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ZeoNet: 3D convolutional neural networks for predicting
adsorption in nanoporous zeolites†

Yachan Liu,a‡ Gustavo Perez,b‡ Zezhou Cheng,b Aaron Sun,b Samuel C. Hoover,a Wei Fan,a

Subhransu Maji,∗b and Peng Bai∗a

Zeolites are one of the most widely used materials in the chemical industry due to their nanometer-
sized pores that can adsorb and react upon molecules selectively. With hundreds of known framework
topologies and hundreds of thousands of computationally predicted structures, the ability to rapidly
predict zeolite performance allows researchers to prioritize their efforts on the most promising struc-
tures for a given application. Although the accuracy of forcefield-based atomistic simulations has
advanced significantly in the past two decades, these simulations can be computationally expen-
sive, especially for long-chain, complex molecules. We present ZeoNet, a representation learning
framework using convolutional neural networks (ConvNets) and 3D volumetric representations for
predicting adsorption in zeolites. ZeoNet was trained on the task of predicting Henry’s constants
for adsorption, kH, of n-octadecane in more than 330,000 known and predicted zeolite materials.
Employing a 3D grid based on the distances to solvent-accessible surfaces, a volumetric representa-
tion that can be generated efficiently, the best-performing ZeoNet achieved a correlation coefficient
r2 = 0.977 and a mean-squared error MSE = 3.8 in lnkH, which corresponds to an error of 9.3 kJ/mol
in adsorption free energy. In comparison, a model based on hand-designed geometric features has
values of r2 = 0.783 and MSE = 35.7. ZeoNet is also relatively efficient and can process ≈ 8
structures per second on an Nvidia RTX 2080TI GPU, orders of magnitude faster than forcefield-
based simulations. A systematic analysis was conducted to investigate how the choice of ConvNet
architectures, the linear dimension (L) and spatial resolution (∆d) of the distance grids, batch size,
optimizer, and learning rate impact the model performance. We found that ConvNets based on the
ResNet architecture offer the best tradeoff between expressiveness and efficiency. The performance
for all models reaches a plateau at L = 30−45 Å and depends less sensitively on grid resolution, with
a small benefit around ∆d = 0.30− 0.45 Å. Finally, saliency maps were visualized to identify which
regions of the materials contributed the most to model predictions. It was found, interestingly, that
the predictions are driven primarily by the accessible pore volume rather than the region occupied by
the framework atoms.

1 Introduction

Nanoporous materials such as zeolites and metal organic frame-
works (MOFs) are important adsorbents and catalysts in the
chemical industry due to their numerous applications such as
gas storage, separation, and shape-selective catalysis1,2. How-
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ever, finding the best zeolite for a given application is challeng-
ing since the relationship between performance and structure is
often unknown, and the space of potential structures is large. To
date there are over 250 known zeolite framework topologies3 and
hundreds of thousands of computationally predicted structures.4

Although the development of accurate, transferable intermolecu-
lar potentials5–7 have enabled the computational predictions of
adsorption performance in zeolites for a diverse range of applica-
tions,8–12 physics-based simulations still require significant com-
putational resources, especially when large materials databases
or complex mixtures are involved.8,13

Machine learning (ML) is increasingly being used to predict
structure-property relationships in a data-driven manner. Such
efforts have roots in quantitative structure-activity relationships
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(QSAR) for drug design14 and other molecular property predic-
tions. These cheminformatics and ML approaches have often used
features of atoms and their connectivity such as electronegativity,
bond order, molecular weights, and surface area as descriptors.
Along a similar line but adapting for extended crystalline mate-
rials, Gaillac et al.15 selected 22 local descriptors, 19 global de-
scriptors, and seven porosity descriptors including bond lengths,
densities, pore volume, and accessible surface area to predict the
mechanical properties of zeolites. Anderson et al.16 built a multi-
layer perceptron (MLP) model using six textural properties (e.g.,
helium void fraction, gravimetric surface area, largest pore diam-
eter, pore limiting diameter, inverse framework density, and the
pore size standard deviation) together with the number density
of 17 distinct MOF chemical moieties to predict the adsorption
isotherms in MOFs. While conceptually intuitive, these features
are high-level coarse-grained properties that may not be able to
accurately capture phenomena dominated by structural details of
a material. Adsorption by all-silica zeolites is one such example:
the materials are chemically identical, which all consist of corner-
sharing SiO4 tetrahedra, and their dramatic molecular shape se-
lectivity is completely controlled by how framework atoms are
arranged in space.1,17,18

Given the materials structures and an accurate intermolecu-
lar potential, the quantitative prediction of adsorption in porous
materials is, to a large extent, a solved problem through the
use of molecular simulations.1 For many adsorption systems, the
assumption of a rigid framework structure allows one to pre-
tabulate the energies felt by a probe molecule on a regular grid,
a practice that improves the simulation efficiency by allowing
the framework-sorbate interactions to be interpolated rather than
computed. In other words, the energy grid contains complete in-
formation about a solid material that can be considered as rigid.
Based on this insight, energy grids have been used as the input
for ML models by Snurr et al.19,20 The interaction energy of a
hydrogen probe at each grid point within the MOF unit cell was
calculated and then summarized as an energy histogram. Bins of
the energy histogram were used as the input to train a regression
model to predict hydrogen and methane uptake with an accuracy
within 3 g/L. Then, they extended this method to gas mixtures
such as binary mixtures of Ke and Xr, and short linear alkanes
up to propane. The selectivity for Xe over Kr in Xe/Kr mixtures
and single-component adsorption of ethane and propane can be
predicted in good agreement with grand-canonical Monte Carlo
simulations. However, energy grids are computationally relatively
expensive to calculate and condensing them into histograms may
also lose 3D structural information.

To represent 3D structures directly, Lin et al.21 pioneered the
use of 3D ConvNets with a binary occupancy grid, in which
each grid location was marked as either zero or one depend-
ing on its distance to the nearest framework atom. They used
a LeNet/AlexNet based network to predict methane adsorption
isotherms and were able to achieve an MSE of 0.015 mol/kg in
loadings. This approach was recently extended to CO2 adsorp-
tion in MOFs.22 Using both structural and energy grids, Kim et
al. developed a generative adversarial network to produce plau-
sible zeolite structures with user-specified heats of adsorption for

methane.23,24 While these studies demonstrate the utility of mod-
ern ConvNets in representing materials structures, they have fo-
cused on the adsorption of small, relatively rigid molecules. It
remains unclear how well 3D ConvNets perform for large, flexi-
ble molecules whose properties are expected to be influenced not
only by the local pore dimensions, but also their larger structural
features.

In this work, we propose a 3D structural representation learn-
ing method, ZEONET, for the task of predicting the adsorption of
n-octadecane, a long-chain hydrocarbon molecule, in all-silica ze-
olites (see Figure 1). We carried out a systematic evaluation of
3D ConvNets and benchmarked them against MLP and XGBoost
regressors trained on high-level descriptors. Four 3D ConvNets
were tested, which were 3D variants of the popular AlexNet,25

VGG Net,26 ResNet,27 and DenseNet.28 Two volumetric repre-
sentations, one based on binary occupancy grids and the other
based on distance grids, were compared. The effect of grid reso-
lution, input size, and other hyperparameters such as batch size,
learning rate, and optimizer were examined. As summarized in
Table 1, ZEONET vastly outperformed the MLP and XGBoost re-
gressors and among the various 3D ConvNets, modern deep net-
works provided significant improvement in model accuracy com-
pared to older AlexNet without sacrificing inference speeds.

Table 1 Model performance for predicting C18 adsorption in zeolites,
comparing the accuracy and efficiency of a multi-layer perceptron (MLP)
and extreme Gradient boosting (XGBoost) trained on geometric features
with various ZeoNet architectures operating on distance grids. The
optimal input representations for each model are given in parentheses,
(∆d,L) in Å (see the main text for details).

Model r2 MSE Time [sec./sample]

MLP 0.783 35.7 0.0049
XGBoost 0.841 26.2 0.001

3D AlexNet (1, 100) 0.944 9.2 0.14
3D VGG (0.45, 45) 0.961 6.4 0.14
3D ResNet (0.45, 45) 0.973 4.4 0.13
3D DenseNet (0.45, 45) 0.977 3.8 0.14

MC simulations ≈ 1 hour

2 The ZeoNet framework

2.1 Adsorption dataset

To study the ability of 3D-ConvNets in capturing spatial correla-
tions of materials structures, the dataset of long-chain hydrocar-
bon adsorption was selected. This dataset was produced from a
computational screening study that used Monte Carlo (MC) simu-
lations to predict the adsorption of three normal alkanes from C18
to C30 and mono- and di-branched C18 isomers.8 The adsorption
at both the infinite-dilution regime (as characterized by Henry’s
constants, kH, and heats of adsorption) and a high-pressure, liq-
uid regime (as characterized by the loadings at p = 3 MPa for
an equimolar, six-component mixture) was calculated. The in-
termolecular potentials used in this study were developed for a
diverse range of molecules and zeolite structures and their accu-
racy has been validated extensively against experiments.7,29 In
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Fig. 1 The ZeoNet pipeline for predicting adsorption in zeolites. The unit cell of a zeolite is replicated to obtain an extended material structure. A
fixed-size volumetric chunk with random origins and orientations is converted to a distance grid representation, which is fed to train 3D ConvNets
using data collected from physical simulations in a supervised learning setting. In this work, Henry’s constants for n-octadecane (C18) adsorption in
more than 330,000 known and computationally predicted zeolites were used as the training data. For inference, ZeoNet is applied in a feed-forward
manner on the distance grids without the translation and rotation augmentations.

total, the study included 402 experimentally synthesized struc-
tures catalogued by the Structure Commission of the Interna-
tional Zeolite Association (IZASC)3 and 331,172 computation-
ally predicted structures from the Predicted Crystallography Open
Database (PCOD),4. Here, we focus on n-octadecane (C18), a
linear hydrocarbon molecule that has a length of ∼ 2.2 nm when
fully extended, and predicting lnkH, as kH scales exponentially
with the adsorption free energy. Therefore, zeolites for which
kH = 0 were removed, leaving 100,520 structures (269 IZA zeo-
lites and 100,251 PCOD zeolites). It is also worth noting that due
to the stochastic nature of the simulations, the adsorption esti-
mates have statistical uncertainties, not unlike experimental mea-
surements, and zeolites with higher adsorption strengths tend
to have smaller uncertainties; fortunately these are precisely the
structures more important for the application.

The dataset was initially split randomly into 60% (60,312) for
training, 20% (20,104) for validation, and 20% (20,104) for test-
ing. The test set was then sub-divided in order to determine the
minimum size needed to reach the level of precision desired for
model evaluation. The first subdivision included ten sets, each
containing 2000 samples, the second included four sets of 5000
samples each, and the third included two sets of 10,000 sam-
ples each. Based on the results discussed later, 10,104 testing
samples were moved to the training set, resulting in a train-
ing/validation/testing split of roughly 7:2:1.

2.2 Volumetric grids and high-level feature descriptors

Zeo++, version 0.3,30 was used to calculate distance grids with
a probe radius of 1.2 Å and a grid resolution of 0.15 Å, while
distance grids with lower resolutions were obtained via down-
sampling using the trilinear interpolation. In a distance grid,
each grid location is assigned its shortest distance to the solvent-

accessible surface formed by zeolite framework atoms. In this cal-
culation, Si and O atoms have radii of 2.1 and 1.52 Å, respectively.
The distance can be positive or negative, depending on whether
the grid locations lie outside or inside the solvent-accessible sur-
face. To construct the binary occupancy grid, we simply assign a
value of one to all grid locations where distances are non-positive
and zero where they are positive.

Zeo++ was also used to calculate the pore-limiting diameter
(PLD, unit Å), the largest-cavity diameter (LCD, unit Å), surface
area (unit m2/g), and pore volume (unit cm3/g) for each zeolite
using a spherical probe with a radius of 1.2 Å, as well as the num-
ber density of framework Si atoms (ρSi, unit number/nm3). These
high-level aggregate feature descriptors were used to construct a
MLP regressor and an XGBoost regressor as the performance base-
line.

2.3 ConvNet architectures

3D variants of four ConvNet architectures, which have been used
extensively for image recognition, were evaluated. These archi-
tectures are designed to work with primarily RGB images and
employ 2D convolutions. To operate on 3D data, we replace the
2D convolutions and pooling operations in these networks with
their 3D variants similar to prior work that has extended these
architectures to handle spatio-temporal data (e.g., for video un-
derstanding31). We briefly describe these architectures below.

AlexNet was the first large-scale model trained for image clas-
sification and won the 2012 ImageNet Challenge.25. Our imple-
mentation consists of seven 3D convolutional (Conv) layers and
two fully-connected (FC) layers. Each Conv layer is followed by
batch normalization and ReLU activation. Two max pooling lay-
ers are inserted after the second and fourth Conv layers. All conv
filters have 16 channels, a kernel size of 3, a stride of 1, and a
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padding of 1. The max pooling layers have a kernel size of 2 and
a stride of 2.

VGG16 The VGG architectures26 were introduced as deeper
variants of AlexNet with several design changes and outper-
formed AlexNet on the ImageNet challenge. This VGG16 archi-
tecture consists of five blocks and three FC layers. A dropout of
0.5 is added after each of the first two FC layers. The first two
blocks each contain two Conv layers and the latter three contain
three Conv layers. All Conv layers have a kernel size of 3, a stride
of 1, and a padding of 1, which is followed by batch normaliza-
tion, and ReLU activation. Each block is terminated by a max-
pooling layer with a kernal size of 2 and a stride of 2. The first
block has 64 output channels and each subsequent block doubles
the number of output channels, until it reaches 512.

ResNet18 He et al. introduced residual blocks with skip connec-
tions for training substantially deeper networks.27 The ResNet18
architecture used in this work consists of a Conv layer with a ker-
nel size of 7, a stride of 2, and a padding of 3, followed by a max
pooling layer with a kernel size of 3, a stride of 2, a padding of
1, and a dilation of 1. This is followed by four modules that each
contain two residual blocks, and finally, an average pooling layer
and a FC layer. Each residual block contains two Conv layers with
a kernel size of 3, a stride of 1 or 2, and a padding of 1. The out-
put channels of the first residual module is 64, and is doubled in
each subsequent residual module by including a 1×1 Conv layer
in the first skip connection while the height, width, and depth
are halved in the last Conv layer. Batch normalization and ReLU
activation are used after all Conv layers.

DenseNet121 Extending the idea of residual connections,
Huang et al.28 proposed densely-connected networks in which
each layer’s output is concatenated in all subsequent layers in a
feed-forward fashion. The DenseNet121 architecture used here
consists of a Conv block, six dense blocks, a transition block,
12 dense blocks, a transition block, 24 dense blocks, a transition
block, 16 dense blocks, and a FC layer. The first Conv layer has
a kernel size of 7, a stride of 2, and a padding of 3. All dense
blocks are identical, containing two Conv blocks, each using the
modified ResNet structure32 of batch normalization, ReLU acti-
vation, and convolution. The Conv layer in the first block has a
kernel size of 1 and a stride of 1 and that in the second block has
a kernel size of 3, a stride of 1, and a padding of 1. The transition
block contains batch normalization, ReLU activation, a Conv layer
with a kernel size of 1 and a stride of 1, and an average pooling
layer with a kernel size of 2 and a stride of 2, hence reducing the
number of the output channels. The number of output channels
of the three transition blocks are 128, 256, and 512, respectively.

2.4 Training

All models were trained to predict lnkH using the mean squared
error (MSE) as the loss function. The baseline MLP and XGBoost
models used high-level aggregate features including PLD, LCD,
density of framework Si atoms, surface area, and pore volume as
input, while the four 3D ConvNets used distance grids as input.
During training of 3D ConvNets, random translations up to full

unit cell lattice lengths and rotations covering all possible spher-
ical angles were applied as data augmentation techniques. The
resulting 3D grid was then tiled and cropped to create the desired
input size (see Figure 1). The grids at this stage have the same
lattice system as the materials themselves but were re-sampled
into a cubic lattice. Trilinear interpolation was used for the trans-
lation, rotation, and re-sampling operations. For all modeling
work, PyTorch v1.11.0 was used with an Nvidia RTX 2080TI or
A100 GPU as the accelerator. All 3D ConvNets were trained for
a total of 30 epochs with a batch size up to what is allowed by
the GPU memory. Apart from the section on hyperparameter op-
timization, the Adam optimizer was used with a learning rate of
0.001 and a batch size of 16 for AlexNet and ResNet18, 4 for
VGG16, and 8 for DenseNet121.

3 Results and Discussion

3.1 How large does the test set size need to be?

To maximize the number of training samples while also ensuring
that the test set is large enough to allow for precise estimates
of model performance, test sets of different sizes were used to
evaluate an AlexNet model pre-trained using 60,312 training and
20,104 validation samples. As shown in Table 2, increasing the
test set size from 2000 to 5000 leads to roughly seven times more
precise estimate of the model performance. With 5000 or 10,000
testing samples, r2 is accurate to the third decimal digit and MSE
is accurate to the first decimal digit, which we consider adequate
for comparing subsequent benchmarks.

3.2 Materials characteristics and MLP/XGBoost perfor-
mance

Porous materials are conventionally characterized using geomet-
ric concepts. Viewing framework atoms as spheres of different
radii, one can define the pore volume and surface area to be the
unoccupied space (a 3D property) and exposed surface (a 2D
property) per unit mass of the material. If a spherical probe is
placed in the free space, the radius of the largest sphere that can
fit at a given location is defined as the local pore diameter (a
1D property), and since the interior of zeolites is not uniform,
one can further distinguish between the pore-limiting diameter
(PLD) and the largest-cavity diameter (LCD), which are the small-
est and largest local pore diameters across an entire zeolite, re-
spectively. Table 3 gives a summary of the descriptive statistics of
these high-level geometric features for all materials in the dataset
and Figure 2 compares the distributions of all the known zeolites
and the computationally predicted ones. As shown in Figure 2
and also noted by Pophale et al.,4 the computationally generated
PCOD database contains a larger amount of smaller-pore zeolites,
coincident with higher Si atom density, lower surface area, and
smaller pore volume. A fraction of these zeolites contain channel
systems inaccessible externally by a probe with a radius of 1.2 Å,
which is given a value of zero in Figure 2.

The above geometric features are often used in scatter plots to
construct structure-property relationships, although the resulting
correlations are largely noisy and non-predictive (see Figure 3 of
ref.8 as an example). However, to provide a baseline to compare
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Table 2 Mean, standard deviation, and spread of r2 and MSE for a trained AlexNet model as evaluated using test sets of different sizes.

Test Set 10×2000 4×5000 2×10000 1×20104

r2 0.665 ± 0.012 0.665 ± 0.002 0.665 ± 0.002 0.665
Spread [0.639, 0.682] [0.662, 0.667] [0.663, 0.667]
MSE 56 ± 3 55.7 ± 0.4 55.7 ± 0.3 55.8

Spread [51, 60] [55.3, 56.4] [55.4, 56.0]

(a) (b)

(d) (e)

(c)

Fig. 2 Probability density for the distributions of five geometric features: (a) PLD, (b) LCD, (c) ρSi, (d) surface area, and (e) pore volume, for zeolites
with kH > 0. A value of zero indicates zeolites without externally accessible channels for a probe of radius 1.2 Å. From (a) to (e), the bin widths are
0.089, 0.089, 0.091, 14.96, and 0.002 for PCOD zeolites and 0.68, 0.58, 0.74, 127.39, and 0.018 for IZA zeolites.
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Table 3 Statistics of the geometric features for all zeolites from the IZA and PCOD databases for which kH > 0 and channels are externally accessible
to a probe of radius 1.2 Å.

All zeolites Min Max Mean Median SD

PLD (Å) 2.8 28.8 5.3 4.8 1.8
LCD (Å) 3.6 29.2 6.7 6.3 1.7

ρSi (number/nm3) 8.3 26.3 17.9 18.0 1.7
Surface area (m2/g) 60 2038 700 676 200
Pore volume (cm3/g) 0.0014 0.6684 0.06 0.0471 0.04

IZA zeolites Min Max Mean Median SD

PLD (Å) 2.9 12.4 5.4 5.2 1.6
LCD (Å) 4.4 16.9 7.6 7.1 2.0

ρSi (number/nm3) 10.8 26.3 16.6 16.9 2.0
Surface area (m2/g) 350 2038 1000 927 300
Pore volume (cm3/g) 0.0211 0.3483 0.09 0.0774 0.05

PCOD zeolites Min Max Mean Median SD

PLD (Å) 2.8 28.8 5.3 4.8 1.8
LCD (Å) 3.6 29.2 6.7 6.3 1.7

ρSi (number/nm3) 8.3 26.3 17.9 18.0 1.7
Surface area (m2/g) 60 1826 700 676 200
Pore volume (cm3/g) 0.0014 0.6684 0.06 0.0470 0.04

with results obtained with 3D ConvNets, we trained a MLP model
and an XGBoost model to predict lnkH, the logarithmic Henry’s
constant for the adsorption of n-octadecane. The MLP achieved
a value of r2 of 0.783 and an MSE of 35.7, which corresponds to
an error of ∼ 28.5 kJ/mol in the free energy of adsorption, ∆Gads.
The XGBoost model performs better, with r2 = 0.841 and MSE =

26.2. The performance of the two models is significantly better
than can be expected from the broad scatter plots of individual
geometric descriptors.

3.3 Performance and optimization of ZEONET

3.3.1 Comparing binary occupancy grids and distance grids.

Among different volumetric representations, intuitively, energy
grids would be expected to contain the most physical informa-
tion, as they are widely used to speed up atomistic simulations.
However, computing an energy grid involves calculating the in-
teractions of a probe atom with all framework atoms and is thus
computationally rather expensive. We therefore investigate two
alternative volumetric representations that are easier to calculate,
including binary occupancy grids that have been used by Lin’s
group21 and distance grids implemented by Zeo++ (see Compu-
tational Details for the calculation of both grid representations).
All four 3D ConvNet models were trained using both represen-
tations with an input shape of 100× 100× 100. As shown in Ta-
ble 4, distance grids outperform binary occupancy grids in almost
all cases, with the only exception being VGG16 at a grid reso-
lution of 1 Å. When using the default grid resolution in Zeo++,
∆d = 0.15 Å, the values of r2 for distance grids exceed those for oc-
cupancy grids by 0.014 – 0.046, while MSE is lower by 2.2 – 7.6.
The largest difference is found for AlexNet, which also shows the
worst performance for both representations, with r2 < 0.68 and

MSE > 54, while the deeper VGG16 model and the more mod-
ern architectures, ResNet18 and DenseNet121, exhibit a dramatic
improvement, with r2 > 0.83 and MSE < 28. Also included in Ta-
ble 4 are the results obtained with the two representations down-
sampled to a grid resolution of 1 Å (while keeping the same in-
put grid dimension). The resulting coarser, but larger volumetric
grids show even more pronounced improvements than achieved
by the more modern 3D ConvNet architectures. The r2 values are
larger than 0.91 and MSE lower than 13.5 in all cases, with a
much smaller difference between the two representations. It is
apparent that a large enough input volume is critical to ensure
good performance, presumably due to the long-chain hydrocar-
bon molecule selected for the target application, which requires
spatial learning of larger patches of the materials structure. As
the input volume becomes more limited, the performance of the
simplest AlexNet model suffers the most.

3.3.2 Effect of input volume and grid resolution.

Following the observation that the size of the input volume
greatly influences the performance of 3D ConvNets, in this sec-
tion, the effect of input volume was systematically studied. We
focus on the distance grid representation and vary the grid reso-
lution from 0.15 to 1 Å while keeping its shape at 100×100×100.
Consequently, the distance grids represent a cubic input volume
with a linear dimension, L, ranging from 15 to 100 Å. Figure 4
(numerical data can be found in Supplementary Table

Given the relatively similar performance, it is useful to compare
the training speeds of the four 3D ConvNet models. With GPU ac-
celeration using Nvidia RTX 2080TI, the ratio of training times
per epoch is roughly 1:2:1.5:2.5 for AlexNet, VGG16, ResNet18,
and DenseNet121. It is also worth noting that the much larger
models, VGG16 and DenseNet121, can only afford a batch size of
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Table 4 Validation accuracy for binary occupancy grids and distance grids of different resolutions, ∆d, in Å. The grid dimension is 1003 in all cases.

Binary Grids Distance Grids

Model ∆d = 0.15 ∆d = 1 ∆d = 0.15 ∆d = 1

r2 MSE r2 MSE r2 MSE r2 MSE

AlexNet 0.630 61.6 0.937 10.4 0.676 54.0 0.946 9.0
VGG16 0.836 27.4 0.942 9.6 0.851 24.9 0.919 13.5

ResNet18 0.840 26.7 0.953 7.8 0.879 20.1 0.961 6.5
DenseNet121 0.867 22.1 0.957 7.2 0.881 19.9 0.968 5.3

21

N…2 1

N …

∆d

L = ∆d × N

Fig. 3 Illustration of a 3D volumetric grid with a shape of N×N×N and
a spatial resolution of ∆d (in Å). N∆d gives the linear dimension, L (in
Å), of the input volume represented by the grid.

4 with the 11GB GPU memory on Nvidia RTX 2080TI. The train-
ing processes are thus much noisier and are completely unstable
for DenseNet121. As a result, all training runs for DenseNet121
were run on Nvidia A100 with 40GB GPU memory using a batch
size of 8. Considering these technical characteristics, ResNet18
provides the best balance in terms of model accuracy and com-
putational efficiency and is therefore chosen to be the focus of
subsequent studies.

Using ResNet18, the effect of input volume was examined at
a fixed grid resolution of 0.45 Å. This set of data is shown as
filled up triangles in Figure 4, which largely fall onto the same
trend line as the previous test with different grid resolutions but
a fixed input grid shape. Differences become larger with smaller
input volumes (those with L < 30 Å): comparing L = 14.4 Å and
∆d = 0.45 Å and L = 15 Å and ∆d = 0.15 Å, the r2 and MSE values
for the latter are better by 0.03 and 5.7, respectively. To com-
pare model performance at exactly the same input volume, two
additional tests were performed using a grid resolution of 0.3 Å
and an input shape of 503 or a grid resolution of 0.6 Å and an
input shape of 253, for an input volume with L = 15 Å. As shown
in Figure 4, the performance of grid resolutions of 0.15 and 0.3
is almost indistinguishable, while the grid resolution of 0.6 Å is
slightly worse.

3.3.3 Optimization of hyperparameters.

Here, the performance of ResNet18 was further optimized by tun-
ing the size of the mini batches, optimizer, and learning rate.
Given the comparisons in the previous section, a grid resolution
of 0.45 Å and an input shape of 1003 are considered nearly opti-
mal and therefore used without change during the hyperparame-
ter optimization process. Four optimizers were tested, including
Adam33, Adagrad34, RMSprop35 and vanilla stochastic gradient
descent (SGD)36. Table 5 summarizes the results obtained with
the different hyperparameters. First, the effect of learning rate
was examined with a batch size of 64 (c.f., last three rows), the
largest that can fit into the GPU memory of Nvidia A100. Next,
the batch size was varied from 64 to 4, while the learning rate,
according to the commonly used heuristic, was halved with ev-
ery halving of batch size, resulting in a learning rate of 0.00025
for a batch size of 4 and a learning rate of 0.004 for a batch size
of 64. Overall, the training of ResNet18 is largely insensitive to
batch sizes and learning rates, achieving nearly identical results
with all hyperparameters when the batch size is larger than 8. At
the two smallest batch sizes, 4 and 8, the performance is slightly
worse with the Adam or Adagrad optimizers. Adam is the best
optimizer for this system, slightly outperforming the other three
across combinations of batch sizes and learning rates. The best
model was obtained using a batch size of 64 and a learning rate
of 0.004, which achieved a r2 coefficient of 0.974 and an MSE
of 4.4 on the validation set. Very similar performance metrics
(r2 = 0.973 and MSE = 4.4) were found for the test set, indicating
a good model generalization.

3.4 Analysis
3.4.1 Break-down of model performance.

To gain a better understanding of model performance, a scat-
ter plot was constructed to compare the target Henry’s constants
for n-octadecane adsorption from Monte Carlo (MC) simulations
with the values predicted by the best ResNet18 model. As shown
in Figure 5, the predictions from ResNet18 cluster nicely around
the parity line, although they are substantially more accurate for
zeolites with larger values of kH (i.e., stronger adsorption). For
kH < 1 mol kg−1 MPa−1, the correlation is visibly noisier. It is
worth noting that the ResNet18 model has a mean-squared er-
ror of 4.4 in lnkH (Table 1), or 10.0 kJ/mol in ∆Gads, but as kH

scales exponentially with ∆Gads, even relatively small free energy
differences manifest as large differences in Figure 5. To quan-
tify the distribution of prediction errors, kH is grouped into nine
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(a) (b)

Fig. 4 The performance of 3D ConvNets as a function of the linear dimension of the input volume, showing r2 (a) and MSE (b) for AlexNet (red circles),
VGG16 (cyan diamonds), ResNet18 (open blue up triangles), DenseNet121 (magenta squares) with a fixed input tensor shape of 100×100×100, for
ResNet18 with a fixed grid resolution of 0.45 Å (filled blue up triangles), and for ResNet18 with a grid resolution of 0.3 Å and an input tensor shape
of 50×50×50 (blue down triangles) or with a grid resolution of 0.6 Å and an input tensor shape of 25×25×25 (blue left triangles).

Table 5 Validation accuracy for ResNet18 trained with different optimizers, batch sizes, and learning rates.

Batch Size & Adam Adagrad RMSprop SGD

Learning Rate r2 MSE r2 MSE r2 MSE r2 MSE
4 & 0.00025 0.968 5.3 0.935 10.9 0.971 4.8 0.972 4.6
8 & 0.0005 0.967 5.5 0.952 7.9 0.966 5.6 0.966 5.6
16 & 0.001 0.972 4.6 0.967 5.5 0.971 4.8 0.967 5.4
32 & 0.002 0.973 4.4 0.960 6.6 0.970 5.0 0.970 4.9
64 & 0.004 0.974 4.4 0.966 5.6 0.966 5.7 0.966 5.7
64 & 0.002 0.973 4.5 0.966 5.7 0.968 5.4 0.969 5.2
64 & 0.001 0.972 4.7 0.964 6.0 0.968 5.3 0.965 5.8

(a) (b)

Fig. 5 Scatter plot of the testing performance, comparing Henry’s constants for n-octadecane adsorption (unit: mol/kg/MPa) predicted by MLP (a)
and ResNet18 (b) and target values from Monte Carlo simulations. Color indicates the number of points per pixel.
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classes and the resulting confusion matrix is shown in Figure 6.
Both figures show that the majority of zeolites have kH > 1 mol
kg−1 MPa−1 and these materials were predicted very well by the
ResNet18 model. As kH decreases, the prediction becomes less
accurate and, interestingly, seems to be slightly positively biased
(while still ranking near the bottom). Figure 6 further demon-
strates the generalizability of the trained model when they are
applied to zeolites for which simulations predicted kH = 0. These
materials were excluded from the supervised learning process as
our loss function uses lnkH. For these zeolites, our ResNet18
model correctly predicted very small values of kH and a simi-
lar small positive bias. As noted earlier, the dataset was gener-
ated from stochastic simulations of a finite length (9× 104 MC
steps; see ref.8), where the Widom insertion MC moves used
to compute Henry’s constants37 becomes much more difficult in
weakly adsorbing zeolites, thus leading to larger uncertainties
and potential under-predictions. To test this hypothesis, two ze-
olites with the largest ResNet18 over-predictions were selected,
AEN-1 and PCOD-8314562, which had kH = 0 and 3×10−15 mol
kg−1 MPa−1 from previous MC simulations. Extending the sim-
ulations to 9× 105 MC steps yielded kH = (5 ± 45)× 10−84 and
(7± 14)× 10−13 mol kg−1 MPa−1. The new MC results indeed
moved in the positive direction, although still much smaller than
the ResNet18 predictions of kH = 3×10−5 and 9×10−8 mol kg−1

MPa−1. Examining these zeolites with the worst-case errors sug-
gests that their pore diameters are barely large enough to fit linear
alkanes (e.g., AEN-1 has PLD=3 and LCD=3.93 Å) and increasing
the pore sizes even slightly may lead to significant increases in kH

(within the rigid-zeolite assumption). We thus speculate that the
spatial resolution of the ResNet18 model, while optimized for the
prediction accuracy and efficiency over the entire dataset, may
not be adequate to resolve the cutoff pore diameters.

3.4.2 Effect of training set size.

To investigate how many training samples are needed to achieve
good model performance, the best ResNet18 model was retrained
from scratch using the optimal hyperparameters but with decreas-
ing amounts of training data. These tests maintained the 7:2
training/validation split and used the same test set that consists
of 10,000 samples. As summarized in Figure 7, the model per-
formance remains relatively unchanged as the number of training
samples decreases from 70,416 to 17,500. Empirically, the mini-
mum training set size for this adsorption system to achieve opti-
mal results appears to be 10,000, below which the model perfor-
mance degrades sharply. With 1050 training samples, the MSE in
lnkH increases to above 15 and r2 drops below 0.93. Nonetheless,
these values are still better than the best performance of the MLP
and XGBoost models. Figure 7 also shows the effect of training
set size on the MLP and XGBoost models trained on high-level ge-
ometric features. r2 decreases from 0.783 to about 0.7 (MLP) and
from 0.841 to 0.76 (XGBoost), while MSE increases from 35.7 to
above 45 (MLP) and from 26.2 to nearly 40 (XGBoost).

3.4.3 Feature visualization and attribution.

To probe what is learned by a 3D ConvNet, one may ask two types
of questions: 1) Given a zeolite structure, what role different re-
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Fig. 6 Normalized confusion matrix showing the percentage of zeolites
from a given target group (kH for n-octadecane adsorption from Monte
Carlo simulations; y axis) in different predicted groups of kH using the
best ResNet18 model. The background color of each grid indicates the
number of zeolites represented. For comparison, the ResNet18 model
was also applied to the zeolites with kH = 0 that were not included in the
training set. The predictions for these unseen zeolites are shown in the
top row.

gions of the material play in directing the ConvNet to make its
prediction; and 2) what features the ConvNet activates most in or-
der to make predictions. Figure 8 shows the saliency maps for the
MFI zeolite based on the best ResNet18 model. Saliency maps are
a feature attribution technique that assigns an importance value
to each grid location as the gradient of the model output with re-
spect to the input grid value.38 The resulting 3D gradient fields
thus characterize how much local changes of each grid influence
the model prediction. By comparing with the corresponding dis-
tance grids, we found that, interestingly, the ResNet18 identifies
the accessible pore volume and primarily relies on those regions
to make its predictions. To answer the second question, one can
look for the types of input structures that strongly activate a spec-
ified feature map, which can be obtained by solving an optimiza-
tion problem starting from a random input (Figure 9a). Here, we
focus on feature maps in the last Conv layer of the best ResNet18
model as they represent higher-level features that may be more
relatable. As shown in Figure 9, the ConvNet appears to rely
mostly on channels of different sizes and shapes (cylindrical vs.
rectangular) to characterize zeolite structures. Finally, it is also
worth noting that these visualizations are for structures that ac-
tivate strongly, but not maximally the given feature map, as we
found that pushing the optimization to convergence often yield
unrealistic structures, i.e., those with rapidly changing or even
nearly discontinuous distance values, which may be due to strided
convolutions and pooling operations.

4 Conclusions
In this work, we developed the ZEONET representation learning
framework to predict the adsorption of long-chain hydrocarbon
molecules in all-silica zeolites using 3D ConvNets with volumetric
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best ResNet18 model and hyperparameters (circles), MLP (squares), and
XGBoost (triangles). Each model was trained from scratch but evaluated
on the same test set that consists of 10,000 samples.

Fig. 8 Saliency maps based on the best ResNet18 model, showing three
slices of the MFI zeolite at z = 0, 2.58, and 4.97 Å. The top row shows
the distance grids and the bottom row shows the corresponding saliency
maps. The right side illustrates the structure with the solvent accessible
surface shown in white.

representations. Using the logarithms of Henry’s constants, lnkH,
for n-octadecane adsorption as the target property, we performed
a comprehensive evaluation of different ConvNet architectures
and optimization of the grid representations and training hyper-
parameters. With almost all ConvNet models, it was found that
distance grids, which contain the distances from each grid point
to the nearest solvent accessible surface formed by zeolite frame-
work atoms, outperformed binary occupancy grids that were used
successfully for adsorption of small molecules (Table 4). Using
the distance grid representation, we compared 3D variants of four
popular ConvNet architectures: AlexNet, VGG16, ResNet18, and
DenseNet121 (Table 1). These models all outperform a bench-
mark multi-layer perceptron trained on common geometric de-
scriptors including pore-limiting diameters, largest-cavity diame-
ters, surface areas, pore volume, and framework atom densities,
which achieved a mean-squared error (MSE) of 35.7 and a cor-
relation coefficient of r2 = 0.783. The best prediction accuracy
was obtained using DenseNet121, which reached r2 = 0.977 and

MSE = 3.8, corresponding to an error of 9.3 kJ/mol in adsorption
free energy. AlexNet consistently under-performed modern Con-
vNets, with r2 = 0.944 and MSE = 9.2. ResNet18 was found to
provide the best balance between expressiveness and efficiency,
reaching an accuracy of r2 = 0.973 and MSE = 4.4 but with a 70%
faster training speed and a 75% reduction in memory require-
ments than DenseNet121. All 3D ConvNet models require a min-
imum input volume to obtain good performance, with AlexNet
and VGG16 reaching a performance plateau at a linear dimen-
sion L > 45 Å and ResNet18 and DenseNet121 relatively stable
between L = 30 and 100 Å (Figure 4). The performance de-
pends less sensitively on grid resolution, with a small benefit at
∆d = 0.30−0.45 Å.

Analysis of the model performance (Figures 5 and 6) reveals
that ZEONET is exceptionally accurate for zeolites with strong ad-
sorption (kH > 1 mol kg−1 MPa−1) and slightly over-predicts com-
pared to simulation results for weakly-adsorbing zeolites, which
we argue may in fact be partly due to inadequate sampling by
the grand-canonical Monte Carlo simulations for the more chal-
lenging adsorption systems. In addition, saliency maps suggest
that the ConvNets mostly rely on the accessible pore volume to
make predictions (Figure 8) and visualization of feature maps fur-
ther indicates that geometric primitives such as channels of differ-
ent sizes and shapes are features learned by the ConvNets (Fig-
ure 9). Finally, experiments with different training set and test
set sizes suggest that a minimum of 10,000 samples are needed
to reach peak accuracy and a minimum of 5000 – 10,000 samples
are needed to obtain a precise estimate of performance metrics
(three decimal digits in r2 and one in MSE). These results pro-
vide benchmark quality data and comprehensive guidelines for
using 3D ConvNets to model porous materials. ZEONET and the
associated dataset and software code provide a foundation for
developing and comparing methods in future research efforts.
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