Tuning electronic and optical properties of MoS2 monolayer via molecular charge transfer†
Abstract
Density functional theory computations were performed to investigate the adsorption of four organic molecules, including tetracyanoquinodimethane (TCNQ), tetracyanoethylene (TCNE), tetrathiafulvalene (TTF) and benzyl viologen (BV) on the basal plane of MoS2 monolayer (MoS2ML). There mainly exist non-covalent weak interactions between these organic molecules and MoS2ML with considerable charge transfer. Due to the adsorption of organic molecules, the band gap of MoS2ML can be efficiently reduced as the flat molecular levels lie in the band gap region of MoS2ML. Moreover, the adsorption of TCNQ can significantly enhance the optical absorption of MoS2ML in the infrared region of solar spectrum, whereas the adsorption of other molecules has negligible effect on the optical properties of MoS2ML. Our computations provide a flexible approach towards tuning the electronic and optical properties of MoS2ML.
- This article is part of the themed collection: 2014 Journal of Materials Chemistry A Hot Articles