Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing†
Abstract
Ionic hydrogels are promising candidates for fabricating stretchable electronics, but the deficiency in drying and freezing tolerances severely limits their application. Here, we report a facile and versatile salt-percolated strategy to fabricate hydrogels with exceptional freezing and drying tolerances, high conductivity, and anti-swelling ability for sensitive temperature and strain detection within a broad temperature range. We discovered that lithium bromide (LiBr) was the most effective drying and freezing inhibitor for hydrogels among the various salts. The 50 wt% LiBr-percolated hydrogels retained ultrahigh stretchability (625% strain) and conductivity even at −78.5 °C or in ambient air for a year. The important role of LiBr in inhibiting the drying and freezing of hydrogels was understood using density functional theory (DFT) simulations on a molecular scale, revealing the formation of stable Li+–H2O and Br−–H2O clusters. It was found that the introduction of LiBr enhanced the temperature and strain sensing performance, e.g., the stability and working temperature range. Multifunctional transparent sensors exhibited a high thermal sensitivity (2.54%/°C), broad temperature detection range (−78.5 to 97 °C), low detection limit (0.1% strain), and low hysteresis and baseline drift in cycling strain sensing. Attributed to the high tolerance of hydrogels to a wide range of temperatures, the strain sensing ability was maintained even at −20 °C. Various physiological signals, such as facial expressions, word pronunciation and knee bending, are real-time monitored using hydrogel-based epidermal sensors.
- This article is part of the themed collections: Journal of Materials Chemistry C HOT Papers, Journal of Materials Chemistry C Lunar New Year collection 2022 and 2021 Journal of Materials Chemistry C most popular articles