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Introduction

The search for more sustainable synthetic methods has led to
increased interest in cross-couplings that unite two partners at
the expense of a C-H bond in each, i.e. without the need for
pre-functionalisation. Such processes would lead to lower
costs, as fewer steps are required, and less waste results, when
compared to standard metal-catalysed coupling reactions.’
The ubiquity of C-H bonds means that achieving regio-
selectivity in C-H functionalisation can often prove difficult,
and directing groups are often necessary to facilitate functio-
nalisation with directed ortho C-H bond activation on an aro-
matic or heteroaromatic ring being a common strategy.> The
oxidative ortho C-H coupling of arenes and heteroarenes with
alkenes has been well investigated using various directing
groups, reactive alkenes (e.g. acrylates and styrenes), and Pt
group metals.’ In contrast, the use of a sulfur-based directing
group to direct C-H coupling of an aromatic ring with alkenes
is a recent advance and is largely unexplored (Scheme 1A).*
The replacement of Pt group metals with inexpensive first row
transition metals for synthetic procedures, including those
involving C-H functionalisation, has clear benefits.” The low
cost of iron, its high abundance, and its low toxicity, make
iron-based reagents ideal for new transformations.

Here we describe the Fe(m)-mediated oxidative C-H ortho
coupling of aryl sulfides with simple, terminal alkenes to give
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of arenes and unactivated terminal alkenes mediated by iron, and a palladium-catalysed deallylation/
heterocyclisation sequence. The iron-mediated coupling affords linear products of alkene chloroarylation
in good yield and with complete regioselectivity. The coupling likely proceeds by redox-activation of the
arene partner by iron(i) and alkene addition to the resultant radical cation.

linear p-chloroarenes.® It is proposed that the two nucleophiles
couple through oxidation of the arene partner by Fe(m), fol-
lowed by addition of the alkene to quench the resulting radical
cation.””® The sulfur-directed, iron-mediated coupling facili-
tates an expedient, novel route to decorated dihydrobenzo-
furans; a motif found in many natural products and drug
molecules (Scheme 1B). The approach also features a Pd-cata-
lysed deprotection/heterocyclisation and Ni-catalysed cross-
couplings of sulfides (Scheme 1C).

Results and discussion
Scope and limitations

Previously reported optimisation studies found that FeCl; was
the most effective oxidant for the C-H coupling of diaryl sul-
fides and alkenes and that the reaction proceeded at ambient
temperature under air in CH,Cl,.° As the coupling is thought
to involve reactive radical cation intermediates that are prone
to decomposition, slow addition of the Fe(u) oxidant to a
mixture of arene and alkene was employed to maintain a low
concentration of radical cation. Slow addition of FeCl; was
found to give improved mass balance and yield. Regardless of
how the oxidant was added, crude '"H NMR spectra showed
clean product and mass balance was the only issue.

We next assessed the scope of the process by varying the
alkene partner in the coupling process (Scheme 2). Products
were obtained in good isolated yields (37-65%) from couplings
of alkene substrates bearing alkenyl (2b), iodide (2¢), bromide
(2d and 2e), chloride (2f), aryl (2g and 2h), and nitro (2j) func-
tionality. Interestingly, 1,6-heptadiene underwent selective
coupling to give the monoaddition product (formation of 2b):

This journal is © The Royal Society of Chemistry 2016
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Scheme 1l A. Pt-group metal-mediated, sulfur-directed C-H
alkenylation. B. Benzofuran motifs in important synthetic targets. C. This
work: Fe(m)-mediated, sulfur directed C—H coupling of arenes and
alkenes exploited in a novel approach to dihydrobenzofurans. DG-Sulfur
= Sulfur-containing directing group.

the corresponding double addition product was not observed
(vide infra).

The scope with regard to the aryl sulfide partner was next
assessed (Scheme 3). Although the coupling is sensitive to sub-
stitution in the aryl ring undergoing carbon-carbon bond for-
mation (vide infra), the non-reacting, right-hand aryl ring can
be varied: methyl (2k), bromide (21), fluoride (2m and 2n),
nitro (20), trifluoromethyl (2p), and methoxy (2q and 2r)
groups were compatible with the coupling and products were
isolated in good yield.

Whilst 3,5-dioxygenation in the left-hand aryl ring of the
diaryl sulfides has to date proved indispensible, allyl- and iso-
propoxyethers can also be used in the C-H coupling and pro-
ducts were isolated in moderate yield. The use of an allyl
ether-containing substrate allowed interesting avenues for
product manipulation to be explored (vide infra, Scheme 4).

Fig. 1 shows a selection of substrate combinations that did
not result in successful coupling. Styrene was an ineffective

This journal is © The Royal Society of Chemistry 2016
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Scheme 2 Variation of alkene in the Fe(i)-mediated C—H coupling.

partner potentially due to it being easily oxidised and thus
reacting with FeCl;. Alkenes bearing oxygen-containing func-
tionality, such as ketones and alcohols, also proved ineffective
coupling partners. This is likely due to competitive coordi-
nation of Fe(m) to the Lewis basic sites in the alkene partner.
Finally, internal alkenes, such as cyclohexene, did not undergo
coupling. In terms of the arene partner, 3-methoxyphenyl
phenyl sulfide did not undergo coupling with 1-octene (vide
infra). Also, in contrast to substrates bearing nitro and trifluor-
omethyl groups in the right-hand aryl ring, the presence of an
electron-donating substituent in the para-position of that ring
adversely affected coupling. This may be due to formation of a
thioquinone-type species. To date, alkyl aryl sulfides have also
proved to be incompatible with the coupling reaction.
Additional substrates that failed to undergo coupling can be
found in the ESL{

Mechanistic insights

Carbon-carbon bond formation at the terminal position of the
alkene, and the formation of linear products, rather than coup-
ling at the internal position of the alkene, and the formation
of branched products, suggests that an SgAr process is not
operational.” In addition, control experiments using non-
redox-active Lewis acids did not result in product formation
(Scheme 5).
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Scheme 3 Variation of aryl sulfide in the Fe(i)-mediated C—H coupling.

Scheme 6 shows a plausible mechanism for the Fe(m)-
mediated arene/alkene coupling.'® Oxidation of the aryl
sulfide 1 by the anhydrous oxidant FeCl; [approx. +2.00 V (vs.
SHE) in MeCN]"' gives radical cation A. Addition of the term-
inal alkene partner then gives intermediate radical cation B.
The preference for bond formation ortho to sulfur may indicate
that chelation with the metal centre in D directs reaction
towards this position.'> Substrates in which the arylsulfanyl
substituent was replaced by an alkoxy or alkylamino substitu-
ent failed to undergo coupling, thus highlighting the impor-
tant role played by sulfur (see the ESIT).

Our studies show that the oxidation potential of 1a [+1.71 V
(vs. SHE) in MeCN] is compatible with the initial step of the
proposed mechanism (Fig. 2). A carbocation is then formed by
the oxidation of radical cation B with FeCl; that is then
quenched by chloride to deliver the products 2. Indirect evi-
dence for this mechanism comes from the observation that
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well-known oxidant CAN mediates a similar transformation:
coupling of 1a with 1-octene gave the nitrate analogous to 2a
in 56% yield (Scheme 7)."*'* Furthermore, the oxidation of
diaryl sulfides to the corresponding sulfoxides using CAN is

This journal is © The Royal Society of Chemistry 2016
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Scheme 7 CAN-mediated C—H coupling to give an analogous product.

proposed to proceed through radical cations analogous to A.*>
The terminal alkene partners are known to have higher oxi-
dation potentials than the aryl sulfides."®

5-hexenyl ‘radical clock’ cyclisation was used in an unsuc-
cessful attempt to intercept radical B (Scheme 2: 2b was the
only coupled product observed). Thus, under the experimental
conditions, radical oxidation appears to be faster than cyclisa-
tion (Z.e. >1 x 10° s7") (Scheme 8)."”"® Interestingly, attempts to
promote cyclative radical trapping using dienes bearing
geminal dialkyl substitution led to alternative coupling products
2y and 2z in low yield (Scheme 8). This may be due to the
increased steric bulk impeding trapping of the carbocation
intermediate with chloride.

Two factors appear crucial to the success of the cross-coup-
ling process; (i) the ease of oxidation of the aryl sulfide, and
(ii) the stability of the resultant radical cation A. For example,
attempts to use 3-methoxyphenyl phenyl sulfide as a coupling
partner with 1-octene led to only a trace of product even
though the aryl sulfide starting material was consumed. We

This journal is © The Royal Society of Chemistry 2016
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Scheme 9 Competition experiment exploring the influence of the
right-hand aryl ring.

have measured the oxidation potential of 3-methoxyphenyl
phenyl sulfide and found it to be similar to that of 1a [+1.72 V
(vs. SHE) in MeCN] (Fig. 2), therefore, we propose that deleter-
ious side reactions of the radical cation derived from 3-meth-
oxyphenyl phenyl sulfide are likely responsible for inefficient
carbon-carbon bond formation. Steric stabilisation of the
radical cation A may therefore be the most important role
played by substituents in the ring undergoing coupling in the
aryl sulfide.

Switching the electronic properties of the para substituent in
the non-coupling, right-hand aryl ring of substrates affected the
yield of the process (Scheme 3). Coupling reactions of aryl
sulfide substrates bearing nitro and trifluoromethyl electron-
withdrawing groups, to give sulfides 20 and 2p, gave products in
higher yield than processes involving comparable substrates
lacking these substituents. As expected, the competition experi-
ment shown in Scheme 9 using limiting FeCl; suggests that the
rate of coupling is highest for electron-rich substrates: a mixture
of 1-octene, 1a and 1f selectively delivered 2a with no trace of
20. It appears likely that a decreased rate of aryl sulfide oxi-
dation, thus avoiding large concentrations of radical cations that
lead to decomposition,'® results in the improved yields obtained
for the coupling of aryl sulfides to give 20 and 2p (Scheme 3).

Product manipulation

The products of C-H arene/alkene coupling possess a range of
functional handles for further manipulation (Fig. 3). For

Org. Biomol Chem., 2016, 14, 5286-5292 | 5289
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Fig. 3 Synthetic manipulation of coupled product 2a.

example, directed ortho-metalation of 2a followed by reaction
with various electrophiles (to form 3a-c), oxidation of sulfur
(to give sulfone 3d), reduction and elimination of chloride (to
form 3e and 3f, respectively), and Sy2 displacement of chloride
(to give azide 3g) can be efficiently performed.

Notably, styrene 3f is formally the product of an oxidative
Heck reaction involving aryl sulfide 1a and 1-octene.>® Coup-
ling products can also undergo dehalogenation when treated
with silver() salts to give the cyclic sulfonium salts (3h and 3i)
as a 2:1 mixture of diastereoisomers. Carrying out the Fe(u)-
mediated C-H alkene/arene coupling in the presence of AgOTf
allowed the sulfonium salt 3h to be prepared directly in mod-
erate isolated yield (Scheme 10).

Pd-catalysed deprotection of the allyl ethers in the products
of coupling 2s-w triggered cyclisation to give important benzo-
furan scaffolds. The reaction proceeds efficiently under mild
conditions employing NaBH, and the allyl scavenger, morpho-
line. Interestingly, when NaH was used in place of NaBH,, only
the mono-deprotected benzofuran product 4e was observed
(Scheme 11).

Conversion of dihydrobenzofuran 4a to the corresponding
triflate 5 (Tf,NPh, tBuONa, THF, 2 h; 87%) paved the way for
further decoration of the heterocyclic scaffold. Pd-catalysed
Suzuki-Miyaura cross-coupling® gave 6a-c¢ in high isolated
yield. Alternatively, copper-free, Pd-catalysed Sonogashira cross-
coupling gave 6d in excellent isolated yield (Scheme 12).>>

The arylsulfanyl directing group can be removed using
RANEY® nickel in excellent yield (RANEY® Ni, EtOH, 1 h)
(Fig. 4). Notably, reductive removal of the arylsulfanyl from the
products of Fe(m)-mediated C-H coupling completes a concise
approach to biologically important alkylresorcinols (e.g. 7a).>?

Ph -
FeCl; (4 eq.) Iy OTf
MeO SPh AGOTF(1 eq) MeO S
+ A NCHyy ——————— CeH1s
H (5eq) MeNO,/CHCI,
1a MeO ’ rt, air, 2 h MeO  3h 40%

Scheme 10 Direct Fe(i)-mediated C—H coupling to form cyclic sulfo-
nium salt.
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Fig. 4 Reductive removal of the arylsulfanyl directing group using
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More attractively, the arylsulfanyl directing group can also
act as a synthetic handle for the introduction of further diver-
sity. Nickel-catalysed Kumada couplings with aromatic, hetero-
aromatic, and aliphatic Grignard reagents allow efficient

This journal is © The Royal Society of Chemistry 2016
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Scheme 13 Ni-catalysed couplings for the decoration of dihydro-
benzofurans.

further decoration of the dihydrobenzofuran motifs
(Scheme 13).>* Notably, nickel-catalysed coupling to give 8a
and 8b, proceeded smoothly with no nickel insertion into thio-

phene C-S bonds.>

Conclusions

A novel route to medicinally-relevant dihydrobenzofurans has
been developed that utilises a sulfur-directed C-H ortho-coup-
ling of arenes and unactivated terminal alkenes mediated by
iron, and a palladium-catalysed deallylation/heterocyclisation.
The iron-mediated coupling affords linear products of alkene
chloroarylation with complete regioselectivity. Redox-activation
of the arene partner by iron(m) and coupling of the resultant
radical-cation with the alkene partner is proposed. The di-
hydrobenzofuran scaffolds can be readily decorated using Pd
and Ni-catalysed cross-couplings.
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