Issue 5, 2018

Ageing, dissolution and biogenic formation of nanoparticles: how do these factors affect the uptake kinetics of silver nanoparticles in earthworms?

Abstract

Soil represents an important environmental compartment that can be regarded as a final sink for metal nanoparticles including silver particles (Ag-NPs). Assessing realistic exposure scenarios, including the bioavailability of Ag-NPs for soil organisms, requires taking into account that Ag-NPs can undergo physico-chemical transformations, such as sulphidisation, before interacting with organisms. However, differentiating between uptake of true metal NPs and that of released ions is essential to assess the actual role of these two metal forms in toxicity over time. The present study quantified the toxicokinetic rate constants of particulate and ionic Ag in Eisenia fetida exposed to soil treated with pristine Ag-NPs (50 nm), Ag2S-NPs (20 nm) as an environmentally relevant form, and AgNO3 as an ionic control. Results showed that the uptake and elimination rate constants of Ag in earthworms exposed to Ag-NPs and AgNO3 were not significantly different from each other, whereas the uptake of Ag2S-NPs was significantly lower. Interestingly, the biogenic formation of particulate Ag (∼10% of the total Ag accumulated over time) in earthworms exposed to AgNO3 led to a kinetic pattern of particulate Ag similar to that of pristine Ag-NPs. SEM-EDX analysis confirmed the presence of particulate Ag in earthworms exposed to both Ag-NPs and AgNO3, showing that these particles were different from those to which earthworms were exposed. We demonstrated that around 85% of the Ag accumulated in the worms after exposure to Ag-NPs and AgNO3 was present as ions or as particles with size <20 nm. Additionally, the low accumulation of the non-soluble, sulphidised form of nano-Ag, reflecting aged particles in the environment, confirms the importance of ionic uptake of Ag. This study clearly shows that the main form of Ag taken up in earthworms is the ionic species, which stresses the fundamental need to use environmentally relevant forms of metal NPs in performing ecotoxicological tests, because pristine NPs may behave completely differently.

Graphical abstract: Ageing, dissolution and biogenic formation of nanoparticles: how do these factors affect the uptake kinetics of silver nanoparticles in earthworms?

  • This article is part of the themed collection: ICEENN

Supplementary files

Article information

Article type
Paper
Submitted
15 Dec 2017
Accepted
03 Apr 2018
First published
05 Apr 2018

Environ. Sci.: Nano, 2018,5, 1107-1116

Ageing, dissolution and biogenic formation of nanoparticles: how do these factors affect the uptake kinetics of silver nanoparticles in earthworms?

M. Baccaro, A. K. Undas, J. de Vriendt, J. H. J. van den Berg, R. J. B. Peters and N. W. van den Brink, Environ. Sci.: Nano, 2018, 5, 1107 DOI: 10.1039/C7EN01212H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements