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Fully quantum calculation of the second and third
virial coefficients of water and its isotopologues from
ab initio potentials

Giovanni Garberoglio,∗a,b Piotr Jankowski,c Krzysztof Szalewicz,d and Allan H. Harveye

Path-integral Monte Carlo methods were applied to calculate the second, B(T ), and the third,
C(T ), virial coefficients for water. A fully quantum approach and state-of-the-art flexible-monomer
pair and three-body potentials were used. Flexible-monomer potentials allow calculations for any
isotopologue; we performed calculations for both H2O and D2O. For B(T ) of H2O, the quantum
effect contributes 25% of the value at 300 K and is not entirely negligible even at 1000 K, in
accordance with recent literature findings. The effect of monomer flexibility, while not as large
as some claims in the literature, is significant compared to the experimental uncertainty. It is
of opposite sign to the quantum effect, smaller in magnitude than the latter below 500 K, and
varying from 1% at 300 K to 10% at 700 K. When monomer flexibility is accounted for, results
from the CCpol-8sf pair potential are in excellent agreement with the available experimental data
and provide reliable B(T ) at temperatures outside the range of experimental data. The flexible-
monomer MB-pol pair potential yields B(T ) that are slightly too high compared to experiment. For
C(T ), our calculations confirm earlier findings that the use of three-body potential is necessary for
meaningful predictions. However, due to various uncertainties of the potentials used, especially
the three-body ones, we were not able to establish benchmark values of C(T ), although our results
are in qualitative agreement with available experimental data. The quantum effect, never before
included for water, reduces the magnitude of the classical value for H2O by a factor of 2.5 at 300
K and is not entirely negligible even at 1000 K.

1 Introduction
While the electronic structure of molecules can be described only
using quantum mechanics, the motions of molecular nuclei can
often be approximated well enough using equations of classical
mechanics. Of course, in all such cases, one has to switch
to quantum treatment of these motions at some threshold of
accuracy required for description of a phenomenon. However,
there are many systems for which only a quantum treatment of
nuclear motions gives reasonable predictions. One group of such
systems are atomic and molecular clusters.
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An extreme example is the helium dimer, one of the weakest
interatomic interactions in nature. This dimer has only one
bound state, some time ago considered to be nonexistent.
Now reliable experimental1–6 and theoretical7–11 information on
properties of this state is available. This state is an important
example of a halo state, i.e., it is a state with the property
that the particles are mostly found in the classically forbidden
region,11,12 an extreme example of quantum effects. The
properties of this state depend in a measurable way on physical
phenomena not often considered for molecular systems. One has
in particular go beyond Schrödinger’s quantum mechanics and
include relativistic and quantum electrodynamics effects,11,12

as these effects significantly impact the halo character of this
state. At the required level of accuracy, one also has to include
the nonadiabatic effects in an essentially exact way.11 At this
advanced level, theoretical predictions of the size and binding
energy of the bound state are significantly more accurate than
experimental results. In particular, a recent measurement of
the latter property6 resulted in experiment becoming compatible
with theory,9 but the theoretical uncertainties are much smaller
than the experimental ones. It is also worth mentioning that
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theoretical properties of helium gas are now being used in
upcoming metrology standards.13,14 One element of theoretical
input are virial coefficients, which are calculated from quantum
scattering cross-sections10 (classical calculations are far from
achieving the required accuracy).

The next example is a dimer of diatomic molecules, H2–CO.
The rovibrational motions in this floppy dimer are extremely
anharmonic, leading to complicated spectra where many
measured lines are resonances.15 Full quantum treatment is
needed to describe such motions, and the same is true for
description of scattering of H2 on CO.16 The mixed second virial
coefficient was calculated for this system using the path-integral
Monte Carlo (PIMC) method.17 The quantum approach has to be
used for essentially all temperatures of interest; only above 1000 K
can one rely on the classical values.

Nuclear motions in water clusters and in liquid water are much
less quantum than in the two dimers discussed above, and in fact
classical molecular dynamics describes liquid water reasonably
well.18,19 Nevertheless, with recently improved potential energy
surfaces,20–23 the quantum effects, if neglected, are becoming the
largest source of uncertainties in theoretical predictions of water
properties. In particular, quantum corrections are substantial for
virial coefficients, the subject of the present work.

Advances in computational quantum mechanics have enabled
creation of increasingly realistic models for water. While simple
empirical rigid-monomer pair models like SPC/E24 or TIP4P25

are still useful in simulations of condensed phases of water, they
give huge discrepancies with experiment if used in calculations
of virial coefficients (see Fig. 4 in Ref. 26). This is because such
potentials effectively incorporate three- and higher-body effects
in the pair potentials, while the virials are defined in terms of
exact K-body potentials. More sophisticated empirical potentials
that incorporate polarization effects do provide somewhat better
second virial coefficients.27 Still, most rigid-monomer water
dimer potentials fitted to ab initio interaction energies in the
past 20 years gave second virial coefficients that agreed with
experiment significantly better, see, e.g., Refs. 18,26,28, and
19. In fact, theoretical data became so accurate, that, in their
correlation of experimental data for B(T ) of H2O, Harvey and
Lemmon29 included for T > 700 K values calculated from the
SAPT-5s potential of Ref. 28. The first accurate flexible-monomer
pair potentials were developed in 2006.30,31 The most accurate
current potentials of this type are those of Refs. 22 and 21.
The number of three-body potentials for water is much smaller,
and reliable potentials of this type were created only in the
past decade32–34 (note that by three-body interaction energy we
mean the trimer interaction energy minus the sum of all dimer
interaction energies, with all vertical interaction energies, i.e.,
all the total energies are computed with monomers in the same
geometries as in the trimer35,36). The currently best three-body
potentials of this type are those from Refs. 23 and 20; the
former is a flexible- and the latter a rigid-monomer potential.
The development of high-quality potential functions for water has
been reviewed by Szalewicz et al.37 and by Cisneros et al.38

While a fair number of third virial, C(T ), calculations have
been published for rare-gas atoms,39–44 there are only a few

calculations of C(T ) for water. The first calculation with realistic
potentials was performed by Kusalik et al.,27 but the three-
body potential was represented only by a simple point-charge
polarization model. The most recent calculation of C(T ) was
published by Schultz et al.45

Virial coefficients appear in the expansion describing deviation
from ideal-gas behavior as a series in powers of density

p
ρRT

= 1+B(T )ρ +C(T )ρ2 + . . . , (1)

where p is the pressure, ρ the molar density, R the molar gas
constant, and T the absolute temperature. The second virial
coefficient B(T ) is rigorously defined by the pair potential only,
the third virial coefficient C(T ) depends on both the two-body
and three-body potentials, etc. The virial expansion is useful for
describing thermodynamic properties of water vapor in a variety
of contexts, including steam turbines and atmospheric science.
The third virial coefficient is expected to be important for water
as three-body effects account for at least 15% of the values of
properties of liquid water.18,19,33,35

For ordinary water (H2O), B(T ) is well known from experiment
above approximately 320 K,29 while there is much less knowledge
of C(T ). For heavy water (D2O), B(T ) is known over a more
narrow range of temperature,46 and C(T ) is known only for a few
values of T from a single study. Calculating virial coefficients from
potentials can therefore serve two functions. First, comparing
calculated B and C at temperatures where reliable experimental
data exist serves as a test of the accuracy of the potentials and of
the methods used to compute the virials. Second, for potentials
that are shown to be sufficiently accurate, the calculated B and
C at temperatures where no (accurate) data exist provide much
needed estimates of these important thermodynamic functions.

The simplest to calculate are classical virial coefficients, as
these are straightforward multidimensional integrals. However,
because of the small moments of inertia of the water molecule,
quantum effects on the virial coefficients are expected to be
larger than in most molecules. Indeed, for the second virial
coefficients, this has been known for long time, for example,
calculations of Ref. 26 found that quantum effects reduce the
the magnitude of classical B(T ) by 14% at 298 K (however, no
quantum calculations are available for C(T )). Note that such
large quantum effects may seem to be in contradiction to the
fact that these effects, as mentioned earlier, make in general
fairly small contributions in simulations of liquid water; see a
discussion of this issue in Sec. 5. The most often used expression
for quantum effects is the leading term, proportional to the square
of the reduced Planck constant, h̄2, in the Wigner–Kirkwood
expansion.47 Various other semiclassical approximations have
been developed,48–51 but the errors of these approximations are
difficult to estimate. We therefore employ the PIMC approach,
which converges to the full quantum solution if sufficient
computer resources are used.50,52,53

The PIMC calculations will be performed with full-dimensional
potentials. Apart from this being the only way to get near-
exact values, the ability to obtain the virials at this level is
important for at least two other reasons. First, by performing
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PIMC calculations also with rigid-monomer potentials, we can
determine the relative importance of monomer-flexibility effects
on virials. One wants to know these contributions since for
systems larger than water calculations of such corrections are
beyond capabilities of present methods. The current information
on monomer-flexibility effects is limited. For the second virial
coefficient of H2, Garberoglio et al.54 found that a rigid-monomer
model with the bond length at its vibrationally averaged ground-
state value gives results nearly identical to the fully flexible-
monomer calculation, and later effects of similar size (0.8% effect
at 300 K and 0.09% at 1000 K) were found for H2-CO.17 On the
other hand, for H2O, it has been claimed that monomer flexibility
has a large effect on B(T ). Refson et al.55 computed this effect
as 10% in the range 373-673 K, while Donchev et al.56 computed
it as 20-40% for T ∈ 300− 800 K, with 40% effect at 300 K. In
contrast, recent calculations by Jankowski et al.21 gave much
smaller monomer flexibility effects. In particular, near the edges
of the investigated range of temperatures the effect was 2.4% (at
298 K) and −9% (at 3000 K). The percentage effect does become
large at temperatures around 1500 K, but this is not meaningful
since B(T ) crosses zero there. Jankowski et al. also found that
these effects are an order of magnitude smaller than quantum
effects at low T , but become larger in magnitude for T larger than
about 600 K. However, the quantum effects were computed only
at the Takahashi–Imada level49 and only for rigid monomers. Our
ability to calculate virial coefficients at exact quantum level from
a flexible-monomer potential will allow us to definitely evaluate
whether the literature claims of large flexibility effects are correct.

Second, the knowledge of the full-dimensional quantum
results will allow evaluation of various approximate methods of
including monomer-flexibility effects. While the virial coefficients
for fully flexible monomers are uniquely defined, derivations
of approximate methods have to employ somewhat arbitrary
procedures of averaging over intramolecular coordinates and
therefore it is difficult to compare such methods based on
the derivations. These issues have recently been extensively
discussed in Refs. 54 and 21.

One more advantage of performing flexible-monomer
calculations is that such calculations can be done for all
isotopologues, such as D2O, using a single potential. This is
because the clamped-nuclei (Born–Oppenheimer) potential does
not depend on nuclear masses. Rigid-monomer water models
typically use the angle and bond length of H2O, while D2O has
a slightly different geometry.57 Thus, either a separate potential
has to be developed for D2O or some error is introduced by using
the H2O geometry. This problem has been very recently partly
overcome in Ref. 58 by using the atom-following method of Refs.
59 and 60. However, with a flexible-monomer model, we can
compute virial coefficients for D2O with full consideration of its
(flexible-monomer) geometry, or we can “freeze” the flexible-
monomer model at the vibrationally averaged ground-state D2O
geometry in order to perform simpler rigid-rotor calculations.
The virial coefficients of D2O are of particular interest for a
current effort to produce a new international standard reference
equation of state for the thermodynamic properties of heavy
water.61

In this work, we use the PIMC method to calculate B(T )
for H2O and D2O at a fully quantum level from two high-
accuracy flexible-monomer pair potentials. We also examine the
effect of flexibility by performing PIMC calculations on rigid-
monomer versions of those models, and examine the importance
of quantum effects by performing classical and semiclassical
calculations. We use the same pair potentials, in combination
with one flexible-monomer and one rigid-monomer three-body
potential, to calculate C(T ) for H2O and D2O.

2 Theory
The path-integral calculations of virial coefficients from ab-initio
potentials reported in this paper are largely based on the theory
we developed in Ref. 54. Since in that paper we dealt specifically
with linear molecules (H2 isotopologues), we now briefly describe
how the results can be extended to deal with the general case.

2.1 Quantum exchange effects in an isolated water molecule

Let us denote by XXX = [xxxH1,xxxH2,xxxO] a point in 9-dimensional
vector space of Cartesian coordinates of the atoms in a water
molecule and let |XXX〉 be the quantum mechanical state of
a molecule where the atomic positions have definite values
described by the coordinates XXX . If the two hydrogens are treated
as indistinguishable particles (that is, in the case of H2O or D2O),
then the single-molecule partition function at temperature T is
given by

Q1 =
1
2

∫
dXXX
[
〈XXX |e−βh|XXX〉+ 〈XXX |e−βh

χ|XXX〉
]
, (2)

where β = (kBT )−1, kB is the Boltzmann constant, H1 is the
single-molecule Hamiltonian, and the operator χ exchanges the
coordinates of the two hydrogens, that is χ|XXX〉= χ|xxxH1,xxxH2,xxxO〉=
|xxxH2,xxxH1,xxxO〉. The Hamiltonian is of the form H1 = t+u(XXX), where
t is the kinetic energy operator for the three atoms and u(XXX) the
potential energy of the system. As usual, we evaluate the right-
hand side of Eq. (2) using the Trotter theorem

e−βh = lim
P→∞

(
e−β t/Pe−βu/P

)P
,

truncated at a large but finite value of P, and inserting
completeness relations of the form∫

dXXXk|XXXk〉〈XXXk|,

(with k= 2, . . . ,P) between the appropriate exponential operators.
The space of states |XXXk〉 is identical to the space of states |XXX〉, and
we will from now on denote the latter states as |XXX1〉. In this way
we arrive at the usual path-integral representation of quantum
statistical mechanics:54,62 the first term in Eq. (2) (called the
Boltzmann term) is equivalent to the partition function of a
system of distinguishable particles where each of the initial atoms
is replaced by a ring polymer with P beads. The beads having
the same index k interact via the potential u(XXXk)/P and the
subsequent beads corresponding to the same atom a interact via a
harmonic potential with the harmonic constant Ka = MaP(β h̄)−2,
where Ma is the mass of atom a. Hence, the potential energy of a
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(a) (b)

Fig. 1 Water molecules in the ring-polymer representation; the blue ring
polymer corresponds to the oxygen atom, the red ring polymers to the
two hydrogens. (a) Example of a Boltzmann configuration. (b) Example
of an exchanged configuration, obtained from (a) by cutting the dashed
bonds between hydrogen atoms and creating the bold ones.

ring-polymer molecular configuration is

u(XXX1, . . . ,XXXP) =
1
P

P

∑
i=1

u(XXX i)+
Ka

2

N

∑
a=1

P

∑
i=1

∣∣XXXa
i+1−XXXa

i
∣∣2 , (3)

where XXXa
i denotes the position of atom a (a = 1, . . . ,N, where N is

the number of atoms within the considered molecule) in the i-th
bead. Notice that due to the condition of closed ring polymers,
one has XXXP+1 = XXX1.

The second term in Eq. (2) (called the exchange term)
corresponds to a classical system where the ring polymers of the
two hydrogen atoms within the same molecule are coalesced into
a single ring polymer of 2P beads. A pictorial representation
of these two cases is presented in Fig. 1. When considering
exchanged configurations, we will denote the ring-polymer
potential energy as uxc. Notice that the only difference between
uxc and u is in the harmonic contribution of Eq. (3), and it
corresponds to the variation in energy obtained by cutting the
dashed bonds between hydrogen atoms in Fig. 1(b) and adding
the bold ones.

As shown in Ref. 54, the relative importance of the
Boltzmann versus exchanged configurations depends on the
temperature. In the limit of high temperatures, only the
Boltzmann configurations contribute to sampling. At finite
temperatures, the relative probability Ξ(T ) of the appearance of
exchanged configurations vs. Boltzmann ones can be obtained via
thermodynamic integration

Ξ(T ) = exp
[
−β

∫ 1

0
dλ 〈∆u〉(λ )

]
, (4)

where 〈∆u〉(λ ) denotes an average of the potential energy
difference

∆u = uxc−u,

(independent of λ) performed by sampling molecular
configurations where ring-polymer potential is given by

uλ = (1−λ )u+λuxc.

0 10 20 30 40 50
Temperature (K)

0

0.2

0.4

0.6

0.8

1

Ξ(
T)

Fig. 2 The relative importance of exchange versus Boltzmann polymers
– the quantity Ξ in Eq. (4) – in the case of a single H2O molecule in
vacuum.

As discussed above, ∆u depends only on the difference in
the harmonic energy between the exchange and Boltzmann
configuration (see Fig. 1). The relative probabilities Ξ(T ) for
a single H2O molecule in vacuum are plotted in Fig. 2. This
figure shows that the exchange effects are completely negligible
above T = 40 K. Since in the following we will be interested in
temperatures T ≥ 200 K, this result implies that only Boltzmann
polymers will contribute to the calculation. Thus, we will
neglect the exchange term in Eq. (2), resulting in a considerable
simplification of the sampling procedure.

2.2 PIMC virial coefficients
The virial coefficients discussed here are determined in terms of
partition functions Qi, i = 1,2,3: the monomer partition function
Q1, defined in Eq. (2), the dimer one Q2, and the trimer one
Q3. The definitions of Q2 and Q3 are completely analogous to the
definition of Q1: neglecting exchange effects, and denoting by qqqN
all the coordinates necessary to describe N molecules, one has

QN =
1

N!

∫
dqqqN〈qqqN |e−βHN |qqqN〉, (5)

where HN is the quantum mechanical Hamiltonian of an N-
molecule system. Introducing the auxiliary variables

ZN

N!
=

QNV N

QN
1

, (6)

where V is the volume containing the system under consideration,
we can write the second virial coefficient as63,64

B(T ) =− 1
2V

(
Z2−Z2

1

)
=−V

2

(
2Q2

Q2
1
−1

)
, (7)

and the third one as

C(T ) = 4B2(T )− 1
3V

(
Z3−3Z2Z2

1 +2Z3
1

)
. (8)

The derivation of the PIMC expression for the second virial
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coefficient from Eq. (7) is analogous to that described in Ref. 54,
starting from the expression

Q2 =
1
2

∫
dXXXadXXXb

〈
XXXaXXXb|e−βH2 |XXXaXXXb

〉
,

with
H2 = ta +u(XXXa)+ tb +u(XXXb)+U2(XXXa,XXXb),

where ti is the kinetic energy operator for all the atoms in
molecule i, XXX i is the variable XXX of Sec. 2.1 with the subscript
distinguishing the two molecules, and U2 is the flexible-monomer
intermolecular potential which, in this notation, depends on 18
variables. Since the intermolecular potential is invariant by
an overall translation or rotation of the coordinate system, U2

actually depends on 12 independent variables. In PIMC with P
beads, the evaluation of the partition function Q2 results in a 18P-
dimensional integral. In this integral, the potential U2 enters as
the sum

U2(ZZZa,ZZZb) =
1
P

P

∑
i=1

U2(XXXa,i,XXXb,i), (9)

where XXXc,i denotes the positions of the atoms of monomer c in
the ith bead and ZZZc =

{
XXXc,i
}P

i=1. Thus, U2 is a function of 18P
variables. Since the integral is invariant to translations of the
whole dimer, one can integrate three of the 18P coordinates,
which we choose as the position of the first bead of the oxygen
of molecule a. This results in the appearance of a factor V , and,
in the remaining integrand, this bead can be considered fixed at
the origin of the coordinate system. Further simplifications of
Eq. (7) can be achieved by realizing that among the remaining
18P−3 coordinates one describes the relative position of the two
molecules: we use the first bead of the oxygen in molecule b and
denote its value by xxx. The remaining 18P−6 coordinates describe
the internal configurations of the two ring polymers. We note
that the expression of B(T ) includes two single-molecule partition
functions Q1 in the denominator, which are both proportional to
V due to translational invariance, resulting in a cancellation of
the volume factors in Eq. (7). Furthermore, one can interpret the
integration in the 18P−6 internal coordinates in Q2 as an average
over two single-molecule ring polymers, whose oxygens in the
first bead are separated by xxx. Using these considerations, one can
then show54 that the formula for the second virial coefficient can
be written as

B(T ) =−1
2

∫
dxxx [z2(xxx)−1] , (10)

where z2(xxx) is defined by

z2(xxx) =
〈

e−βU2(ZZZa,ZZZb)
〉
, (11)

with the average 〈· · · 〉 performed over ring-polymer
configurations of isolated water molecules whose oxygen
atoms in the first bead are separated by xxx. In our computer
code, these ring-polymer configurations are generated using a
hybrid Monte Carlo procedure.65,66 Equation (10) is also valid
in the case of rigid molecules. In this case, the center of mass
of the molecule in the first bead is fixed at the origin of the
coordinate system, and xxx denotes the position of the center of
mass of the first bead of the second molecule. The average is

then performed over ring-polymer configurations corresponding
to free rigid-water molecules that have been sampled using the
straightforward Metropolis Monte Carlo.

Starting from Eq. (8), the third virial coefficient can be written
as

C(T ) = 4B2(T )−

1
3

∫
dxxxdyyy [z3(xxx,yyy)− z2(xxx)− z2(yyy)− z2(xxx− yyy)+2](12)

z3(xxx,yyy) =
〈
exp
[
−βU3(ZZZa,ZZZb,ZZZc)

]〉
, (13)

where U3(ZZZa,ZZZb,ZZZc) is the total three-body potential averaged
over the P beads, with a definition analogous to U2 in Eq. (9),
in the configuration where the first bead of the oxygen atom of
molecule a is fixed at the origin of the coordinate system, and
the first beads of the oxygen atoms of the other two molecules
(b and c) are in positions xxx and yyy, respectively. As in the case
of z2(xxx), the average leading to z3(xxx,yyy) is performed over the
configurations of three free-molecule ring polymers. In actual
calculations averages such as that of Eq. (11) are performed
on the fly while integrating over xxx (and yyy in the case of the
third virial), using at least 12 independent pairs (or triplets) of
ring polymers. When calculating B(T ), invariance under rotation
implies that the integrand is a function only of |xxx|, whereas in
the case of C(T ), the integrand is a function only of |xxx|, |yyy|, and
the angle between xxx and yyy. Integrations over these independent
coordinates are performed using the VEGAS algorithm, sampling
5000 points for B(T ) and 105 points for C(T ).

The Trotter index P was fixed at P = 64 for the flexible-
monomer models (both H2O and D2O), because we found
convergence at this value for B(T ) even at the lowest investigated
temperature. In the case of rigid molecules, we used a
temperature-dependent value given by P = 2500 K/T +4 for both
isotopologues. In this case, this value was fixed by checking the
convergence of B(T ) at the temperatures of 200 K, 300 K, 500 K,
and 1000 K. The statistical uncertainties on the calculations are
reported as the variance of the mean taken on 16 independent
runs.

2.3 Kinetic energy transition matrix for rigid monomers

For rigid monomers, the variables describing the state of a
single molecule in a cluster are the molecular center-of-mass
coordinates, RRRC, and the set of three Euler angles, ΩΩΩ, describing
its orientation. In this case, the most time-consuming step of a
PIMC simulation is the calculation of the transition matrix for the
rotational kinetic energy operator trot

ρrot(∆ΩΩΩ) = 〈ΩΩΩ1|e−β trot/P|ΩΩΩ0〉, (14)

which is a function of the Euler angles ∆ΩΩΩ describing the rotation
from the configuration described by the Euler angles ΩΩΩ0 to the
configuration described by the Euler angles ΩΩΩ1. This quantity
has been studied by Noya et al.,67,68 and can be expressed in
the form of nested loops, as shown in Eq. (15) of Ref. 68. We
precalculate ρrot(∆ΩΩΩ) on a three-dimensional grid with an angular
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resolution of 2◦, and use cubic spline interpolation to obtain its
value during the path-integral simulation. This approach resulted
in a significant speedup of calculations with a negligible impact
on the accuracy.

2.4 Semiclassical virial coefficients

By expanding Eq. (7) in powers of h̄, it turns out that the
fully quantum second virial coefficient can be approximated
by a classical calculation with a modified potential.50 One
common form of this semiclassical potential is the one proposed
by Feynman and Hibbs62,69 (FH) which – in the case of
two interacting rigid rotors whose centers-of-mass separation is
denoted by RRR and whose orientations are given by the Euler
angles ΩΩΩ1 and ΩΩΩ2, respectively – has the form

UFH
2 =U2(RRR,ΩΩΩ1,ΩΩΩ2)+

h̄2

24kBT

3

∑
i=1

(
1
µ

∂ 2U2

∂RRR2
i
+

2

∑
n=1

1
Ii

∂ 2U2

∂θni
2

)
, (15)

where µ is the reduced mass of the two interacting molecules and
θni denotes a rotation around the principal axis i of molecule n,
with Ii being the corresponding moment of inertia. However, we
used the Takahashi–Imada (TI)49 form of the effective potential,
which involves only the first order derivatives and is given by

UTI
2 =U2(RRR,ΩΩΩ1,ΩΩΩ2)+

h̄2

24k2
BT 2

(
|FFF |2

µ
+

3

∑
i=1

τ2
1i + τ2

2i
Ii

)
, (16)

where FFF is the force between the centers of mass of the two
molecules and τni is the i-th component of the torque acting on
molecule n. The classical and semiclassical virial coefficients for
rigid monomers are usually written as 9-dimensional integrals
over (RRR,ΩΩΩ1,ΩΩΩ2), but can be reduced to 6-dimensional integrals
due to isotropy of the potential. In our calculations, integrations
were performed in 7 dimensions, i.e., all the 6 Euler angles and
the radial separation, as it was easier to sample such subspace
uniformly.

In the case of the third virial coefficient, we are not aware
of any semiclassical formula for rigid or flexible molecules. In
this case, we followed Ref. 45, and used the TI potential for the
two-body interaction, while keeping the regular potential for the
three-body interaction.

2.5 Intermolecular potentials

Given the importance of water in many physical and chemical
processes, a large number of intermolecular potentials have
been developed and optimized for specific applications (e.g.,
simulation of the liquid and solid phase). In this work, we will
consider only potentials that have been developed using ab-initio
electronic structure calculations performed on water dimers and
trimers.

In the case of two-body interaction, we will consider the CCpol-
8sf21,30,70 and MB-pol23 potentials, which explicitly consider
flexible molecules, as well as their rigid-molecule approximations,
obtained by fixing the O–H distance and the H–O–H angle at
their average values in the ground rovibrational state, rOH =

0.9716257 Å and HOH= 104.69◦, respectively.71 In this case,

the CCpol-8sf potential reduces to the rigid-monomer CCpol-8s
potential of Ref. 72 (which is an improved version of the CCpol-
5s potential of Ref. 73). The CCpol2 potential20 is very similar to
CCpol-8s, but represents a small improvement over it (mainly by
using additional grid points at small intermonomer separations
from Ref. 74). To take advantage of this improvement, we used
CCpol2 in rigid-monomer calculations (note that there are some
mistakes in the Supplementary Information of Ref. 20, which are
corrected in an erratum75). The same approach has been applied
to generate rigid-monomer heavy-water potentials; in this case
we have used rOD = 0.97077 Å and DOD= 104.408◦.57

Few three-body potentials are available for water. Two full-
dimensional potentials exist: the surface of Ref. 76 (an improved
version of the surface from Ref. 34) and the three-body part of
MB-pol.23 CCpol320 is a recent three-body potential developed
using highly-accurate quantum mechanical calculations and a
much denser grid than in Refs. 76 and 23, but it was developed
only in rigid-monomer form. Despite this, we will use it also for
flexible-monomer simulations in the following way: when the
PIMC program requires a value of three-body potential at some
deformed monomer geometry, this geometry is projected onto the
closest rigid-monomer configuration obtained using the bisector-
axis embedding described in the Supplementary Information of
Ref. 21 and such rigid-monomer value of the three-body potential
is used. Since CCpol3 is in site-site form, another option would
be to use the atom-following scheme.59,60

As a general remark, we note that all of these potentials
have been obtained by fitting a given functional form using
a large number (from several thousands to hundreds of
thousands) of water dimer or trimer configurations. The resulting
functions reproduce with high fidelity the ab-initio energies of
configurations close to the training set. However, in performing
the integrals leading to the virial coefficients, one often needs the
value of the potential for molecular configurations very dissimilar
from those used in the fitting procedure, and the resulting
extrapolation might lead to unphysical values of the potential
which, in turn, results in inaccurate virial coefficients. In general,
we identified two cases in which this extrapolation is particularly
inaccurate: short intermonomer distances and large monomer
deformations.

To deal with the first case, we introduced a short-range cutoff,
setting the potential to a very high value (105 K) whenever two
molecules are closer than a specific distance. The details of this
procedure depend on the specific potential: in the case of MB-
pol we used a criterion based on the center-of-mass distance d,
assuming strong repulsion as soon as d < 1.8 Å. In the case of
CCpol-8sf, we used a more complicated criterion based on the
distances dab between atoms a and b on different molecules; we
assumed strong repulsion as soon as at least one of the following
conditions were met: dOO < 1.8 Å, dHH < 1.3 Å, dOH < 1.3 Å.

The case of large molecular deformations, which appear
quite frequently in the path-integral sampling, was particularly
problematic for CCpol-8sf. We noticed that intermolecular
energies resulted in unphysical values when extrapolating beyond
the range of OH bond-lengths [0.8639–1.0778] Å and HOH angles
[76.68◦–137.27◦] used in the training set. In that case, we
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adjusted the problematic monomer to a geometry corresponding
to the nearest endpoint of the appropriate range. In the case of
MB-pol, this problem did not appear, possibly due to the fact that
there was no range of separations and angles used for selecting
grid points, but rather such points were extracted from molecular
simulations.

Another unphysical behavior exists in the case of the published
version of the CCpol3 potential.75 This fit produces unphysical
values at configurations with at least one intermonomer distances
larger than about 25 Å, and insufficiently accurate values in the
range 10 Å to 25 Å. The problem is related exclusively to the
exchange terms proportional to the third power of orbital overlap
integrals. However, the exchange terms should be completely
negligible for distances larger than 10 Å. Thus, a simple solution
is to set the exchange terms to zero at such distances, which then
gives a well-behaved function without any loss of accuracy (see
Ref. 75 for more details). To be on the safe side, we decided
to truncate the exponential part for separations larger than 7 Å.
The induction part of the potential, which dominates three-body
interactions at large separations, does not exhibit any problems
and was kept in our calculations. The same approach was taken
by Schultz et al.45

All the calculations used the PJT2 potential by Polyansky et
al.77 to represent the intramonomer energy u(XXX).

3 Results for B(T )
Table 1 shows the calculated second virial coefficients B(T )
for H2O for the full-dimensional potentials (CCpol-8sf and MB-
pol) and for various approximations (PIMC for a rigid-monomer
potential at the vibrationally averaged ground-state geometry,
semiclassical rigid, classical rigid). For conciseness, we do not
tabulate semiclassical and classical results for the rigid MB-pol
pair potential; deviations of these approximations from the PIMC
calculation are nearly identical for CCpol2 and MB-pol.

The experimental B(T ) data for H2O were reviewed by Harvey
and Lemmon.29 For comparison purposes, in this paper we
discuss only the sources they found to be reliable; many older
data are inaccurate due to adsorption effects. Kell et al.78

extracted B(T ) from volumetric measurements between 423 K
and 773 K. Eubank et al.79 used the Burnett expansion method
to derive B(T ) from 348 K to 623 K. Both the Kell and Eubank
studies made corrections for adsorption, which are essential
below roughly 500 K. Abdulagatov et al.80 reported B(T ) from
volumetric data from 523 K to 653 K, and Vukalovich et al.81

used previously measured high-temperature volumetric data from
his laboratory to derive B(T ) from 773 K to 1173 K. Finally,
Harvey and Lemmon29 derived B(T ) from the vaporization data
of Osborne et al.82,83 This procedure only works in a limited
temperature range; Harvey and Lemmon report values from
323 K to 473 K.

Harvey and Lemmon (HL)29 represented the experimental
B(T ) (and some theoretical values as mentioned earlier), along
with some data related to dB/dT , with a correlation function
that was stated to be valid, i.e., reproduce data within their
uncertainty, between 310 K and 1170 K. We will use the HL
correlation as the baseline for examining how well our calculated

values agree with experiment.
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Fig. 3 The second virial coefficient of H2O compared with experimental
data, all relative to the HL correlation values.

Figure 3 shows the calculated B(T ) for H2O from both pair
potentials, with and without monomer-flexibility contributions,
as the difference from the HL correlation. The selected
experimental data are also plotted, along with their uncertainties
(expanded uncertainties with coverage factor 2, roughly
corresponding to a 95% confidence interval) where available.
The results from the flexible-monomer CCpol-8sf potential are
in excellent agreement with the HL correlation and with the
experimental data. The differences are large only relative to the
data of Osborne et al.83 in the range 325 K – 350 K, but these
data have uncertainties so large that theoretical and experimental
values are still consistent. In the same range, the discrepancies
with the HL correlation are also fairly large (although smaller
than with Ref. 83), but note that this region is close to the
validity limit. As seen in Table 1, below this limit the relative
discrepancies become still larger. While the flexible-monomer
MB-pol potential yields results that are near the experimental
data, they are clearly not consistent with experiment, yielding
B(T ) slightly too high over the entire range.

Table 1 and Fig. 3 show that the effect of monomer flexibility
for both pair potentials is to lower B(T ) for T > 250 K. This effect
is several times larger than the uncertainties of the experimental
data, showing that accounting for flexibility is necessary for
quantitative agreement with experiment at the current level of
experimental accuracy. As a percentage of the total B(T ), the
monomer-flexibility effect varies from 1% at 273 K to 10% at
700 K (for higher temperatures the relative contribution becomes
very large, but this is mainly due to the fact that the function B(T )
crosses zero near 1500 K). This shows that the effect calculated by
Refson et al.,55 close to 10% in the whole range investigated by
them, was too large in magnitude, except at their highest value
of T , whereas the 20-40% contribution obtained by Donchev et
al.56 was much too large. On the other hand, the agreement
with monomer-flexibility effects computed by Jankowski et al.21
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Table 1 Values of B(T ) in cm3/mol for H2O for various approximations and potentials. The uncertainties are the statistical uncertainties of the
calculation. All results were obtained using PIMC unless noted otherwise.

Temperature (K) Harvey–Lemmon CCpol-8sf MB-pol CCpol2 CCpol2 CCpol2 MB-pol
(flexible) (flexible) (rigid) (rigid, semiclassical) (rigid, classical) (rigid)

200 −15190 −12451.(19) −12694.(44) −12887.(22) −13010.(32) −23825.(58) −12291.(21)
225 −6516 −5362.(8) −5386.(13) −5445.(11) −5381.(10) −8620.(16) −5330.(11)
250 −3252 −2789.8(26) −2786.(6) −2813.(4) −2744.(5) −3985.(7) −2678.(5)
273.15 −1916.9 −1716.3(20) −1703.(4) −1694.(3) −1661.(3) −2259.(5) −1634.(3)
300 −1163.0 −1085.6(10) −1070.6(27) −1061.2(11) −1042.2(22) −1330.1(20) −1034.5(15)
325 −795.9 −763.1(9) −748.4(9) −742.2(10) −727.4(14) −893.5(15) −730.1(11)
350 −580.1 −566.4(7) −555.4(11) −547.4(11) −536.4(10) −636.5(9) −537.7(7)
375 −443.3 −437.7(5) −426.7(8) −417.6(7) −411.7(7) −478.4(7) −413.0(6)
400 −351.1 −348.6(5) −340.4(7) −330.8(5) −326.2(5) −372.4(6) −329.1(5)
450 −237.5 −236.5(4) −229.8(6) −221.2(3) −220.0(4) −244.8(5) −222.4(2)
500 −171.97 −171.4(3) −166.7(3) −160.4(3) −158.3(4) −172.4(4) −161.6(3)
550 −130.18 −130.28(28) −125.5(4) −119.81(15) −118.97(25) −128.3(3) −121.94(19)
600 −101.66 −102.02(22) −98.2(4) −93.15(21) −92.36(25) −98.70(24) −94.61(20)
700 −65.94 −66.05(22) −63.41(23) −59.29(16) −58.88(19) −62.46(21) −61.08(15)
800 −45.00 −44.60(16) −43.19(20) −39.52(13) −38.93(19) −41.28(18) −40.93(14)
900 −31.51 −31.74(21) −30.38(22) −26.48(17) −26.50(17) −27.58(13) −28.24(13)

1000 −22.22 −22.40(19) −20.90(21) −17.79(17) −17.54(14) −18.55(12) −19.28(11)
1250 −8.35 −8.66(18) −7.26(13) −4.90(8) −4.58(8) −5.04(10) −6.02(9)
1500 −0.84 −1.00(16) 0.10(14) 2.28(6) 2.33(9) 2.08(8) 1.06(7)
1750 3.78 3.80(19) 4.36(10) 6.40(7) 6.36(7) 6.20(6) 5.39(5)
2000 6.85 5.79(21) 7.23(9) 9.09(4) 9.19(4) 8.88(6) 8.16(5)

in the range 273 K – 1000 K is excellent, to within about 1%.
Although the virial coefficients from all-dimensional CCpol-8sf
and MB-pol potentials are fairly close to each other, Fig. 3 shows
that the monomer-flexibility corrections are about twice as large
for CCpol-8sf as for MB-pol in the range of T displayed.
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Fig. 4 Importance of quantum effects in water’s B(T ). The virial
coefficients computed classically and semiclassically are shown relative
to the PIMC values for the same rigid-monomer potentials.

In Fig. 4, we show the effect of approximating the quantum
nature of the B(T ) calculations. Only results from the CCpol2
potential for H2O and the rigid-monomer version of the CCpol-
8sf potential for D2O are shown; the results for the rigid-
monomer versions of MB-pol are similar. The vertical axis on
Fig. 4 is the difference between the approximately calculated
B(T ) and that obtained from a full PIMC calculation (in rigid-
monomer approximation). As expected for a molecule with a

small moment of inertia and strongly anisotropic intermolecular
forces, quantum effects are significant even at high temperatures,
amounting to 4% at 1000 K (the larger relative contribution
for some higher temperatures is again related to the crossing
of zero). As temperature decreases, the percentage increases to
reach 25% at 300 K. The quantum effects move the B(T ) curve
up, acting opposite to monomer-flexibility effects. However, a
significant cancellation between the two effects takes place only
in a relatively narrow range of T : from about 450 K to 600 K (as
the former effects decrease with T , while the latter increase). The
semiclassical approximation works well over virtually the whole
range of temperatures, as it recovers PIMC results to within about
2% (except near the crossing of zero). The absolute discrepancies
may seem large below roughly 400 K, but even at 300 K the error
is only 1.8%, very small compared to experimental uncertainties
in this region. This is a positive finding for future work on larger
molecules, since the TI calculations are much less expensive than
the PIMC ones.

The second virial coefficients can be compared with those
computed by Jankowski et al.21 Both calculations used the
same CCpol-8sf potential, but different methods of computing
B(T ). The authors of Ref. 21 calculated the monomer-flexibility
correction by subtracting the values computed with the potential
averaged over the monomer ground-state vibration, 〈U2〉0, from
values computed with the potential taken at the vibrationally
averaged geometry, U2(〈r〉0). As discussed above, this correction
is in excellent agreement with our results. The correction was
then added to the quantum virial coefficients computed in TI
approximation from the U2(〈r〉0) potential. Since Jankowski et
al. performed calculations for temperatures used in experiments,
only a few of these coincide with those used by us. At 273 K
and 450 K, the differences are 6% and 2% (after an interpolation
from 448 K), respectively. At 1000 K, 1500 K, and 2000 K,
the differences are below 1.8 cm3/mol. Thus, the agreement is
very good. At the lowest T , the discrepancy is mainly due to
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an incomplete account of quantum effects. When these effects
become less important, the agreement improves at 450 K. At
high T , the discrepancies are due to the different treatments of
monomer-flexibility effects.
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Fig. 5 The second virial coefficient of D2O compared with experimental
data. The baseline is the HM correlation.

Table 2 shows results of PIMC calculations for D2O. For this
isotopologue, the only reliable experimental B(T ) are from Kell et
al.,78 extending from 423 K to 773 K. Hill and MacMillan46 (HM)
used those data and the behavior of H2O to derive a correlation
for B(T ) of D2O; we use the HM correlation as a baseline for
plotting our calculated D2O results.

In Fig. 5, we show B(T ) as differences from the HM correlation,
along with the experimental data. Once again, we find
quantitative agreement between our calculations with CCpol-8sf
and the experimental data in the range 450 K to 800 K, with the
MB-pol pair potential yielding B(T ) somewhat too high. As was
the case for H2O, quantitative agreement with the experimental
data requires accounting for monomer flexibility. Figure 5 and
Table 2 also show that, unlike the HL correlation for H2O which is
accurate at high temperatures (since it was fitted to theory there),
high-temperature extrapolation of the HM correlation for D2O
overestimates B(T ) and the present theoretical data should be
used in this region. Similarly as for H2O, the agreement becomes
poor for T ’s below the range covered by experiments, and theory
is likely more reliable in this region.

As expected from its larger moment of inertia, the quantum
effects on B(T ) are smaller for D2O than for H2O. Figure 4
shows the error introduced by the classical and semiclassical
approximations. The size of the error for D2O in the classical
approximation is slightly more than half of the error for H2O
at the same temperature. The semiclassical approximation
also yields somewhat smaller errors than for H2O, maintaining
quantitative accuracy in absolute terms to near 300 K (the relative
accuracy is good throughout).

4 Results for C(T )

The calculation of C(T ) requires substantial computer time
(roughly 1500 hours per temperature on a single core of a
2.5 GHz machine for the full-dimensional case), but is tractable
with the methods described in Sec. 2.2. Such calculations, if
sufficient accuracy can be achieved, would be valuable since
the few available experimental data sources for H2O78–81,84 are
not fully mutually consistent and there is only one experimental
source for D2O.78 We report C(T ) at only five temperatures
(300 K, 500 K, 600 K, 700 K, and 1000 K) in order to discuss
qualitative trends and the size of various effects. Except for
300 K, these temperatures overlap available experimental data.
The point at 300 K allows us to examine quantum effects which
should be relatively large at that low temperature. We could have
performed calculations for more points, but as discussed below,
the present three-body potentials need more work to yield results
with better quantitative accuracy.

In Table 3, we present C(T ) calculated for H2O using several
different methods, along with the values interpolated (to the T
values used in the table) from available experimental sources.
To see the influence of three-body effects, we perform fully
quantum PIMC calculations with only the CCpol2 rigid-monomer
pair potential, and then with the addition of the rigid-monomer
CCpol3 three-body potential. We also test the MB-pol potential
in a rigid-monomer three-body calculation. To evaluate the
magnitude of nuclear-motion quantum effects, we perform the
rigid-monomer CCpol2 + CCpol3 calculation in the classical
and semiclassical approximations. Finally, we perform three
calculations with the molecules treated as flexible. We use
the flexible-monomer CCpol-8sf pair potential, with the three-
body energies mapped onto the rigid-monomer CCpol3 three-
body energies as discussed in Sec. 2.5. For MB-pol, C(T )
is calculated with both two-body and three-body potentials in
flexible-monomer form. Lastly, since the CCpol-8sf pair potential
performed better than MB-pol for B(T ), we combine it with the
flexible three-body contribution from MB-pol.

The first thing we can see in Table 3 is the crucial role of three-
body forces. Comparing the fully quantum results with only the
CCpol2 pair potential (first line in the table) with those including
the three-body CCpol3 contribution (fourth line), we see that
omitting the three-body forces gives the wrong sign of C at some
temperatures, and that in general the three-body contribution
is similar in magnitude to the value of C itself. It is clear that
approximating C(T ) with only two-body forces, while often done
in the literature, is seriously in error for water.

Second, we examine the quantum effects on C(T ) by comparing
the values calculated with the full PIMC method for the rigid
CCpol2+CCpol3 case (fourth line in Table 3) with the classical
and semiclassical approximations (second and third lines). The
classical calculation is consistent with the fully quantum results
at 700 K and 1000 K, but not below. In fact, the performance
of the classical approximation deteriorates dramatically at lower
temperatures, and at 300 K the classical value is 2.5 times
larger in magnitude than the quantum one. The semiclassical
approximation retains accuracy at 600 K, and marginally so at
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Table 2 PIMC values of B(T ) in cm3/mol for D2O for various approximations and potentials. The uncertainties are the statistical uncertainties of the
calculation. All rigid-monomer calculations used the appropriate D2O geometry.

Temperature (K) Hill–MacMillan CCpol-8sf MB-pol CCpol-8sf MB-pol
(flexible) (flexible) (rigid) (rigid)

200 −13406 −15675.(23) −15832.(38) −16267.(38) −15397.(23)
225 −5890 −6369.(9) −6396.(15) −6591.(12) −6177.(15)
250 −3052 −3171.(4) −3161.(8) −3210.(5) −3075.(5)
273.15 −1855.1 −1901.8(22) −1887.(4) −1899.(4) −1846.(4)
300 −1153.2 −1174.3(17) −1159.4(18) −1158.6(20) −1133.9(13)
325 −799.1 −811.9(13) −799.3(18) −797.8(12) −781.0(9)
350 −585.9 −595.4(5) −585.3(10) −580.2(7) −568.8(6)
375 −448.8 −453.9(6) −445.4(7) −441.2(7) −437.4(10)
400 −355.7 −358.8(9) −352.3(9) −346.6(6) −345.5(4)
450 −240.8 −240.9(3) −236.3(6) −230.4(4) −231.3(3)
500 −174.61 −173.6(4) −169.9(3) −164.33(23) −166.08(21)
550 −132.31 −130.6(5) −128.1(3) −122.8(4) −125.00(24)
600 −103.21 −102.0(4) −99.4(3) −94.43(21) −96.81(16)
700 −65.97 −65.9(3) −64.35(24) −59.97(18) −62.36(17)
800 −43.25 −44.6(3) −43.39(21) −39.75(14) −41.95(14)
900 −27.95 −31.5(3) −30.14(20) −26.86(14) −28.57(16)

1000 −16.93 −21.7(3) −20.64(19) −17.63(11) −19.51(12)
1250 0.72 −8.0(2) −7.14(13) −4.48(8) −6.16(6)
1500 11.40 −1.0(2) 0.13(13) 2.42(9) 0.97(8)
1750 18.79 3.7(3) 4.51(12) 6.61(6) 5.25(5)
2000 24.41 6.6(3) 7.31(12) 9.38(6) 8.20(6)

Table 3 Values of C(T ) in cm6/mol2 for H2O using various approximations and potentials and interpolated from experimental sources. The uncertainties
are statistical uncertainties of the calculation. All calculations use PIMC unless otherwise noted.

Temperature (K)
300 500 600 700 1000

value unc value unc value unc value unc value unc
CCpol2 -2.17×106 2×104 8837 62 5083 16 2888 6 863 2
CCpol2+CCpol3 (rigid, classical) -2.15×107 4×105 -14957 339 -335 81 903 34 592 8
CCpol2+CCpol3 (rigid, semiclassical) -7.90×106 2×105 -9631 315 41 80 887 47 579 9
CCpol2+CCpol3 (rigid) -8.67×106 1×105 -9160 251 162 71 923 37 576 8
CCpol-8sf + CCpol3 (flex) -8.02×106 2×105 -11171 554 0 119 1008 72 655 15
MB-pol (rigid) -8.97×106 2×105 -13274 478 -1368 128 257 46 379 12
MB-pol (flexible) -1.37×107 6×105 -17878 642 -2310 146 -117 69 350 16
CCpol-8sf + MB-pol3 (flex) -1.20×107 2×105 -18999 241 -2189 73 6 23 377 3
Kell 78 -17000 490 1335
Eubank 79 -14000 580
Abdulagatov 80 100
Vukalovich 81 655
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500 K. These ranges of validity for the classical and semiclassical
approximations are similar to the corresponding ranges for B(T ).
As with B(T ), the classical calculation produces C(T ) that are too
negative.

The effect of monomer flexibility is smaller than that of three-
body forces, but it is significant compared to the experimental
and theoretical uncertainties. This can most easily be seen
by comparing the rigid-monomer MB-pol results (sixth line in
Table 3) with those computed with full pair and three-body
flexibility in MB-pol (seventh line). Monomer flexibility makes
C(T ) more negative (as was the case for B(T )), and at the two
temperatures where multiple data sources exist this effect is
somewhat larger than the magnitude of the scatter among data
sources.

In Fig. 6, we compare the performance of different approaches
to experimental data. For clarity, we omit the pair-only
calculations and the classical and semiclassical approximations.
The MB-pol flexible-monomer model gives C(T ) distinctly lower
than experiment at all temperatures but 500 K, where it is
consistent with the experimental data. The situation with the
CCpol family of potentials is better; CCpol-8sf+ CCpol3 (flex)
yields C(T ) reasonably close to experiment at 500 K (the value
is above most experimental data, but consistent within mutual
uncertainties with one of the data sources79). The agreement is
excellent at 1000 K (to three significant digits which is certainly
fortuitous). At 600 K, the theoretical result lies somewhat below
the two higher experimental values,78,79 but agrees well with the
interpolated value of Ref. 80. At 700 K there is a discrepancy
with the single experimental data source,78 but since Kell et
al. did not report uncertainties in C(T ) it is difficult to say
whether the difference is significant. If (as the MB-pol results
suggest) incorporation of flexibility in the three-body potential
adds a negative contribution to C(T ), adding such flexibility to
the CCpol3 potential would worsen agreement with experiment
except at 500 K.

We note that the low-temperature experimental C(T ) values
are not beyond question; absorption of water on the surfaces
of apparatus makes deriving virial coefficients from experiment,
especially coefficients beyond the second, very difficult at roughly
500 K and below. This difficulty is apparent in comparing the data
of Kell et al.78 and Eubank et al.79 for H2O. The two sets already
differ significantly at 500 K (visible in Fig. 6a and in Table 3),
and the disagreement increases at lower temperatures, reaching
a factor of three at their lowest common temperature of 423 K
(not shown).

Finally, we consider the combination of the CCpol-8sf two-
body potential with the MB-pol three-body potential. We might
expect this to be the best performer, since it combines the
flexible-monomer pair potential that almost perfectly reproduces
experimental B(T ) with a three-body potential that includes
flexibility. However, as is apparent in Fig. 6, this combination
does not improve matters, producing C(T ) values similar to those
from MB-pol and similarly inconsistent with experiment above
500 K. The fact that both high-quality flexible-monomer pair
potentials (CCpol-8sf and MB-pol2) yield almost identical C(T )
when combined with the same three-body potential (MB-pol3)

suggests that the two-body potentials are adequate for use in C(T )
calculations, and that the need for improvement lies in the three-
body potentials.

One more way to analyse the results is to realize that the values
of C(T ) obtained with the CCpol2+3 rigid-monomer potential
are likely very close to the limit values for the rigid-monomer
approximation. This is because both the two- and three-body
parts of this potential were fitted to highly-accurate ab initio data
computed for a very large number of grid points (more than 70
thousand for the three-body part in 12 dimensions). Thus, if
the monomer-flexibility effects lower the value of C(T ), as MB-
pol calculations imply, C(T ) computed with CCpol2+3 provides
an upper bound for this quantity. If this were true, it would
suggest that the Kell et al. results in the range 600 K – 750
K may be systematically high. However, we cannot be certain
about the sign of the monomer-flexibility effect. The three-body
part of MB-pol was fitted to about 10 thousand grid points in
21 dimensions, which gives a much less dense grid than in the
case of CCpol3. Thus, the rigid-monomer part of MB-pol3 is
quite different from CCpol3, which is seen from MB-pol rigid-
monomer results being significantly different from CCpol2+3. We
have no way to determine how accurate the monomer-flexibility
correction given by MB-pol is. If experiments are right, even the
sign of the true correction would be different from what MB-pol
gives.

Table 4 and Fig. 7 present analogous results for D2O. We
note that the calculations with rigid-monomer pair potentials are
performed not at the H2O geometry but rather with the flexible-
monomer potentials (CCpol-8sf and MB-pol) “frozen” at the D2O
geometry as described in Sec. 2.5. Some error is introduced by
the use of the CCpol3 three-body potential for D2O since it was
developed for the H2O geometry and we have kept the monomers
in this geometry. We expect this error to be small, since the
averaged geometries of the H2O and D2O monomers are not very
different.

For D2O, the situation is similar to that for H2O, although
there is only one experimental data source.78 Three-body effects
are essential for even qualitative accuracy. The quantum effects
are, as expected, somewhat smaller than for H2O. Flexibility
makes C(T ) more negative by an amount similar to that found
for H2O. Results from the CCpol models are only slightly below
the experimental data at 600 K and 700 K, but lie above the data
near 500 K. The C(T ) from the MB-pol model are clearly too low
at the higher temperatures, but (if flexibility is included) agrees
with the lone data source near 500 K.

5 Discussion and Conclusions
With the path-integral methods developed in this and earlier
work,54 and with the existing state-of-the-art pair and three-body
potentials, we have calculated from first principles the second
and third virial coefficients for H2O and D2O with full account
of both quantum nuclear motion effects and monomer-flexibility
effects. The only previous calculations of this type for B(T ) were
by Babin et al.22 In the case of C(T ), our work represents the
first calculations at this level for water. The method is general,
and could be applied to other isotopologues such as HDO or for
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Table 4 Values of C(T ) in cm6/mol2 for D2O using various approximations and potentials and interpolated from experimental sources. The rigid-
monomer calculations used potentials evaluated at the average ground rovibrational state geometry of D2O. The uncertainties are the statistical
uncertainties of the calculation.

Temperature (K)
300 500 600 700 1000

value unc value unc value unc value unc value unc
CCpol-8sf (rigid) -2.53×106 4×104 9158 125 5277 50 2970 12 871 3
CCpol-8sf+CCpol3 (rigid, classical) -1.97×107 4×105 -13291 453 -197 140 878 63 605 12
CCpol-8sf+CCpol3 (rigid, semiclassical) -1.14×107 3×105 -10431 423 129 110 1031 40 592 14
CCpol-8sf+CCpol3 (rigid) -1.18×107 3×105 -10937 445 -85 144 1042 56 582 11
CCpol-8sf + CCpol3 (flexible) -1.07×107 3×105 -11966 499 103 193 1057 62 683 17
MB-pol (rigid) -1.34×107 4×105 -14751 406 -1664 134 144 49 385 12
MB-pol (flexible) -1.61×107 5×105 -19018 513 -1987 131 -15 58 351 15
Kell 78 -17500 790 1320
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Fig. 6 The third virial coefficient of H2O for several potentials and water
models, together with experimental results. Panel (a): temperature range
470–625 K. Panel (b) temperature range 570–1025 K. CCpol-8sf+3 (flex)
denotes the use of a flexible-monomer approach for the two-body part
and a mapping for the three-body potential, see text.
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Fig. 7 The third virial coefficient of D2O for several potentials and water
models, together with experimental results. CCpol-8sf+3 (flex) denotes
the use of a flexible-monomer approach for the two-body part and a
mapping for the three-body potential, see text.

unlike interactions such as H2O–HDO.
For the second virial coefficient B(T ), rigid-molecule quantum

calculations are inconsistent with the experimental data, giving
B(T ) higher than experiment. The monomer-flexibility correction
is negative for T larger than 250 K. For H2O, the percentage values
of this correction vary from 1% at 273 K to 10% at 700 K. While
this is significant compared to experimental uncertainties, it is
smaller than some earlier values reported in the literature, but
agrees very well with recent calculations of Jankowski et al.21

The nuclear-motion quantum effects in water are very
significant and at 300 K amount to 25% of B(T ). These effects,
always positive, decrease with increasing T , but still amount to
4% at 1000 K (although this large relative value is partly due to T
approaching the value where B(T ) crosses zero). The quantum
effects are recovered well by the semiclassical approximation
which for most points differs from the fully quantum values by
less than 2%. We note, however, that there is no algorithm
for using a semiclassical approximation with flexible-monomer
potentials. The method proposed in Ref. 21 partly avoids this
problem by constructing potentials averaged over the ground-
state rovibrational motion in monomers. In fact, our current
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PIMC approach is similar in spirit. Due to the opposite behavior
as functions of T , at very large T the monomer-flexibility effects
are much larger in magnitude than quantum effects, becoming
about the same in magnitude near T = 500 K, which results in
near cancellations over a narrow range of T . As expected, the
quantum effects are smaller for D2O than for H2O.

For the second virial coefficient, theory has reached a level
where first-principles calculations can match experiment and
yield reliable values at temperatures where no reliable data exist
(or for isotopologues where reliable data are lacking). With
monomer-flexibility and quantum effects included, B(T ) from
CCpol-8sf are fully consistent with the experimental data, except
perhaps at the lowest temperatures where the experimental
values are highly uncertain. The corresponding MB-pol B(T )
values are somewhat too high compared to experiment. The
present results agree well with those of Jankowski et al.,21 since
both the semiclassical model and the approximate account for
monomer flexibility used in that work turned out to perform quite
well. However, the more advanced methods used here resulted
in an improvements of the agreement with experiment. For
temperatures outside the range of experimental data, especially
for D2O where the experimental data are more sparse, we
believe the present full-dimensional results with the CCpol-8sf
pair potential provide the best available values of B(T ). These
values have already been used as input for a new reference
equation of state for heavy water.61

Ideally, we would assign uncertainties to our values of B(T ),
as we have done in some previous work.43,54 This would
require knowledge of the uncertainty of the pair potential,
including uncertainty for configurations when the monomers
are deformed. Calculations with “plus” and “minus” potentials
displaced by the uncertainty would then provide uncertainty
bounds on B(T ). In addition, further uncertainty is introduced
for the CCpol-8sf potential by the need to restrict the range of
molecular deformations allowed in the path-integral sampling.
Work is ongoing to develop a pair potential that remains valid
for the complete range of deformations encountered in PIMC
simulations.

For the third virial coefficient C(T ), theory is not as reliable
as for B(T ), and we cannot claim to be able to calculate C(T ) for
H2O and D2O with accuracy challenging experiments. Our results
show that three-body interactions are critical in determining
C(T ) and incorporation of monomer flexibility appears to be
necessary for quantitative accuracy. The CCpol3 potential is close
to the exact rigid-monomer potential, but by definition gives
no information about monomer-flexibility contributions. The
flexible-monomer MB-pol three-body potential, while producing
qualitatively correct behavior, does not yield C(T ) consistent
with available experimental data: C(T )’s are clearly too low in
comparison with experiment at all but the lowest temperatures
(see Figs. 6 and 7). The CCpol potential gives C(T ) values
that agree with experiment much better than those from MB-
pol, except at the lowest temperature (see Fig. 6a) where
it is nevertheless compatible with one experimental source
(and we have less confidence in the experimental results at
those temperatures). However, since the three-body part of

CCpol is in rigid-monomer form, if the corresponding monomer-
flexibility correction is added, the agreement with experiment
may deteriorate. Addressing this situation will require the
development of three-body potentials that are accurate both for
configurations with the monomers at their vibrationally-averaged
geometries (here the rigid-monomer CCpol3 potential might
provide a reference point) and also over the entire range of
intramolecular deformations sampled in PIMC calculations.

The large nuclear quantum effects on the virial coefficients of
H2O (at 300 K, roughly 25% for B(T ) and a factor of 2.5 for
C(T )) may seem surprising. Classical simulations of liquid water
near 300 K with high-quality polarizable potentials can typically
produce agreement with experiment to within a few percent
for properties such as neutron scattering cross sections, heat of
vaporization, diffusion coefficients, density, etc.18,19,74 While the
cited work used rigid monomers, a cancellation of large quantum
and monomer-flexibility effects is unlikely. Two exceptions are
recent flexible-monomer MB-pol classical calculations for H2O by
Reddy et al.85 of the isobaric heat capacity which gave values
of this quantity 56% larger than experiment and of the dielectric
constant which was 13% smaller than the experimental value.
By performing both quantum and classical simulations with the
flexible-monomer MB-pol potential for liquid water at ambient
conditions, Medders et al.86 found that quantum effects were
very small for some properties, such as the density, neutron
scattering cross-sections, and the self-diffusion coefficient (note
that Ref. 85 corrected an erroneous self-diffusion coefficient
reported in Ref. 86). Quantum effects were found to be more
significant, 8%, for the enthalpy of vaporization, however, note
that the joint statistical uncertainty of the two calculations
amounts to 6%. Medders et al.86 also found a very large quantum
effect in the orientational relaxation time: the quantum value of
this quantity is 2.3 times smaller than the classical one. One can
conclude from this survey that the quantum effects in liquid water
are at most a few percent for many properties, but that a few
properties show larger effects of similar magnitude to those we
found for the virial coefficients. It is worth noting that, because
the virial coefficients provide only corrections to ideal-gas values,
cf. Eq. (1), these effects do not have a large impact on measurable
properties such as pressure; for the saturated vapor the virial
coefficients reduce the pressure by approximately 0.2% at 300 K
(where the saturation pressure is so low that the vapor is nearly
ideal) and 3% at 400 K.

The fact that virial coefficients include large quantum
contributions can be rationalized by realizing that these
coefficients reflect directly the strength of intermolecular
interactions. Assuming that this strength can be measured by
the dissociation energy of the water dimer and considering the
values for (H2O)2: 1105 ± 10 cm−1 (Ref. 87) and for (D2O)2:
1244 ± 10 cm−1 (Ref. 88), we can conclude that quantum effects
make the interaction weaker (physically, this is largely due to
a greater delocalization of the H atom relative to the D atom,
weakening the hydrogen bonds more in ordinary water), and
then extrapolate to the classical case (a hypothetical high-mass
H atom) as resulting in the strongest interactions. This quantum
weakening of the intermolecular interactions is consistent with
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quantum effects making B(T ) less negative. If the weakening of
the interactions is the major factor impacting quantum effects in
properties of liquid water, one can understand why these effects
are of different size for different properties. For example, one
can expect that properties depending more directly on strength
of interactions, like enthalpy of vaporization or heat capacity,
will be affected more, while a quantity like liquid density that
depends mainly on molecular size will be affected less, which
indeed seems to be the case. Some information about the
expected size of nuclear-motion quantum effects can be inferred
from accurately known data on D2O vs. H2O at 300 K: molar
density of liquid D2O is 0.3% smaller,61,89 dielectric constant
of liquid is 0.5% smaller,90,91 molar heat capacity of liquid is
11% larger,61,89 enthalpy of vaporization is 3.3% larger,61,89 and
second virial coefficient is 8% larger in magnitude (Tables 1 and
2). All these trends are in line with the expected effects on
various properties due to quantum weakening of intermolecular
interactions. Using these results, one can also comment on the
few published large values of quantum effects in liquid water that
were listed above. For example, the 8% quantum effect for the
enthalpy of vaporization86 and the 56% effect on heat capacity85

could be expected based on experimental data, whereas the 13%
effect on the dielectric constant appears too large.
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