Faraday Discussions



## Feasibility of Achieving Two-Electron K-O2 Batteries

| Journal:                         | Faraday Discussions                                                                                                                                                                                                                |  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Manuscript ID                    | FD-ART-05-2023-000085.R1                                                                                                                                                                                                           |  |  |
| Article Type:                    | Paper                                                                                                                                                                                                                              |  |  |
| Date Submitted by the<br>Author: | 28-Jun-2023                                                                                                                                                                                                                        |  |  |
| Complete List of Authors:        | Qin, Lei; Shenzhen University<br>Ao, Huiling; The Ohio State University College of Arts and Sciences,<br>Department of Chemistry<br>Wu, Yiying; The Ohio State University College of Arts and Sciences,<br>Department of Chemistry |  |  |

SCHOLARONE<sup>™</sup> Manuscripts

# Feasibility of Achieving Two-Electron K-O<sub>2</sub> Batteries

Lei Qin,  $^{\rm a}$  Huiling Ao  $^{\rm b}$  and Yiying Wu\*  $^{\rm b}$ 

- [a] Prof. L. Qin
   Institute for Advanced Study (IAS)
   Shenzhen University
   Shenzhen 518060, (P. R. China)
- [b] H. Ao, Prof. Y. Wu Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue, Columbus, OH 43210 (USA) E-mail: wu@chemistry.ohio-state.edu

## Abstract

A deep understanding of the oxygen  $(O_2)$  reduction and evolution mechanisms is crucial for understanding the metal-O<sub>2</sub> batteries. It becomes evident that the instability of superoxide in the presence of lithium (Li) ions and sodium (Na) ions is the root cause for the poor reversibility and energy efficiency of Li-O<sub>2</sub> and Na-O<sub>2</sub> batteries. A straightforward yet elegant method is stabilizing superoxide with larger potassium (K) ions. Superoxide-based K-O<sub>2</sub> batteries, invented by our group in 2013, are operated based on one-electron redox of  $O_2$ /potassium superoxide (KO<sub>2</sub>) and highlighted with high energy efficiencies without any electrocatalysts. Nevertheless, limiting the anionic redox to O<sub>2</sub>/superoxide affects the capacity output. Therefore, it is attractive to explore the possibility of beyond KO<sub>2</sub> in the K-O<sub>2</sub> batteries, especially if the use of catalysts can still be avoided. In this research, solid KO<sub>2</sub> was used as the condensed O<sub>2</sub> source and pre-dissolved in the dimethyl sulfoxide (DMSO)-based electrolyte. It is encouraging to observe two sets of reversible peaks during the threeelectrode cyclic voltammetry scan under an argon atmosphere. One pair of peaks is attributed to the  $KO_2$ /potassium peroxide ( $K_2O_2$ ) interconversion. Such redox is highlighted with superb reversibility and a small overpotential of 239 mV in the absence of explicit electrocatalysts. Notably, it is further revealed that  $K_2O_2$  reacts with gaseous  $O_2$ . Therefore, a gas-open system with an  $O_2$  supply is unfavorable for realizing the reversible  $KO_2/K_2O_2$  redox, and a closed cell system with a KO<sub>2</sub> supply as the starting active material is suggested instead.

## Introduction

Directly utilizing oxygen ( $O_2$ ) as the cathode active component offers several attractive benefits: higher specific capacities and inexhaustible  $O_2$  supply from ambient air. The electron is stored based on the lightweight O element with a maximum  $4e^-$  per  $O_2$  molecule, offering its high theoretical capacity. In comparison, the conventional lithium-ion cathode materials rely on the redox of much heavier transition metal ions (e.g.,  $Fe^{3+}/Fe^{2+}$  in LiFePO<sub>4</sub>). Therefore, research in different metal- $O_2$  batteries has been actively explored in the field of energy storage community.

As the final  $O_2$  reduction product in aqueous electrolytes, hydroxide formation implies a theoretical 4-electron transfer process (4e<sup>-</sup> per  $O_2$  molecule), but it requires essential catalysts to boost the reaction kinetics. Empirically, such the 4-electron transfer process can only be achieved in aqueous media with hydroxide as the final discharge product (e.g., hybrid Na- $O_2$  battery),<sup>1</sup> because the formation of alkali metal oxide is kinetically/thermodynamically unfavorable in non-aqueous electrolytes. Pioneering research was reported by the Nazar team that utilized an elevated temperature (150 °C) to stabilize lithium oxide (Li<sub>2</sub>O) as the

primary product in an aprotic Li-O<sub>2</sub> battery system and demonstrated a reversible 4-electron conversion between O<sub>2</sub> and Li<sub>2</sub>O by using a nickel-based catalyst in the molten salt electrolyte.<sup>2</sup> Recently, Curtiss and Asadi reported a room-temperature rechargeable Li<sub>2</sub>O-based Li-O<sub>2</sub> battery enabled by using a composite polymer electrolyte based on Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub> nanoparticles embedded in a modified polyethylene oxide polymer matrix.<sup>3</sup> The key to realizing the four-electron reaction is to form a mixed ion/electron-conducting discharge product intermediates of superoxide/peroxide and its interface with gas based on their explanation.

Although the one-electron reduction process from  $O_2$  to superoxide is kinetically favorable during discharging the alkali metal- $O_2$  batteries, the generated superoxide can occur self-disproportionation or further electrochemical reduction to peroxide for Li- $O_2$  and Na- $O_2$  systems, which can be ascribed to the superior thermodynamical stability of Li<sub>2</sub> $O_2$  and Na<sub>2</sub> $O_2$  over superoxide counterpart. A recent finding reveals that the chemical disproportionation of unstable superoxide intermediate is the main source for singlet  $O_2$  ( $^1O_2$ ) generation.<sup>4</sup> It becomes clear that the reactive  $^1O_2$  easily triggers the electrode/electrolyte degradation, thus greatly deteriorating the battery performance. Moreover, despite more electrons passing per  $O_2$  molecule from superoxide to peroxide as final discharge products, the peroxide batteries (2e<sup>-</sup> per  $O_2$  molecule) exhibit high round-trip overpotentials (typically above 1.0 V for Li- $O_2$  and Na- $O_2$  batteries). Therefore, active electrocatalysts are essential, especially for improving the sluggish decomposition kinetics of peroxide. The incorporation of extra catalysts into the  $O_2$  cathode would add costs.

Recently, superoxide batteries (1e<sup>-</sup> per O<sub>2</sub> molecule) have received tremendous attention given the high reversibility of O anionic redox with facile kinetics. Although sodium superoxide (NaO<sub>2</sub>) is the possible discharge product of a Na-O<sub>2</sub> cell,<sup>5</sup> NaO<sub>2</sub> suffers from low shelf-life and converts to hydrated Na<sub>2</sub>O<sub>2</sub> spontaneously through electrolyte degradation upon aging.<sup>6</sup> Lithium superoxide (LiO<sub>2</sub>) may be stabilized by iridium nanoparticles via a proposed "template-based growth" route based on a recent study,<sup>7</sup> but Li<sub>2</sub>O<sub>2</sub> is still the primary discharge product in a conventional Li-O<sub>2</sub> battery. In contrast, potassium superoxide (KO<sub>2</sub>) possesses excellent long-term stability and is the sole primary discharge product without the interference of potassium peroxide (K<sub>2</sub>O<sub>2</sub>) in a K-O<sub>2</sub> battery.<sup>8</sup> Notably, K is the lightest alkali metal element that can form the thermodynamically stable superoxide. Our group invented the K-O<sub>2</sub> battery based on KO<sub>2</sub> formation/decomposition in 2013 (Figure 1a).<sup>9</sup> Such the  $O_2/KO_2$  redox is a typical one-electron transfer process (1e<sup>-</sup> per O<sub>2</sub> molecule). The KO<sub>2</sub>-based K-O<sub>2</sub> battery is highlighted with high reaction kinetics in the absence of electrocatalysts, providing an elegant solution to the kinetic challenges in air cathodes.<sup>10</sup> This is different from the multielectron transfer process in fuel cells, Zn-O<sub>2</sub> (4e<sup>-</sup> per O<sub>2</sub> molecule), and Li-O<sub>2</sub> (2e<sup>-</sup> per O<sub>2</sub> molecule) batteries that suffer from sluggish reaction kinetics.

Typically, the K-O<sub>2</sub> cell delivers low discharge/charge overpotentials (ca. ~50 mV) at moderate current densities, which enhances the round-trip efficiency (>95%) (**Figure 1**b). Notably, the K-O<sub>2</sub> battery is the only alkali metal-O<sub>2</sub> system that does not generate <sup>1</sup>O<sub>2</sub>. The stable product of KO<sub>2</sub> would not occur disproportionation during the discharge/charge processes, and the decomposition of KO<sub>2</sub> is finished below 3.0 V (vs. K<sup>+</sup>/K). Under such operation conditions, no <sup>1</sup>O<sub>2</sub> is evolved, and side reactions associated with electrode/electrolyte decomposition are also alleviated. In addition, our recent study shows that KO<sub>2</sub> is extremely sensitive to moisture but relatively stable in dry CO<sub>2</sub>.<sup>11</sup> Given the intrinsic stability of KO<sub>2</sub> in the O<sub>2</sub> and N<sub>2</sub> atmosphere, the O<sub>2</sub>/KO<sub>2</sub> redox is unaffected by dry ambient air. Therefore, the K-O<sub>2</sub> has the advantage of operating as a true *air* battery rather than an *O*<sub>2</sub>

battery. Only a moisture trap is required to remove moisture before purging ambient air into a K-air (dry) battery. Additionally, KO<sub>2</sub> is the only commercially available superoxide that can be massively produced. As a result, the proof-of-concept of a graphite-KO<sub>2</sub> cell (**Figure 1**c),<sup>12</sup> which represents the fully discharged state, can be assembled with the dry-room manufacturing technique. This could avoid handling the reactive metallic K or potassiated graphite in the full-cell demonstration. Such advantage has seldom been emphasized priorly and would be important in battery manufacturing.



**Figure 1.** (a) Working principle of a rechargeable K-O<sub>2</sub> battery. (b) Representative voltage profile of a K-O<sub>2</sub> battery based on single-electron  $O_2/KO_2$  redox. (c) The proof-of-concept of a graphite-KO<sub>2</sub> cell. (d) Concept of solvent-in-anion design for asymmetric K salts.

Nevertheless, all the alkali metal-O<sub>2</sub> batteries suffer from several intrinsic drawbacks: a gasopen system using O<sub>2</sub> from ambient air faces intractable issues of air purification, anode deactivation due to O<sub>2</sub> crossover, and evaporation of volatile electrolytes. A closed system connecting to a gas reservoir for O<sub>2</sub> storage would suffer from sacrificing volumetric energy density. Furthermore, despite its superb reaction kinetics, superoxide-based K-O<sub>2</sub> batteries deliver a limited capacity of 377 mAh g<sup>-1</sup> (based on KO<sub>2</sub> mass). More electrons are stored in the O element when moving from superoxide to peroxide and ultimately oxide, resulting in enhanced capacity output. Moreover, confining the electrochemical conversion between solid-phase superoxide, peroxide, and monoxide can not only inherit the benefits of O-related anionic redox but also avoid the challenges associated with gaseous O<sub>2</sub> participation/evolution. With intensive efforts from many prominent research groups, the proof-of-concept of O-related anion-redox cathodes involving oxide/peroxide, oxideperoxide/superoxide, and peroxide/superoxide interconversion have been realized in the lithium-based system, allowing the use of sealed cell configuration. The critical issue for the successful demonstration is to confine Li<sub>2</sub>O nanoparticles into an efficient catalyst skeleton (cobalt oxide-carbon black<sup>13</sup> or iridium-graphene composite<sup>14</sup>) or stabilize the formation of amorphous LiO<sub>2</sub> with an explicit palladium-graphene hybrid catalyst.<sup>15</sup>

It is stimulated whether a similar idea can also be applied to the K-O system, especially if the usage of catalysts can be avoided. Lu et al. utilized the ambient pressure photoelectron spectroscopy (APXPS) technique to probe the electrochemistry in K-O<sub>2</sub> electrochemistry and first identified the possible discharge products of K<sub>2</sub>O<sub>2</sub> and K<sub>2</sub>O at a high depth of discharge.<sup>16</sup> Recently, Haoshen Zhou's group has reported a cathode consisting of nanoscale KO<sub>2</sub> confined in a ruthenium oxide (RuO<sub>2</sub>)-reduced graphene oxide substrate, enabling the reversible interconversion between KO2 and K2O2 based on a proposed solid-solid transformation mechanism.<sup>17</sup> However, the use of excessive RuO<sub>2</sub> as the electrocatalyst (30 wt%) dramatically increases the cost. Our group has demonstrated an enhanced KO<sub>2</sub>/K<sub>2</sub>O<sub>2</sub> conversion by adopting a high-donicity anion additive in the ether-based electrolyte (Figure 1d).<sup>18</sup> The anion additive was synthesized via a "Solvent-in-Anion" strategy that could tune the electron donicity of electrolyte salts and thus change the solvation structure of the electrolyte. A significant achievement of using high-donicity anion is to enhance KO<sub>2</sub> utilization (~90.2 %) by retarding electrode passivation and allow the full charging back of K<sub>2</sub>O<sub>2</sub> through the solution-mediated pathway in the absence of explicit catalysts. However, the low compatibility of high-donicity anions with K anode remains a critical issue that limits the overall battery lifespan.

Previous studies reported by Baltruschat<sup>19</sup> and Ramani<sup>20</sup> have indicated two sets of noticeable redox peaks in the dimethyl sulfoxide (DMSO)-based electrolyte during three-electrode cyclic voltammograms of O<sub>2</sub> reduction reaction (ORR). The second reduction peak is ascribed to the generation of peroxide species. It is encouraging to observe that K<sub>2</sub>O<sub>2</sub> undergoes facile decomposition with a small voltage gap of ~100 mV without any catalysts. Nevertheless, the two-electron O<sub>2</sub>/K<sub>2</sub>O<sub>2</sub> has yet to be realized in a full-cell configuration.

The representative papers and major achievements abovementioned on Li-O<sub>2</sub>, Na-O<sub>2</sub>, and K-O<sub>2</sub> batteries system are listed in **Table 1**. In the past, there have been many excellent summaries on Li-O<sub>2</sub> and Na-O<sub>2</sub> batteries based on peroxide chemistry.<sup>21–24</sup> Distinct from the direct two-electron process between the O<sub>2</sub>/peroxide, it is reasonable to think that utilizing the anionic redox of O<sub>2</sub>/superoxide and superoxide/peroxide couple could be a promising solution to address the kinetics challenges in air cathode. K is the lightest alkali metal that forms stable superoxide. Therefore, a battery based on O<sub>2</sub>/KO<sub>2</sub>/K<sub>2</sub>O<sub>2</sub> redox is attractive to explore. This article aims to highlight the unique advantages of superoxide-based K-O<sub>2</sub> chemistry and clarify the importance of "beyond superoxide" prompted by storing more electrons in O<sub>2</sub>. We also discuss the current challenges and explain our perspectives on how to utilize the O<sub>2</sub>/KO<sub>2</sub>/K<sub>2</sub>O<sub>2</sub> redox in practical batteries.

| anionic redox                | Li-O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Na-O <sub>2</sub>                                                          | K-O <sub>2</sub>                                                                                   |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| O <sub>2</sub> to superoxide | Iridium-rGO<br>composite cathode <sup>7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gas-diffusion layer<br>(GDL): carbon paper <sup>5</sup>                    | GDL <sup>9</sup>                                                                                   |  |
| $O_2$ to peroxide            | Peroxide Conductive GDL in conversion vertice conversion vertice and cases conversion vertice and conversion verti |                                                                            | APXPS technique<br>with a carbon<br>cathode in ionic<br>liquid-based<br>electrolytes <sup>16</sup> |  |
| O <sub>2</sub> to            | Ni catalyst in<br>LiNO <sub>3</sub> /KNO <sub>3</sub> molten salt<br>electrolyte (150 °C) <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bifunctional ORR/OER <sup>[a]</sup><br>catalyst-NASICON solid              | APXPS technique<br>with a carbon                                                                   |  |
| oxide/hydroxide              | Li <sub>10</sub> GeP <sub>2</sub> S <sub>12</sub> -<br>polyethylene oxide-<br>based composite solid<br>electrolyte <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | electrolyte based on<br>aqueous catholyte in<br>hybrid Na-O <sub>2</sub> 1 | cathode in ionic<br>liquid-based<br>electrolytes <sup>16</sup>                                     |  |
| Superoxide to peroxide       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            | CV with DMSO-<br>based solvent <sup>19,20</sup>                                                    |  |
|                              | Pd-rGO catalyst <sup>15</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A                                                                        | High donor-number<br>anion <sup>18</sup>                                                           |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            | RuO <sub>2</sub> -rGO-KO <sub>2</sub><br>composite cathode <sup>17</sup>                           |  |
| Superoxide/peroxide          | Co <sub>3</sub> O <sub>4</sub> -Li <sub>2</sub> O composite<br>cathode <sup>13</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                        | N/A                                                                                                |  |
| to oxide                     | Ir-rGO-Li <sub>2</sub> O composite<br>cathode <sup>14</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |                                                                                                    |  |

 Table 1. Summary of the representative papers and major achievements on the alkali metal-O2 systems.

 O related

Notes: [a] OER is the abbreviation of oxygen evolution reaction.

## **Results and discussion**

To avoid anode interference, the three-electrode setup was adopted to investigate the O-related anionic redox in terms of reversibility and redox polarization. Note that the planar glassy carbon (GC) was used as the working electrode, while the platinum (Pt) wire and Ag/AgNO<sub>3</sub> were adopted as the counter and reference electrodes, respectively.

#### The well-defined two reversible O-related anionic redox peaks in DMSO-based electrolytes

The thermodynamic stability of  $KO_2$  makes it the exclusive superoxide that can be produced massively. Therefore, the solid  $KO_2$  is treated as the condensed  $O_2$  source, allowing the experiments to operate without purging gaseous  $O_2$ . This advantage has not been highlighted in previous tests.<sup>19,20</sup> In our designed experiment, the commercial  $KO_2$  powder was directly added into 0.1 M KPF<sub>6</sub>/DMSO electrolyte (**Figure 2**). After stirring the suspension overnight in the argon (Ar)-filled glovebox, the suspension was filtrated to remove the insoluble solid. The obtained clear filtrate was denoted as  $KO_2$ -saturated electrolyte and then transferred into the four-necked flask for further electrochemical tests.





The two well-defined redox peaks can be observed in the inert Ar atmosphere using the prepared  $KO_2$ -saturated electrolyte. The O1/R1 redox occurring at a more positive voltage range is ascribed to  $O_2/KO_2$ , while the O2/R2 redox is attributed to  $KO_2/K_2O_2$  (**Figure 3**a). Both redox reactions are highly reversible with small voltage gaps for O1/R1 redox (~109 mV) and O2/R2 redox (~239 mV) at a scan rate of 50 mV s<sup>-1</sup> (**Table 2**). Such two redox peaks are also noticeable with superb reversibility even at a scan rate of 200 mV s<sup>-1</sup> (**Figure 3**b).



**Figure 3. CV** scans of a **GC** electrode under Ar atmosphere. The electrolyte is 0.1 M KPF<sub>6</sub>/DMSO saturated with KO<sub>2</sub>. (a) The first 10 cycles at a constant scan rate of 50 mV s<sup>-1</sup>. (b) CV scans at different scan rates. R1 and R2 indicate the formation of KO<sub>2</sub> and K<sub>2</sub>O<sub>2</sub>, while O1 and O2 denote the decomposition of KO<sub>2</sub> and K<sub>2</sub>O<sub>2</sub>. The voltage range is set as 0~-1.8 V vs. Ag<sup>+</sup>/Ag. 0 V<sub>Ag+/Ag</sub> = 3.47 V<sub>K+/K</sub> in the DMSO-based electrolyte, and detailed information can be found in the **Experimental Section**.

| Table 2. Volta | immetric prop   | erties of KO <sub>2</sub> -s | aturated 0.1 M K   | PF <sub>6</sub> /DMSO el | lectrolyte at va | rious scan rates. |
|----------------|-----------------|------------------------------|--------------------|--------------------------|------------------|-------------------|
| CV curves we   | re collected or | n the GC electi              | rode in the Ar atı | mosphere.                |                  |                   |
| Scan rate      |                 |                              | Overnotential      |                          |                  | Overnotential     |

| Scan rate<br>(mV s <sup>-1</sup> ) | Ep <sub>(R1)</sub> (V) | Ep <sub>(01)</sub> (V) | Overpotential<br>(R1/O1) (V) | Ep <sub>(R2)</sub> (V) | Ep <sub>(O2)</sub> (V) | Overpotential<br>(R2/O2) (V) |
|------------------------------------|------------------------|------------------------|------------------------------|------------------------|------------------------|------------------------------|
| 20                                 | -1.185                 | -1.098                 | 0.087                        | -1.543                 | -1.348                 | 0.195                        |
| 50                                 | -1.190                 | -1.085                 | 0.105                        | -1.558                 | -1.320                 | 0.238                        |
| 100                                | -1.203                 | -1.083                 | 0.120                        | -1.568                 | -1.298                 | 0.270                        |
| 200                                | -1.208                 | -1.068                 | 0.140                        | -1.598                 | -1.278                 | 0.320                        |

The peak current densities for specific redox peaks can be measured by extrapolating the preceding current baseline (**Figure 4**a). The calculated R<sup>2</sup> values of fitting lines for two reduction (R1 and R2) peaks are very close to 1, implying a good linear relationship between peak current densities and square root of scan rates (**Figure 4**b). Therefore, the electrochemical reduction reactions (R1 and R2) in the DMSO-based system are mainly

controlled by the diffusion of active species rather than by a factor of kinetics. However, prior studies have shown that  $K_2O_2$  is insoluble in DMSO.<sup>25,26</sup> The insoluble  $K_2O_2$  that deposits on the electrode is still rechargeable with high reversibility, as evidenced by relatively small potential gaps even at higher scan rates (**Figure 3**b). The linear relationship for Ip(O2) and v<sup>1/2</sup> could then arise from diffusion-controlled reduction of soluble  $KO_2$  to  $K_2O_2$  in previous scan, which determines amount of  $K_2O_2$  available for reoxidation. Notably, a discrepancy exists between reduction and oxidation peak current densities (**Table 3**). Moreover, the voltammograms exhibit a larger separation in peak potentials than that (59 mV) of a reversible one-electron redox, implying a quasi-reversible electrochemical process (**Table 2**). Nevertheless, the two single-electron transfer processes are still characteristic of superb reaction kinetics without requiring solid electrocatalysts or liquid redox mediators, which is first reported and achieved in an inert Ar atmosphere.



**Figure 4.** (a) Typical CV of GC electrode in  $KO_2$ -saturated 0.1 M KPF<sub>6</sub>/DMSO electrolyte at a scan rate of 50 mV s<sup>-1</sup>. The auxiliary dot lines are added to help estimate the peak current densities of redox peaks. (b) The plot of the square root of CV scan rates versus experimental peak current densities.

| used for $O_2/KO_2$ , and the R2/O2 peaks are used for $KO_2/K_2O_2$ . The raw CV data is from <b>Figure 3</b> b. |                                           |                                           |                                           |                                           |  |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--|
| Scan rate (mV s <sup>-1</sup> )                                                                                   | Ip <sub>(R1)</sub> (mA cm <sup>-2</sup> ) | Ip <sub>(01)</sub> (mA cm <sup>-2</sup> ) | Ip <sub>(R2)</sub> (mA cm <sup>-2</sup> ) | Ip <sub>(02)</sub> (mA cm <sup>-2</sup> ) |  |
| 20                                                                                                                | -0.119                                    | 0.246                                     | -0.194                                    | 0.354                                     |  |
| 50                                                                                                                | -0.183                                    | 0.296                                     | -0.251                                    | 0.463                                     |  |
| 100                                                                                                               | -0.272                                    | 0.384                                     | -0.357                                    | 0.502                                     |  |
| 200                                                                                                               | -0.363                                    | 0.432                                     | -0.442                                    | 0.58                                      |  |

**Table 3.** The peak current densities  $(I_p)$  for  $O_2/KO_2$  couple and  $KO_2/K_2O_2$  couple. The R1/O1 peaks are used for  $O_2/KO_2$ , and the R2/O2 peaks are used for  $KO_2/K_2O_2$ . The raw CV data is from **Figure 3**b.

#### Effect of cation types on the reversibility of O-related anionic redox

CV response for O<sub>2</sub> reduction was collected in the presence of different cations. The unstable nature of superoxide in the presence of Li<sup>+</sup> and Na<sup>+</sup> would result in spontaneous peroxide formation via the self-disproportionation of superoxide. The overall net reaction is from O<sub>2</sub> to peroxide (0 to -2) during the ORR. Notably, the decomposition of peroxides (Li<sub>2</sub>O<sub>2</sub> and Na<sub>2</sub>O<sub>2</sub>) suffers from sluggish reaction kinetics. Such a two-electron transfer process is characteristic of low reversibility with an obvious current decay upon scans and high polarization (~1.65 V for O<sub>2</sub>/Li<sub>2</sub>O<sub>2</sub> and ~0.64 V for O<sub>2</sub>/Na<sub>2</sub>O<sub>2</sub>) at 50 mV s<sup>-1</sup> (**Figure 5**). In comparison, the stability of superoxide anion is greatly enhanced when changing the cation from Li<sup>+</sup> or Na<sup>+</sup> to K<sup>+</sup>, which can be explained by Pearson's hard-soft acid-base theory<sup>27</sup>. Therefore, two separate one-electron processes (0 to -1 and -1 to -2) can be identified and

observed with high reversibility and reaction kinetics in the K-O system, which provides a simple but elegant solution to address the challenge of peroxide decomposition in  $O_2$  electrodes.



Figure 5. CVs demonstrating the significant effect of cation type on the reversibility of  $O_2$  reduction/evolution reaction. Data was collected on the GC working electrode in  $O_2$ -saturated (a) 0.1 M LiPF<sub>6</sub>/DMSO and (b) 0.1 M NaPF<sub>6</sub>/DMSO. The scan rate is 50 mV s<sup>-1</sup>.

#### Effect of operation atmosphere on the reversibility of $O_2/KO_2/K_2O_2$ redox

When the KO<sub>2</sub>-saturated electrolyte is purged with O<sub>2</sub>, the peak O2 (K<sub>2</sub>O<sub>2</sub> $\rightarrow$ KO<sub>2</sub>) is absent despite the presence of peak R2 (KO<sub>2</sub> $\rightarrow$ K<sub>2</sub>O<sub>2</sub>) (**Figure 6**a). In addition, the peak O1 attributed to KO<sub>2</sub> decomposition exhibits an ever-increasing polarization upon cycles. The redox reversibility was also evaluated with 0.1 M KPF<sub>6</sub>/DMSO electrolyte in the O<sub>2</sub> atmosphere (**Figure 6**b). It is observed that the first one-electron transfer process of O<sub>2</sub>/KO<sub>2</sub> redox is still reversible. However, the peak O2 attributed to K<sub>2</sub>O<sub>2</sub> oxidation (K<sub>2</sub>O<sub>2</sub> $\rightarrow$ KO<sub>2</sub>) gradually decreases in current intensity upon cycles until the complete disappearance at the 20<sup>th</sup> cycle. It is reasonable to think that the insoluble K<sub>2</sub>O<sub>2</sub> that precipitates on the electrode surface could be chemically oxidized to KO<sub>2</sub> by O<sub>2</sub>, and therefore induce the disappearance of the peak O2. Compared to the insoluble K<sub>2</sub>O<sub>2</sub>, the KO<sub>2</sub> with a higher solubility could dissolve into DMSO electrolyte and further be electrochemically decomposed during the positive-going scan, which is evidenced by the nearly unchanged O1 current response (**Figure 6**b). The difference between Figure 6a and 6b is attributed to the saturation of the electrolyte in Figure 6a by KO<sub>2</sub>, which results in the precipitation of KO<sub>2</sub> and passivation of the electrode surface.



**Figure 6.** CV scans of a three-electrode setup (working electrode: GC; counter electrode: Pt wire; reference electrode: Ag/AgNO<sub>3</sub> in MeCN) in the O<sub>2</sub> atmosphere at a scan rate of 50 mV s<sup>-1</sup>. The electrolyte is (a) KO<sub>2</sub>-saturated 0.1 M KPF<sub>6</sub>/DMSO and (b) 0.1 M KPF<sub>6</sub>/DMSO.

#### Chemically synthesize $K_2O_2$ and its stability evaluation in the $O_2$ atmosphere

It has been revealed in prior studies that the stability of  $K_2O_2$  and  $KO_2$  strongly depends on the  $O_2$  partial pressure and temperature. In the specific temperature range (0~500 °C), superoxide is the thermodynamically stable phase at a high  $O_2$  partial pressure, while peroxide is more stable at a lower  $O_2$  partial pressure.<sup>28</sup> It is further estimated that  $K_2O_2$ becomes a more thermodynamically stable phase than  $KO_2$  only when the  $O_2$  partial pressure is below  $10^{-6}$  bar at room temperature. Actually, the existing literature on reporting  $K_2O_2$ preparation is via the thermal decomposition of  $KO_2$  at 588 K with the dynamic vacuum (p ~2.0\*10<sup>-3</sup> mbar), which also implies the dependence of  $K_2O_2$  stability on the  $O_2$  partial pressure.<sup>29</sup> To give more direct evidence to support the hypothesis, it is essential to directly synthesize  $K_2O_2$  to study its chemical properties. Herein, two methods were proposed to synthesize  $K_2O_2$  by utilizing the chemical reactions between  $KO_2$  and K or  $K_2O$ , respectively (**Figure S1**a-b). Based on the thermodynamic parameters collected from previous reports (**Table 4**), the isothermal relations of Gibbs free energy (Reaction 1 & 2) are listed below:

K (s) + KO<sub>2</sub> (s) → K<sub>2</sub>O<sub>2</sub> (s); 
$$\Delta G^0(kJ \cdot mol^{-1}) = -209.2 + 0.0793T$$
 (Reaction 1)

$$2K_2O(s) + 2KO_2(s) \rightarrow 3K_2O_2(s); \Delta G^0(kJ \cdot mol^{-1}) = -186.2 + 0.11516T$$
 (Reaction 2)

| Table 4.         Thermodynamic parameters for different substances. |                             |                                     |           |  |
|---------------------------------------------------------------------|-----------------------------|-------------------------------------|-----------|--|
| Compounds                                                           | $\Delta H_{f}^{0}$ (kJ/mol) | $\Delta G_{f}^{0}$ (kJ/mol) at 298K | ∆S(J/mol) |  |
| KO <sub>2</sub> (s)                                                 | -284.9                      | -239.4                              | 116.7     |  |
| $K_2O_2$ (s)                                                        | -494.1                      | -425.1                              | 102.1     |  |
| K <sub>2</sub> O (s)                                                | -363.17                     | -322.1                              | 94.03     |  |
| K (s)                                                               | 0                           | -                                   | 64.7      |  |
| O <sub>2</sub> (g)                                                  | 0                           | -                                   | 205.2     |  |

XRD tests were conducted to detect the synthesized products. For the product via Reaction 1, it is easy to identify the starting material of KO<sub>2</sub> residue apart from the target product of  $K_2O_2$ , which indicates the incomplete reaction (red trace in Figure S1c). By utilizing the comproportionation between KO<sub>2</sub> and K<sub>2</sub>O solids via **Reaction 2**, it is found that there is only  $K_2O_2$  as the final product without the interference of starting materials residue, as evidenced by its typical XRD pattern (cyan trace in **Figure S1**c) and Raman peak at ~760 cm<sup>-1</sup> (**Figure S2**a). As shown in typical SEM images, the as-synthesized  $K_2O_2$  particles possess the morphology of secondary aggregates within several micrometer scales (Figure S2b). The successful synthesis of pure K<sub>2</sub>O<sub>2</sub> allows us to investigate its intrinsic property, such as its stability in O<sub>2</sub>. Typically, the as-synthesized K<sub>2</sub>O<sub>2</sub> powder was put inside the air-tight vial, which was refilled with a pure  $O_2$  atmosphere (Figure 7a). After resting the  $K_2O_2$  sample in  $O_2$  for 70 hours, the aged sample shows a typical color of light yellow, which is distinct from the pristine K<sub>2</sub>O<sub>2</sub> with a beige color. In addition, the typical XRD pattern of the aged sample reveals the existence of newborn  $KO_2$  besides parent  $K_2O_2$  (cyan trace in **Figure 7**b). The above observations imply the instability of K<sub>2</sub>O<sub>2</sub> in the presence of O<sub>2</sub>. The side reaction and the related isothermal relation of Gibbs free energy (Reaction 3) are listed below:

 $K_2O_2$  (s) +  $O_2$  (g)  $\rightarrow 2KO_2$  (s);  $\Delta G^0(kJ \cdot mol^{-1}) = -75.7 + 0.0739T$  (Reaction 3)



**Figure 7. Stability evaluation of K\_2O\_2 in a pure O\_2 atmosphere.** (a) Optical images and (b) XRD patterns of  $K_2O_2$  before and after resting in  $O_2$ . The optical image of  $KO_2$  powder is added for comparison.

# General mind map for realizing the two-electron process in the K-O system

Based on the observation above, some deductions can be obtained as follows.

(1) It is difficult to realize a direct two-electron  $O_2/K_2O_2$  transformation (0 to -2) without involving  $KO_2$  formation because  $KO_2$  is both thermodynamically and kinetically stable at ambient conditions. Notably, dividing into two single-electron processes (0 to -1 and -1 to -2) allows the possibility of realizing the O anionic redox with high reaction kinetics.

(2)  $K_2O_2$  is susceptible to chemical oxidation by  $O_2$ . This side reaction consumes the rechargeable  $K_2O_2$  amount and thus affects the redox reversibility ( $K_2O_2 \rightarrow KO_2$ ). In other words, operating in an inert Ar atmosphere is a prerequisite to realize the reversible  $KO_2/K_2O_2$  redox (**Figure 8**a). In addition, the  $O_2$  source that enables  $O_2/KO_2$  redox should come from a condensed  $O_2$  source (e.g.,  $KO_2$ ) rather than gaseous  $O_2$ . Only in this situation can the newborn  $O_2$  from  $KO_2$  decomposition be captured and further reduced to  $KO_2$  in the following cathodic scan, which is verified in our designed experiments (**Figure 3** and **Figure 6**).

(3) It is noteworthy to mention the stability differences between alkali metal peroxides. As validated in prior studies, both  $Li_2O_2^{22}$  and  $Na_2O_2^{24}$  (thermodynamically stable products) are the possible discharge products in Li-O<sub>2</sub> or Na-O<sub>2</sub> batteries, which is a good implication for the superb stability of  $Li_2O_2$  and  $Na_2O_2$  in the presence of gaseous  $O_2$ . Such a deduction is also supported by the evidence that the intermediate  $LiO_2$  and  $NaO_2$  (kinetically stable products) disproportionate spontaneously and yield the corresponding peroxides with gaseous  $O_2$  evolution (**Figure 8**b). In comparison, the KO<sub>2</sub> is the sole stable product in room-temperature K-O<sub>2</sub> batteries.<sup>8</sup> In other words, the disproportionation of KO<sub>2</sub> to  $K_2O_2$  and  $O_2$  is unfavored, and the reverse reaction ( $K_2O_2+O_2\rightarrow 2KO_2$ ) is favorable. This can also highlight the uniqueness of the K-O system compared to the counterparts of Li-O and Na-O systems.



**Figure 8. General mind map for realizing the reversible two-electron transfer for O anionic redox without catalysts.** (a) Schematically illustration of the proposed two-electron transfer process in the K-O system. (b) Comparison stability differences between alkali metal peroxide.

#### Perspective

Despite being the youngest metal- $O_2$  technology, the superoxide-based K- $O_2$  battery system has established its unrivaled advantage in highly reversible  $O_2/KO_2$  redox, resulting in a high round-trip efficiency without requiring any catalysts. Stabilizing superoxide by the K<sup>+</sup> cation provides the solution to the kinetic challenge in the air cathode and enables investigation of the O-related anionic redox beyond superoxide for practical applications.

Note that a closed cell system with solid KO<sub>2</sub> supply in the absence of O<sub>2</sub> is suggested if we want to achieve high O<sub>2</sub>/KO<sub>2</sub>/K<sub>2</sub>O<sub>2</sub> reversibility in real batteries based on the findings revealed in this manuscript. If we purge the electrolyte with gaseous O<sub>2</sub> priorly, the K<sub>2</sub>O<sub>2</sub> formed electrochemically (KO<sub>2</sub> + e<sup>-</sup> + K<sup>+</sup>  $\rightarrow$  K<sub>2</sub>O<sub>2</sub>) is susceptible to chemical reaction with O<sub>2</sub> by generating KO<sub>2</sub> (Reaction 3) following the *EC* mechanism, which reduces the rechargeable K<sub>2</sub>O<sub>2</sub> amount and thus affects the reversibility of KO<sub>2</sub>/K<sub>2</sub>O<sub>2</sub> redox. The alternative option is to choose the condensed O<sub>2</sub> source (e.g., KO<sub>2</sub> or K<sub>2</sub>O<sub>2</sub>). The relatively strict requirements during K<sub>2</sub>O<sub>2</sub> preparation limit its wide use. In comparison, the thermodynamically stable KO<sub>2</sub> can be massively produced, making it suitable for potential large-scale applications. More promisingly, our recent studies show that KO<sub>2</sub> is dry-air stable, which implies its excellent compatibility with dry-room battery manufacturing.<sup>11</sup> Ideally, the KO<sub>2</sub> cathode can couple with a potassium-ion anode to construct a cell that represents the half-discharged state. Nevertheless, the difficulty of preparing the pre-potassiated anodes is a big challenge, and their compatibility with DMSO-based electrolyte also needs further examination, which is subject to further investigation in the future.

## **Experimental**

#### Materials

Potassium chunks (K, 98.0% purity, Sigma-Aldrich) were stored in the mineral oil. The K surface was cut by a doctor blade and then roll-pressed into foils for further use. Potassium hexafluorophosphate (KPF<sub>6</sub>, 99.5%, Sigma-Aldrich), potassium nitrate (KNO<sub>3</sub>, 99.0%, Sigma-Aldrich), and potassium superoxide (KO<sub>2</sub>, Sigma-Aldrich) were dried in the chemical drier under vacuum before transferring into the glovebox. The dimethyl sulfoxide (DMSO, 99.9%, Sigma-Aldrich) was stored in the bottles with activated 3Å molecular sieves (Sigma-Aldrich) to reduce the water contents below 10 ppm.

#### Preparation of K<sub>2</sub>O<sub>2</sub> and K<sub>2</sub>O

Two methods were proposed to synthesize K<sub>2</sub>O<sub>2</sub>. For route 1, it was proposed to wrap

commercial KO<sub>2</sub> powder with the pressed K foil (1:1 by mole) to make a "dumpling". The wrapped "dumpling" was put inside an alumina tube and sealed in an evacuated quartz tube, followed by sintering at 300 °C for 12 hours under vacuum and cooling down naturally to room temperature. The heating rate is 5 °C/min. For **route 2**, it was advised to weigh the specific amount of K<sub>2</sub>O (10% excess in mol) and commercial KO<sub>2</sub> powder. After grinding the mixture thoroughly in the glovebox, a pellet was obtained by pressing the above mixture with a hydraulic machine (400 MPa for 10 mins). The pellet was then sealed in an evacuated quartz tube, steadily heated at a rate of 5 °C/min to 300 °C, held at this temperature for 12 hours, and naturally cooled down to room temperature. The obtained pellet was re-grinded to powder, and it was advised to repeat the above pressing and sintering procedure to obtain pure K<sub>2</sub>O<sub>2</sub>.

The synthesis of  $K_2O$  was based on our prior study.<sup>30</sup> In general,  $K_2O$  was synthesized by wrapping KNO<sub>3</sub> powder with the pressed K foil (5% excess in mol). The mixture was placed on an aluminum boat within a quartz tube under Ar flow, which was then heated at 170 °C for 12 hours and naturally cooled down.

#### Characterization

Powder X-ray diffraction (PXRD) measurements were finished on a Rigaku D/MAX 2500/PC with a Cu K $\alpha$  source at the step rate of 1.5°/min. The polymer film (3M) was adhered to the XRD sample holder after heating to protect air-sensitive samples from exposure during tests. Scanning electron microscopy (SEM) images were acquired at an FEI Quanta 200 SEM at an accelerating voltage of 5 kV. The air-sensitive powder sample was transferred into an air-tight holder before observation.

# Calibration of Ag/AgNO<sub>3</sub> reference electrode ( $V_{Ag+/Ag}$ ) versus $V_{K+/K}$ , $V_{Li+/Li}$ , and $V_{Na+/Na}$

Ferrocene (Fc, 98%, Sigma-Aldrich) was first added and dispersed into 0.1 M KPF<sub>6</sub>/DMSO electrolyte. The Ag<sup>+</sup>/Ag reference electrode was calibrated by correlating the known redox potential of Fc/Fc<sup>+</sup> [versus standard hydrogen electrode (SHE)] and the estimated redox potential in 0.1 M KPF<sub>6</sub>/DMSO electrolyte. Given the specific voltage gap between SHE and K<sup>+</sup>/K, the Ag<sup>+</sup>/Ag reference is determined to be 0 V<sub>Ag+/Ag</sub>  $\equiv$  3.47 V<sub>K+/K</sub> in the DMSO-based electrolyte. Similarly, the reference potentials of Li<sup>+</sup>/Li and Na<sup>+</sup>/Na can also be estimated as V<sub>Ag+/Ag</sub>  $\equiv$  3.65 V<sub>Li+/Li</sub> and V<sub>Ag+/Ag</sub>  $\equiv$  3.32 V<sub>Na+/Na</sub>, respectively.

#### **Electrochemical measurements**

Three-electrode CV measurements were conducted using an electrochemical workstation (Gamry) and a four-necked, air-tight glass cell. Glassy carbon and platinum wire were employed as the working and counter electrodes. Silver wire in a 0.01 M AgNO<sub>3</sub>/0.1 M TBAPF<sub>6</sub> acetonitrile solution was used as the reference electrode.

The KO<sub>2</sub>-saturated electrolyte was prepared as follows: 1) dissolving commercial KO<sub>2</sub> powder in 0.1 M KPF<sub>6</sub>/DMSO solution; 2) stirring the above solution overnight in the Ar-filled glovebox; 3) using the filter (pore size 0.45  $\mu$ m) to filtrate the insoluble KO<sub>2</sub>; 4) transferring the clear filtrate for the following tests. Note that the electrolytes were purged with high-purity Ar or O<sub>2</sub> for 10 mins before three-electrode CV measurements.

#### **Author contributions**

L. Q.: experimental, validation, formal analysis. writing–original draft; H. A.: experimental, investigation; Y. W.: funding acquisition, supervision, writing–review and editing.

## **Conflicts of interest**

There are no conflicts to declare.

## Acknowledgements

This project was financially supported by the Ohio State University and the U.S. Department of Energy (Award No. DE-FG02-07ER46427).

### **Notes and references**

- 1 J. Y. Cheon, K. Kim, Y. J. Sa, S. H. Sahgong, Y. Hong, J. Woo, S. D. Yim, H. Y. Jeong, Y. Kim and S. H. Joo, *Adv. Energy Mater.*, 2016, **6**, 1–10.
- 2 C. Xia, C. Y. Kwok and L. F. Nazar, *Science*, 2018, **361**, 777–781.
- A. Kondori, M. Esmaeilirad, A. M. Harzandi, R. Amine, M. T. Saray, L. Yu, T. Liu, J. Wen,
   N. Shan, H.-H. Wang, A. T. NGO, P. C. Redfern, C. S. Johnson, K. Amine, R.
   Shahbazian-Yassar, L. A. Curtiss and M. Asadi, *Science*, 2023, **379**, 499–505.
- E. Mourad, Y. K. Petit, R. Spezia, A. Samojlov, F. F. Summa, C. Prehal, C. Leypold, N. Mahne, C. Slugovc, O. Fontaine, S. Brutti and S. A. Freunberger, *Energy Environ. Sci.*, 2019, 12, 2559–2568.
- 5 P. Hartmann, C. L. Bender, M. Vračar, A. K. Dürr, A. Garsuch, J. Janek and P. Adelhelm, *Nat. Mater.*, 2013, **12**, 228–232.
- 6 J. Kim, H. Park, B. Lee, W. M. Seong, H. D. Lim, Y. Bae, H. Kim, W. K. Kim, K. H. Ryu and K. Kang, *Nat. Commun.*, 2016, **7**, 1–9.
- J. Lu, Y. J. Lee, X. Luo, K. C. Lau, M. Asadi, H. H. Wang, S. Brombosz, J. Wen, D. Zhai, Z. Chen, D. J. Miller, Y. S. Jeong, J. B. Park, Z. Z. Fang, B. Kumar, A. Salehi-Khojin, Y. K. Sun, L. A. Curtiss and K. Amine, *Nature*, 2016, 529, 377–382.
- 8 N. Xiao, R. T. Rooney, A. A. Gewirth and Y. Wu, *Angew. Chem. Int. Ed.*, 2018, **57**, 1227–1231.
- 9 X. Ren and Y. Wu, J. Am. Chem. Soc., 2013, **135**, 2923–2926.
- 10 L. Qin, L. Schkeryantz, J. Zheng, N. Xiao and Y. Wu, *J. Am. Chem. Soc.*, 2020, **142**, 11629-11640.
- 11 L. Qin, N. Xiao, S. Zhang, X. Chen and Y. Wu, *Angew. Chem. Int. Ed.*, 2020, **59**, 10498-10501.
- 12 L. Qin, S. Zhang, J. Zheng, Y. Lei, D. Zhai and Y. Wu, *Energy Environ. Sci.*, 2020, **13**, 3656–3662.
- 13 Z. Zhu, A. Kushima, Z. Yin, L. Qi, K. Amine, J. Lu and J. Li, *Nat. Energy*, 2016, **1**, 16111.
- 14 Y. Qiao, K. Jiang, H. Deng and H. Zhou, *Nat. Catal.*, 2019, **2**, 1035–1044.
- 15 J. Wang, R. Gao and X. Liu, *Inorganics*, 2023, **11**, 69.
- 16 W. Wang, Y. Wang, C. H. Wang, Y. W. Yang and Y. C. Lu, *Energy Storage Mater.*, 2021, **36**, 341–346.
- 17 Y. Qiao, H. Deng, Z. Chang, X. Cao, H. Yang and H. Zhou, *Natl. Sci. Rev.*, 2021, **8**, nwaa287.
- 18 L. Qin, S. Luke and Y. Wu, Angew. Chem. Int. Ed., 2023, 62, e202213996.
- 19 P. H. Reinsberg, A. Koellisch, P. P. Bawol and H. Baltruschat, *Phys. Chem. Chem. Phys.*, 2019, **21**, 4286–4294.
- 20 S. Sankarasubramanian and V. Ramani, J. Phys. Chem. C, 2018, **122**, 19319–19327.
- 21 W.-J. Kwak, Rosy, D. Sharon, C. Xia, H. Kim, L. R. Johnson, P. G. Bruce, L. F. Nazar, Y.-K. Sun, A. A. Frimer, M. Noked, S. A. Freunberger and D. Aurbach, *Chem. Rev.*, 2020, **120**,

6626-6683.

- 22 H. D. Lim, B. Lee, Y. Bae, H. Park, Y. Ko, H. Kim, J. Kim and K. Kang, *Chem. Soc. Rev.*, 2017, **46**, 2873–2888.
- 23 H. Yadegari and X. Sun, Acc. Chem. Res., 2018, **51**, 1532–1540.
- 24 C. L. Bender, D. Schröder, R. Pinedo, P. Adelhelm and J. Janek, *Angew. Chem. Int. Ed.*, 2016, **55**, 4640–4649.
- 25 P. H. Reinsberg, A. Koellisch, P. P. Bawol and H. Baltruschat, *Phys. Chem. Chem. Phys.*, 2019, **21**, 4286-4294.
- 26 W. Wang, N.-C. Lai, Z. Liang, Y. Wang and Y.-C. Lu, *Angew. Chem. Int. Ed.*, 2018, **57**, 5042-5046.
- 27 Ralph G. Pearson, J. Am. Chem. Soc., 1963, **85**, 3533–3539.
- 28 O. Gerbig, *Thesis*, 2014.
- 29 C. Freysoldt, P. Merz, M. Schmidt, S. Mohitkar, C. Felser, J. Neugebauer and M. Jansen, Angew. Chem. Int. Ed., 2019, **58**, 149–153.
- 30 J. Zheng, H. Fang, L. Fan, Y. Ren, P. Jena and Y. Wu, *J. Phys. Chem. Lett.*, 2021, **12**, 7120–7126.