MXenes as a hole transport interfacial layer for efficient and air-stable quasi-2D perovskite solar cells†
Abstract
Despite the high performance of bulk hybrid perovskites, the material/device stability is a critical issue originating from the perovskites’ degradation when exposed to an open-air atmosphere. 2D/quasi-2D perovskite materials have attracted much attention due to their high stability under ambient conditions compared to the bulk perovskite. Along with 2D perovskite, various charge transport materials, and additives were also employed in perovskite solar cells (PSCs). We carried out one such approach in this work, where Ti3C2Tx a typical representative of the 2-D family, called MXenes, has been employed as a passivation/interfacial layer between the quasi-2D perovskite and the hole transport layer. A PSC, passivated with MXenes, shows over 9% relative improvement in the performance and very high stability (∼99%) in an open-air atmosphere over 50 days as compared to its pristine device. The detailed investigation suggests the role of MXene as a passivator, an energy aligner, and a barrier to reduce the non-radiative recombination loss, provide pathways for effortless hole transportation, and protect from external environmental factors respectively. Moreover, transient absorption studies reveal that adding MXenes also affects the distribution and lifetime of quasi-2D phases in PSCs. As we delve into specific applications, such as the integration of MXenes as passivator/HTL interfacial layers in 2-D PSCs, we unlock the potential for enhanced device performance, showcasing MXenes as a driving force in the evolution of stable solar cell technologies.
- This article is part of the themed collection: Perovskites: from materials science to devices