Issue 48, 2024

Discovery of penicillic acid as a chemical probe against tau aggregation in Alzheimer's disease

Abstract

Alzheimer's Disease (AD) is a neurodegenerative disorder proven to be caused by the aggregation of protein tau into fibrils, resulting in neuronal death. The irreparable neuronal damage leads to irreversible symptoms with no cure; therefore, disaggregation of these tau fibrils could be targeted as a therapeutic approach to AD. Here we have developed a fungal natural product library to screen for secondary metabolites that have bioactive potential towards AD tau. Our initial screenings indicate that penicillic acid demonstrates anti-aggregation activity towards tau, while further in vitro experiments reveal that penicillic acid directly inhibits tau by disaggregating fibrils. Although penicillic acid possesses blood–brain barrier penetrability properties that are computationally predicted to be favorable, it is presumed to contain some mutagenic effects as well. To address this, we used the backbone of penicillic acid as a chemical probe to discover similar compounds that can inhibit AD tau aggregation with limited mutagenicity. This work suggests the potential of discovering chemical probes through natural product screening for small-molecule drug discovery of tauopathies.

Graphical abstract: Discovery of penicillic acid as a chemical probe against tau aggregation in Alzheimer's disease

Supplementary files

Article information

Article type
Edge Article
Submitted
14 Aug 2024
Accepted
07 Nov 2024
First published
12 Nov 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 20467-20477

Discovery of penicillic acid as a chemical probe against tau aggregation in Alzheimer's disease

J. Shyong, J. Wang, Q. T. Huynh, M. Fayzullina, B. Yuan, C. Lee, T. Minehan, P. M. Seidler and C. C. C. Wang, Chem. Sci., 2024, 15, 20467 DOI: 10.1039/D4SC05469E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements