane re-engineering is emerging as a powerful
new approach for in vivo tissue repair, where exogenous mole-
cules are directly introduced to the plasma membrane to drive
active cell homing to the site of injury. These approaches
commonly involve direct covalent modifications of the
membrane binding homing motifs, and include antibodies,****
selectin-binding peptides'® and polymers."” Recent studies on

This journal is © The Royal Society of Chemistry 2019
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increasing homing of therapeutic cells'®* and vesicles**** for
heart repair have achieved significant improvement in
outcomes with reduced fibrosis and scar size, and increased
cellular proliferation and angiogenesis. However, these
approaches have drawbacks, including steric hindrance of the
homing paratope, non-organ specificity and off-target stimula-
tion of irrelevant sites.”* Accordingly, the conceptual advance
described herein is centred on utilising the inherent homing
properties of infectious bacteria by immobilizing the cardiac
fibronectin (Fn) binding domain of the bacterial adhesin
protein CshA on the plasma membrane of therapeutic cells. The
adherence of bacteria to biotic or abiotic surfaces is essential for
host colonization, persistence, and pathogenicity, and the
process is facilitated by bacterial adhesins, which recognize and
bind specific partner molecules presented on the surfaces of
host cells and other microorganisms.?® Fibronectin, a large and
essential multidomain glycoprotein, functioning as a key link
between cells and their extracellular matrices, has been recog-
nized as the target for a large number of bacterial adhesins.**
Significantly, the CshA-Fn interaction directs S. gordonii to
damaged fibrotic regions of the cardiac endothelium, e.g,
infarcted or scarred tissue, damaged or prosthetic heart valves,
promoting the onset of infective endocarditis,”?*” and undam-
aged cardiac Fn. Although Fn is expressed in healthy cardiac
tissue, expression levels are increased enormously after
myocardial infarction.””*® Here, the mechanism underpinning
the high levels of selectivity exhibited by CshA for cardiac Fn
involves an atypical “catch-clamp” process.* After entering the
blood stream, the cell wall-bound adhesin rapidly samples the
localised ECM environment using an extended intrinsically
disordered low affinity binding site (catch), which, upon
binding, activates a second high affinity (clamp) to anchor the
bacterium to the immobilized Fn (Fig. 1a).

The ability to readily display the CshA binding motif on the
membrane of therapeutic cells, which has been evolutionarily
optimized to recognize and bind Fn in the cardiac endothelium
with high affinity, would provide a new direction for cell-based
myocardial therapy. Accordingly, a designer CshA chimera
construct was converted into an artificial membrane binding
protein using a protein surface reengineering methodology
recently developed in our laboratories.>® Here, the CshA Fn-
binding domain was fused to a supercharged green fluores-
cent protein (scGFP), which was then electrostatically conju-
gated to polymer surfactant molecules to produce a cytoplasmic
membrane active polymer surfactant corona. Significantly, this
new artificial membrane binding construct was not cytotoxic,
spontaneously inserted into the plasma membrane of human
mesenchymal stem cells (hMSCs), did not elicit a hematologic
response in mice, and directed hMSCs, delivered either intra-
cardially or intravenously, to the mouse myocardium.

Results and discussion

Synthesis and characterisation of the protein—polymer
surfactant construct

The gene comprising the non-repetitive domains (NR1, NR2,
and NR3) of CshA (Fig. S1At) fused to a +36 scGFP was
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Fig. 1 The artificial plasma membrane binding construct. (a) Sche-
matic showing the interaction of the polymer surfactant conjugated
supercharged fusion [CshA_scGFP][S] construct with the bilayer of the
cytoplasmic membrane. The structure shows the surface charge
potential, highlighting the high positive charge (blue) on the super-
charged GFP domain and the negative charge (red) on the CshA
globular domain, as well as the “catch” and “clamp” domains of CshA.
(b) The structure of the anionic polymer surfactant glycolic acid
ethoxylate 4-nonylphenyl ether (S), which electrostatically complexes
with the supercharged GFP moiety.

synthesized (Table S17), and the chimera CshA_scGFP (Fig. 1a)
was expressed in E. coli and purified using immobilized metal
affinity chromatography (IMAC) and size exclusion chroma-
tography (SEC) (Fig. S1Bft). Matrix-assisted laser desorption/
ionization time-of-flight (MALDI-TOF) mass spectrometry gave
a molecular weight of 112.6 kDa (Fig. S1Ct), which confirmed
the presence of the intact CshA_scGFP construct. Electrostati-
cally driven conjugation between the cationic residue side-
chains and the anionic polymer surfactant glycolic acid
ethoxylate 4-nonylphenyl ether ([S], Fig. 1b) was performed over
a range of protein cationic sites : polymer surfactant ratios
(PCS:PS;1:1.4,1:2.1and1:2.8), followed by dialysis. UV-vis
spectra from the resulting dialysed constructs (Fig. S2At)
showed strong absorbances arising from the scGFP fluorophore
(487 nm) and the aromatic groups of both the protein and the
nonylphenyl moiety of the surfactant (270-280 nm). The protein
and polymer surfactant molar extinction coefficients were used
to evaluate the final PCS : PSs, which were 1:0.6, 1: 1.1 and
1: 1.6, indicating the removal of unbound surfactant molecules
during  dialysis.  Sedimentation  velocity  analytical
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Fig. 2 The structure and conformation of the artificial membrane binding construct. Sedimentation velocity analytical ultracentrifugation (SV-
AUC) sedimentation coefficient {c(s)} distributions at (a) 487 nm and (b) 280 nm. The distributions show the overlay of the surfactant [S] (black
dashed line), CshA_scGFP (black line) and [CshA_scGFP][S] at protein cationic sites : polymer surfactant ratios of 0.6 : 1 (red line), 1.1 : 1 (blue line)
and 1.6 :1 (green line). (c) Synchrotron radiation small angle X-ray scattering (SR-SAXS) data from CshA_scGFP (black symbols) and
[CshA_scGFPI[S] (red symbols) at 25 °C. The corresponding P(r) distribution fits (solid lines) were obtained using Bayesapp. (d) Pair-distance
distribution functions (P(r)) derived from SR-SAXS of CshA_scGFP (black trace) and [CshA_scGFP][S] (red trace). (e) Small angle neutron scattering
(SANS) data (symbols) with P(r) distribution fits (solid lines) obtained using Bayesapp. SANS was used to probe the structure of CshA_scGFP in
100% D,O (black) and [CshA_scGFPI[S] in 40% D,O (red) at 25 °C. (f) Pair-distance distribution functions (P(r)) derived from SANS data fitting of
CshA_scGFP in 100% D50 (black trace) and [CshA_scGFP][S] in 40% D,O (red trace).

ultracentrifugation (SV-AUC) experiments were performed on
the three formulations at 487 nm and 280 nm to monitor the
chimera and the polymer surfactant independently. Signifi-
cantly, electrostatic surfactant conjugation of CshA_scGFP to
yield [CshA_scGFP][S] increased the sedimentation coefficient
(Abs 487 nm) of the primary feature from 4.1 to 4.8 S at
a PCS:PS of 1:0.6 (Fig. 2a and Table S2f). Moreover,
increasing the PCS: PSto 1:1.1 or 1: 1.6 did not increase the
sedimentation coefficient of this feature, which indicated that
the surfactant binding sites on the CshA_scGFP fusion were
saturated. Indeed, the emergence of a feature at ca. 1.6 S at
a PCS: PS of 1:1.1 (Abs 280 nm), which increased in magni-
tude at 1 : 1.6, signified the presence of free surfactant (Fig. 2b
and Table S27). Accordingly, a PCS : PS of 1 : 0.6 was used for all
subsequent experiments.

The formation of the sub-stoichiometric [CshA_scGFP][S]
complex (PCS : PS of 1:0.6) can be rationalized by the aniso-
tropic distribution of cationic surface charge on the
CshA_scGFP construct (Fig. 1a). Here, the scGFP membrane
binding region displays a high density of cationic surface
charge (+36 at pH 7.5), which would favour cooperative surfac-
tant binding through hydrophobic tail burial beneath the PEG-
rich regions on the protein surface.*® Conversely, the CshA

7612 | Chem. Sci,, 2019, 10, 7610-7618

motif has a theoretical net charge of —30 at pH 7.5. This was
reflected in the low zeta potential of the CshA_scGFP construct,
which was +0.9 mV at pH 7.5, and decreased to —15.2 mV after
the positive surface charges were neutralized via electrostatic
surfactant conjugation. The formation of a compact polymer
surfactant corona was also supported by dynamic light scat-
tering (DLS) experiments, which showed a 2 nm increase in the
hydrodynamic diameter (Fig. S2Bt), increasing from approxi-
mately 10 nm for CshA_scGFP to 12 nm for [CshA_scGFP][S].
To study the constructs in higher resolution, synchrotron
radiation small angle X-ray scattering (SR-SAXS) and neutron
scattering (SANS) experiments were performed. For the
CshA_scGFP fusion construct, fitting the SAXS scattering
pattern (Fig. 2c) yielded a radius of gyration of 7.4 & 0.4 nm with
an axial ratio of 10.6 + 0.4 (Table S37). Moreover, the resulting
pair-distance distribution function (P(r)) rapidly decayed to
a distance of approximately 18 nm before extending out to
a Dpax of 29 nm (Fig. 2d). This “long tail” in the P(r) function
and high axial ratio can be reconciled by the dynamic intrinsi-
cally disordered NR1 “catch” domain in CshA,* and the corre-
sponding Porod exponent of 2.1 & 0.1 (Table S37) confirmed the
high level of flexibility. SAXS experiments performed on
[CshA_scGFP][S] (Fig. 2c) showed that polymer surfactant

This journal is © The Royal Society of Chemistry 2019


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9sc02650a

Open Access Article. Published on 03 July 2019. Downloaded on 11/9/2025 3:23:55 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Edge Article Chemical Science

a 150
§
B
S 100 bl
3
"
s
[0
o
8
£ 50
<
[
['%

0.
Untreated 2 4 6 8 10 12 16

cells
Protein concentration (M)

b 800000
6000001

400000

Cell number

200000

Passage 1 Passage 2

Fig. 3 The interaction of the constructs with the hMSC plasma membrane. (a) (3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium) (MTS) assay showing the MSC viability (via the total metabolic activity) as a function of CshA_scGFP (black) or
[CshA_scGFPI][S] (red) incubation concentration. The bars represent the mean average and the error bars represent the standard deviation
calculated using hMSCs from 3 different patients (n = 3). The groups were tested using a one-way ANOVA followed by a two-tailed equal
variance Student's t-test. A p-value of less than 0.05 and 0.01 considered significant (*) and highly significant (**), respectively, when compared
to the untreated cells. (b) hMSC proliferation after incubation for 15 minutes with either with 4 uM CshA_scGFP (black) or 4 uM [CshA_scGFP][S]
(red), and the untreated cell controls (white). The treated cells retained their proliferation capability for 14 days in culture, indicating CshA_scGFP
and [CshA_scGFP][S] had no long-term effects on cell self-renewal. The statistical approach was the same as for (a). Live cell fluorescence
widefield microscopy images showing the cell membrane affinity of (c) CshA_scGFP (green) imaged immediately after 15 minutes incubation,
and (d) after a further 12 hours, which shows the result of significant endocytosis. Analogous experiments performed after incubation with
[CshA_scGFPI[S] (green) show persistence fluorescence at the plasma membrane when (e) imaged immediately after 15 minutes incubation, and

(f) after a further 12 hours. Cell nuclei were stained with a Hoechst dye (blue). Scale bar = 100 um.

conjugation resulted in a 2.4 nm increase in the radius of
gyration (c¢f. CshA_scGFP), which was accompanied by a reduc-
tion in the axial ratio (from 10.6 to 8.2 + 0.1, Table S3t) and an
increase in the flexibility of the construct (Porod exponent of 1.8
+ 0.1; Table S3f). SANS data fitting (Fig. 2e) also yielded
parameters that were consistent with a highly elongated struc-
ture for CshA_scGFP (Table S37), with a radius of gyration of
6.1 nm, and a P(r) function with Dy, of ca. 25 nm (Fig. 2f).
Experiments performed on [CshA_scGFP][S] at the protein
contrast match point (40 : 60 D,O : H,0) gave a bimodal P(r)
function (Fig. 2f), which indicated that although the majority of
surfactant chains were associated with the scGFP moiety, some
electrostatic assembly had occurred near the CshA domain.
The effect of surfactant electrostatic conjugation on protein
structure was also investigated using synchrotron radiation
circular dichroism (SRCD) and fluorescence spectroscopies.
Deconvolution of the Far-UV SRCD spectrum from the
CshA_scGFP fusion (Fig. S2Ct) gave a secondary structure
distribution that was representative of the constituent protein
components, with high levels of disordered structure from NR1
of CshA* (48.6%), as well as beta structure from scGFP*
(21.2%) and alpha helical content from NR2 and NR3 of CshA*
(16.1%) (Fig. S2DfT). Significantly, surfactant conjugation to

This journal is © The Royal Society of Chemistry 2019

yield [CshA_scGFP][S] produced a SRCD spectrum that could be
superimposed on that of the fusion protein (Fig. S2C¥), signi-
fying that no major changes in the secondary structure distri-
bution had occurred (Fig. S2Et). The persistence of protein
structure after polymer surfactant conjugation was also sup-
ported by fluorescence spectroscopy measurements, which
showed that both CshA_scGFP and [CshA_scGFP][S] retained
the characteristic fluorescent signature of scGFP,** with an
excitation peak at 487 nm and a corresponding emission peak at
510 nm (Fig. S2F1).

The interaction of the artificial membrane binding construct
with hMSCs

The potential cytotoxicity of the CshA_scGFP fusion and the
[CshA_scGFP][S] conjugate was evaluated by performing cell
viability experiments using bone marrow-derived hMSCs. Here,
hMSCs could be incubated in either construct up to protein
concentrations as high as 12 uM, without significant cell death
(Fig. 3a). Accordingly, an incubation concentration of 4 pM was
used for all subsequent experiments, and hMSCs incubated
with either CshA_scGFP or [CshA_scGFP][S] retained their
ability to undergo self-renewal over a two week period (Fig. 3b).

Chem:. Sci, 2019, 10, 7610-7618 | 7613
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Fig. 4 Static and dynamic cell adhesion on immobilised fibronectin
(Fn). (a) Static adhesion assay showing the hMSC adherence to
immobilised Fn after cells were incubated for 15 minutes with 4 uM of
either CshA_scGFP (black) or [CshA_scGFP][S] (red), respectively, and
compared with untreated cell controls (white). Dynamic fluidic
adhesion assay showing the hMSCs adherence to Fn at shear stress of
(b) 1 and (c) 1.5 dyne cm™~2, respectively. The bars represent the mean
and the error bars represent the standard deviation calculated using
hMSCs from 3 different patients (n = 3). Comparison of differences
was tested using one-way ANOVA followed by a two-tailed, equal
variance Student's t-test with a p-value of less than 0.05 and 0.01
considered significant (*) and highly significant (**), respectively,
compared to the untreated cells on either BSA or Fn coating.

Significantly, live cell widefield microscopy experiments showed
rapid labelling of the plasma membrane of the hMSCs after
incubation with either CshA_scGFP or [CshA_scGFP][S] (Fig. 3c

7614 | Chem. Sci., 2019, 10, 7610-7618
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and d). scGFP_CshA was also capable of labelling hMSCs in
a mechanism mediated by electrostatic attraction to anionic
sulphated proteoglycans on the plasma membrane, which is
consistent with studies of supercharged proteins.***** More-
over, supernatant depletion assays performed on the constructs
after incubation with the hMSCs showed approximately 2
billion and 0.7 billion constructs per cell for CshA_scGFP and
[CshA_scGFP][S], respectively (Fig. S4At). Fluorescence acti-
vated flow cytometry measurements showed complete labelling
of the hMSCs populations by both constructs, with no signifi-
cant difference in the total fluorescence intensity between the
samples (Fig. S4Bt). As the flow cytometry assays could not
discriminate between constructs on the plasma membrane or in
the cytosol, time course live-cell widefield fluorescence
microscopy experiments were conducted, which showed that
the [CshA_scGFP][S] persisted at the plasma membrane for at
least 12 hours (Fig. 3f). Conversely, the CshA_scGFP was rapidly
endocytosed over the same period (Fig. 3e), which is consistent
with a recent report by Krishnan et al.** that described a strong
cationic surface charge dependency for tissue and cell uptake of
supercharged green fluorescent proteins. The cardiogenic
differentiation potency of hMSCs after the [CshA_scGFP]|[S]
modification was also investigated. After exposed to 5-azacyti-
dine, the [CshA_scGFP][S] modified hMSCs acquired phenotype
of cardiomyocytes as shown by the expression of cardiac
biomarkers including cardiac transcription factor Nkx2.5,
alpha-cardiac actin and cardiac troponin T (Fig. S57).

Modified hMSC fibronectin adhesion assays

Following the demonstration of persistent and efficient hMSC
membrane labelling, static adhesion assays were performed to
assess the ability of the modified cells to bind to immobilized
human fibronectin (Fn). Here, hMSCs were seeded onto Fn-
coated substrates and bovine serum albumin (BSA) blocked
substrates were used as controls. Widefield microscopy per-
formed on samples showed hMSCs firmly adhered to the Fn-
coated dishes after 6 hours of incubation, with the typical flat
fibroblastic morphology of hMSCs (Fig. S6t). Significantly,
quantitative biochemical assays revealed that the cells labelled
with either construct exhibited an increase in adhesion, with
[CshA_scGFP][S] producing a two-fold increase in hMSC
adherence compared to untreated hMSCs (Fig. 4a). To explore
the process adhesion under dynamic conditions, a biomimetic
microfluidic adhesion assay was performed to model interac-
tions between circulating modified hMSCs and immobilized Fn.
Here, the microfluidic channel was coated with Fn and controls
blocked using BSA. By flowing hMSCs at physiologically-
relevant shear stresses (1-5 dyne cm 2 (ref. 35)), a general
trend was observed, whereby fewer cells adhered to Fn at higher
shear stresses (Movies S1, S2 and S3f). Significantly,
CshA_scGFP and [CshA_scGFP][S] both conveyed significantly
higher adherence of hMSCs to Fn at shear stresses of 1 and 1.5
dyne cm ™2 when compared to untreated hMSCs (Fig. 4b and c).
This confirmed that the Fn binding propensity of CshA could be
effectively transferred from Streptococcus gordonii to human
stem cells in vitro.

This journal is © The Royal Society of Chemistry 2019
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Fig.5 The effect of the construct on hMSCs homing and retention in a murine heart. Representative laser scanning confocal microscopy images
from DAPI (blue) stained 10 um sections of murine heart after intracardiac injection of 2 000 000 untreated hMSCs or [CshA_scGFP][S]-modified
hMSCs. Al hMSCs were stained with CMPTX cell tracker (red) before injection. (a) Control unmodified hMSCs after 2 hours, and (b) after 24 hours.
(c) [CshA_scGFP][S]-modified hMSCs after 2 hours, and (d) after 24 hours. (e) [CshA_scGFP][S]-modified hMSCs after 24 hours. High magnifi-
cation composite (brightfield/fluorescence) images show the presence of the [CshA_scGFPI[S] construct (green) on the cells (red) after (e) 2

hours and (f) after 24 hours. Scale bar = 200 pm.

hMSCs homing in vivo

In light of the positive Fn adhesion results, an in vivo mouse
model was used to assay the propensity of the [CshA_scGFP][S]
construct to promote stem cell homing to the myocardium. It
was hypothesised that as the fibronectin sequence is remark-
ably well conserved among higher animals,* that sufficient
targets for the CshA would still be present. Prior to the in vivo
administration of the modified hMSCs, the hemocompatibility
and systemic toxicity of the [CshA_scGFP][S] construct were
evaluated in mice. Significantly, no granulocyte activation,
thrombocyte activation, or hemolysis was observed in whole
blood samples at 2 hours and 24 hours after the intravenous
injection of [CshA_scGFP][S] (Table S4%). Accordingly,
[CshA_scGFP][S] modified hMSCs were intravenously trans-
planted into mice and the systemic toxic effects were evaluated
by examining the pathological changes of the major organs
after 4 weeks. No notable differences were observed in the heart,
lung, kidney or liver among these groups (Fig. S71), suggesting
that [CshA_scGFP][S] modified hMSCs had no acute toxic effects
on normal tissues in vivo. The CshA sequence is derived from

a commensal organism, which may help reduce

This journal is © The Royal Society of Chemistry 2019

immunogenicity. Moreover, as the membrane functionalization
is transient (endocytosed by the transplanted cell), this may also
help to reduce immunogenicity. For future work, and eventual
clinical translation of this system, it will be essential to perform
reactivity assays on T- and B-cell proliferation from peripheral
human blood after exposure to the chimera-polymer surfactant
conjugates as well as complementary enzyme-linked immuno-
sorbent assays (ELISA).

The distribution of hMSCs and [CshA_scGFP][S] modified
hMSCs in mouse organs after intracardiac injection (Movie S47)
was explored at the cellular level using confocal microscopy,
where cells were labelled with red CMPTX cell tracker before
injection. Representative images of untreated hMSCs and
[CshA_scGFP][S] modified hMSCs in frozen heart sections at 2
and 24 hours after the intracardiac injection showed that the
[CshA_scGFP][S] modified hMSCs retained their fluorescence
for 24 hours in vivo and could be readily distinguished against
the tissue background (Fig. 5a-f). Quantitative PCR assays for
human-specific Alu sequences*® were performed to evaluate the
number of [CshA_scGFP][S] modified hMSCs and control
hMSCs at 2 hours and 24 hours after either intracardiac or
intravenous injection. Significantly, an in vivo cytokinetic
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injection of 2 x 10° cells. The solid line represents the concentration—time profile of the hMSCs simulated by the physiologically based kinetic
model while the closed triangles or squares represent measured biodistribution data. Concentration of untreated hMSCs (black) and
[CshA_scGFPI[S] modified hMSCs (red) in the lung at 2 hour and 24 hour after (c) intracardiac and (d) intravenous injection. Concentration of cells
is expressed as number of cells per kilogram of tissue. The triangles and squares represent the mean average and the error bars represent the
standard deviation calculated using cells from 3 mice (n = 3), and comparison of differences was tested using a two-tailed, unequal variance
Student's t-test with a p-value of less than 0.05 and 0.01 considered significant (*) and highly significant (**), respectively.

model*” was applied to the resulting data to elucidate the in vivo
spatiotemporal disposition of the administered hMSCs, which
showed that the tissue:plasma distribution coefficient of hMSCs
in the heart had increased by 100% after modification with
[CshA_scGFP][S] for both intracardiac and intravenous injec-
tion (Fig. 6a and b, Table S51). Moreover, hMSC accumulation
in the lung did not differ between untreated hMSCs and
[CshA_scGFP][S] modified cells (Fig. 6¢ and d), which indicated
that the process involved cell homing and not simply retention.

Conclusions

In this work, we rationally designed, built and characterised
a protein chimera-polymer surfactant construct with cardiac
tissue homing properties, which spontaneously inserted into
the plasma membrane of hMSCs. Where this system differs
considerably from non-homing approach is two-fold. Firstly, we
hijacked the innate ability of Streptococcus gordonii to home to
cardiac tissue by displaying an artificial membrane binding
analogue of the bacterial adhesin CshA on the surface of
hMSCs. Bacterial adhesins exhibit exquisite selectivity for target
molecules and recognize molecular motifs in a lock-and-key
fashion, in line with enzymes and immunoglobulins.*
Accordingly, our approach could be readily extended to include

7616 | Chem. Sci., 2019, 10, 7610-7618

other adhesins that exhibit specific protein-protein interactions
to drive homing of therapeutic cells to different organs, e.g.,
brain, kidney, liver, and related acute or chronic disease.
Secondly, we demonstrated that a supercharged protein motif
can be used to drive the electrostatic assembly of a cell
membrane active polymer surfactant corona. This hydrophobic
nonylphenyl chain membrane insertion mechanism presents
a number of key advantages. The process is facile, non-cytotoxic
and does not require genetic modifications of the cells. More-
over, as our cell membrane engineering display system is
completely independent of the cell type, it could be readily
applied to other therapeutic cells, including endothelial
progenitor cells, bone marrow-derived mononuclear cells, and
pluripotent stem cells.*®

In summary, we demonstrate a completely bacterial adhesin-
based homing technology with several key advantages, such as
ease of synthesis and handling of both the anchor region and
homing molecule, large construct display number (billions) and
persistence (>12 hours) on the cell surface, no loss of the bio-
logical function of protein after membrane insertion, and high
specificity for in vitro/in vivo affinity to Fn. We show that the
construct is not cytotoxic, does not elicit a hematologic
response in mice, and directs engineered hMSCs delivered
either intracardially or intravenously to home selectively to the

This journal is © The Royal Society of Chemistry 2019
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myocardium, without a concomitant increase in the number of
cells in the lungs.
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