Issue 95, 2016, Issue in Progress

Scale inhibitors with a hyper-branched structure: preparation, characterization and scale inhibition mechanism

Abstract

In order to improve the scale inhibition efficiency of existing scale inhibitors for industrial water and to reduce the phosphorus pollution of water bodies, a new type of scale inhibitor with a hyper-branched structure has been developed in this study. First, an AB′ type of functional monomer (AMA) was synthesized from maleic anhydride (MAH) and propylene glycol, then copolymerized with monomer B (MAH) through radical polymerization, resulting in a hyper-branched polycarboxylic acid. The synthesis conditions, such as reaction temperature and time, monomer ratio and initiator dosage, have been investigated for obtaining the expected hyper-branched polymer with good scale inhibition performance. The scale inhibition efficiency of the obtained products was determined according to their resistance to the crystallization of calcium sulfate and calcium carbonate under the optimal application conditions. The experimental results show that the hyper-branched polycarboxylic acid provides a scale inhibiting efficiency for CaCO3 and CaSO4 as high as 95.2% and 92.3%, respectively. In addition, XRD analysis showed that the good scale inhibition of the hyper-branched polycarboxylic acid is attributed to its ability to inhibit and destroy the formation of crystals, changing the crystal forms of the calcium scale. This conclusion indicates that the prepared hyper-branched polycarboxylic acid has great application potential in the treatment of industrial water.

Graphical abstract: Scale inhibitors with a hyper-branched structure: preparation, characterization and scale inhibition mechanism

Article information

Article type
Paper
Submitted
22 Aug 2016
Accepted
12 Sep 2016
First published
13 Sep 2016

RSC Adv., 2016,6, 92943-92952

Scale inhibitors with a hyper-branched structure: preparation, characterization and scale inhibition mechanism

H. Huang, Q. Yao, H. Chen and B. Liu, RSC Adv., 2016, 6, 92943 DOI: 10.1039/C6RA21091K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements