ORGANIC CHEMISTRY

FRONTIERS

Accepted Manuscript

This is an Accepted Manuscript，which has been through the Royal Society of Chemistry peer review process and has been accepted for publication．

Accepted Manuscripts are published online shortly after acceptance， before technical editing，formatting and proof reading．Using this free service，authors can make their results available to the community，in citable form，before we publish the edited article．We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available．

You can find more information about Accepted Manuscripts in the Information for Authors．

Please note that technical editing may introduce minor changes to the text and／or graphics，which may alter content．The journal＇s standard Terms \＆Conditions and the Ethical guidelines still apply． In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains．

ROYAL SOCIETY OF CHEMISTRY

Chinese Chemical Society

Trienamine Catalysis with Linear Deconjugated 3,5-Dienones \dagger

Peng-Qiao Chen, ${ }^{a}$ You-Cai Xiao, ${ }^{a}$ Cai-Zhen Yue, ${ }^{a}$ and Ying-Chun Chen* ${ }^{a, b}$
Received (in $X X X, X X X$) Xth $X X X X X X X X X$ 20XX, Accepted Xth $X X X X X X X X X$ 20XX
DOI: 10.1039/b000000x

${ }_{5}$ An array of deconjugated linear 3,5-dienones with substantial substitutions have been successfully used in β, ε-regioselective Diels-Alder cycloadditions with 3-olefinic oxindole-based dienophiles via trienamine catalysis of cinchona-based primary amine, efficiently producing spirocyclic oxindole ${ }_{10}$ architectures with dense and diverse substitutions in high stereoselectivity (up to $\mathbf{9 9 \%}$ ee, >19:1 d.r.).

Asymmetric organocatalysis has been established as a powerful strategy for the development of stereoselective reactions of saturated or unsaturated carbonyl compounds via diverse catalytic 15 modes, such as enamine, dienamine, iminium, or vinylogous iminium catalysis, leading to C-C or C-X bond formations at α, β, γ, or δ-sites. ${ }^{1}$ Recently, trienamine catalysis has been reported as a new activation mode for 2,4-dienal substrates, furnishing more remote β, ε-regioselective Diels-Alder cycloaddition reactions 20 with an array of electron-deficient dienophiles to construct multifunctional six-membered carbo- or heterocycles, generally in excellent stereoselectivity. ${ }^{2}$ However, the similar catalytic strategy could not be simply switched to analogous 2,4-dienone substances, and only those with δ, δ-disubstituted and α^{\prime}-aryl or 25 styryl patterns could participate in the desired β, ε-regioselective cycloadditions via trienamine catalysis. ${ }^{3}$

In fact, almost no reaction occurred for the combination of linear 2,4 -dienone $\mathbf{1}$ with an α^{\prime}-enolizable methyl group and diverse dienophiles in the presence of primary amine catalyst, ${ }_{30}$ probably because the cross-conjugated trienamine intermediate I would be preferably generated, as outlined in Scheme 1. Very recently, we developed a new strategy, in which the previously positioned $\delta, \varepsilon-\mathrm{C}=\mathrm{C}$ bond could perform as an inducing group for the formation of linear trienamines from interrupted cyclic 2,5-

Scheme 1. A deconjuagation strategy for linear trienamine catalysis with 3,5-dieone substrate.

Table 1 Screening studies of Diels-Alder cycloaddition of 3,5-dienone 2a and dienophile 3a ${ }^{a}$

Entry	$\mathbf{1}$	Solvent	Acid	${\text { Yield }(\%)^{b}}^{\text {ee }(\%)^{c}}$	
1	C1	Toluene	SA	91	96
2	C2	Toluene	SA	78	87
3	C3	Toluene	SA	86	-94
4	C4	Toluene	SA	86	-90
5	C1	CHCl $_{3}$	SA	84	92
6	C1	DCE	SA	86	87
7	C1	DCM	SA	86	89
8	C1	THF	SA	91	90
9	C1	Dioxane	SA	84	92
10	C1	MeCN	SA	78	67
11	C1	Toluene	BA	84	87
12	C1	Toluene	OFBA	89	89
13^{d}	C1	Toluene	SA	86	87
14^{e}	C1	Toluene	SA	89	87

${ }^{a}$ Unless noted otherwise, reactions were performed with 3,5-dienone 2a (0.2 mmol), 3-olefinic oxindole 3a (0.1 mmol), amine \mathbf{C} (20 $\mathrm{mol} \%)$ and acid ($40 \mathrm{~mol} \%$) in solvent $(1.0 \mathrm{~mL})$ at rt in $10 \mathrm{~h} .{ }^{b}$ Yield of isolated product. ${ }^{c}$ Determined by HPLC analysis on a chiral column; d.r. > $19: 1$ by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{d}$ With $10 \mathrm{~mol} \%$ of $\mathbf{C 1}$ and $20 \mathrm{~mol} \%$ $\underline{\text { SA for } 18 \mathrm{~h} .{ }^{e} \text { At } 1.0 \mathrm{mmol} \text { scale for } 12 \mathrm{~h} \text {. }}$
${ }_{35}$ dienones bearing α^{\prime} - CH group. ${ }^{4}$ Inspired by such observation, we envisaged that the similar inducing effect would be applicable to deconjugated linear 3,5-dienone 2a, rendering the formation of requisite extended trienamine intermediate and facilitating the later β, ε-regioselective cycloaddition process.
40 Based on the above-mentioned considerations, the initial investigation was set up for the model reaction of 6-methylhepta-4,6-dien-2-one 2a, which was effectively obtained by the deconjugation of 6-methylhepta-3,5-dien-2-one $\mathbf{1},{ }^{5}$ with 3olefinic oxindole $\mathbf{3 a},{ }^{6}$ in the presence of 9 -amino-9${ }_{45}$ deoxyepiquinine ($\mathbf{C 1}, 20 \mathrm{~mol} \%$) and salicylic acid (SA, 40 $\mathrm{mol} \%) .{ }^{7}$ To our gratification, the desired Diels-Alder reaction occurred smoothly in toluene at room temperature, and the spirocyclic oxindole $\mathbf{4 a}$ was produced in remarkable
stereoselectivity and with good yield (Table 1, entry 1). ${ }^{8}$ It should be pointed out that the cycloaddition reaction did not occur in the absence of primary amine catalyst, indicating the HOMOactivation of $\beta, \gamma, \delta, \varepsilon$-diene moiety by the formation of conjugated ${ }_{5}$ enamine intermediate is necessary. Consequently, other catalytic parameters were briefly screened. Amine C2 with a free OH group provided a decreased ee value and lower yield (entry 2). In addition, both 9-amino-9-deoxyepiquinidine (C3) and 9-amino-9deoxyepicinchonine ($\mathbf{C 4}$) delivered the product with an opposite ${ }_{10}$ configuration, also in high stereoselectivity (entries 3 and 4). The cycloaddition could take place in an array of solvents, though diminished enantioselectivity was generally observed (entries 510). Lower enantiocontrol was also produced when benzoic acid (BA) or o-fluorobenzoic acid (OFBA) was used (entries 11 and 15 12). In addition, the reaction proceeded smoothly with $10 \mathrm{~mol} \%$ of catalyst, while the enantiocontrol was slightly reduced (entries 13). The similar inferior data were observed at a larger scale under the optimized conditions (entry 14).

Table 2 Substrate scope and limitations of cycloadditions of deconjugated 3,5-dienones 2 and 3-olefinic oxindoles $\mathbf{3}^{\text {a,b,c }}$

${ }^{a}$ Unless noted otherwise, reactions were performed with 3,5-dienone 2 (0.2 mmol), dienophile $3(0.1 \mathrm{mmol}$), amine C1 ($20 \mathrm{~mol} \%$) and SA (40 $\mathrm{mol} \%)$ in toluene $(1.0 \mathrm{~mL})$ at rt for $10 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c}$ Ee was determined by chiral HPLC analysis; d.r. >19:1. ${ }^{d}$ The absolute configuration of $\mathbf{4 i}$ was determined by X-ray analysis, see SI. The other products were assigned by analogy. ${ }^{e}$ Data in parentheses were obtained with amine C3.

With the optimal reaction conditions in hand, we then 20 investigated a variety of 3,5 -dienones and 3 -olefinc oxindoles catalyzed by amine C1 ($20 \mathrm{~mol} \%$) and SA ($40 \mathrm{~mol} \%$) in toluene at room temperature. The results are summarized in Table 2. At first, an array of deconjugated 3,5-dienones 2 with diverse substituted patterns were investigated in the reaction with ${ }_{25}$ dienophile 3a. Both aliphatic and aromatic substituents could be well compatible in the γ - or δ-position of 3,5 -dienones $\mathbf{2}$, delivering the corresponding cycloadducts $\mathbf{4 a}-\mathbf{4 e}$ without apparent influence on the reaction outcome. It was gratifying that γ, ε-disubstituted 3,5-dienones exhibited good reactivity, and
${ }_{30}$ products $\mathbf{4 f}$ and $\mathbf{4 g}$ were obtained in good yield and with excellent diastereo- and enantioselectivity. When a single ethyl group was introduced at the ε-position of a 3,5 -dienone, the desired cycloadduct $\mathbf{4 h}$ was received in moderate yield but still with outstanding enantioselectivity. Notably, other 3,5-dienones ${ }_{35}$ carrying a larger α^{\prime}-alkyl group could also be successfully employed and provided cycloadducts $\mathbf{4 i}$ and $\mathbf{4 j}$ in good results. A 3,5 -dienone with an α^{\prime}-phenyl group without substitution on the backbone still exhibited acceptable reactivity, though modest yield and enantioselectivity was attained for product $\mathbf{4 k}$. ${ }_{40}$ Unfortunately, simple hepta-4,6-dien-2-one showed much lower reactivity, and very poor yield with bad stereoseletivity was observed. Moreover, the results seemed reasonable when the benzoyl group was replaced by an ethoxycarbonyl group, and cycloadduct $\mathbf{4 1}$ was produced in high yield and with prominent 45 enantioselectivity; but 3 -olefinic oxindole with a β-phenyl group $\left(\mathrm{R}^{5}=\mathrm{Ph}\right)$ showed no reactivity. On the other hand, a spectrum of oxindole-based dienophiles 3 with diverse electron-withdrawing or donating- substituents were tested in the reaction with 6-methylhepta-4,6-dien-2-one 2a. Pleasingly, the corresponding ${ }_{50}$ cycloadducts $\mathbf{4 m} \mathbf{- 4 u}$ were generally delivered with the similar good results. A few substrates were further explored by the catalysis of amine C3, generally affording the cycloadducts with an opposite configuration in excellent enantioselectivity (see more data in parentheses). It should be pointed out that 55 remarkably diastereoselectivity (d.r. > 19:1) was universally achieved in the illustrated reactions.

Scheme 2. Asymmetric Diels-Alder reaction of maleimide.
To further expand the utility of this strategy, more electrondeficient dienophiles were explored in the reactions with 3,5dienone 2a under the similar catalytic conditions. It was found ${ }_{60}$ that a good ee value with a high yield could be obtained by using maleimide 5 with an N-aryl group. However, attempt to improve the stereocontrol at lower temperature resulted in no success. On the other hand, other potential dienophiles, such as β-nitrostyrene, were further investigated, but generally failed to give the desired ${ }_{65}$ cycloadducts, and decomposition or other transformations of 3,5dienone 2a were observed when harsher conditions were applied. ${ }^{9}$ Therefore, more explorations remain to be conducted to
expand the application of current catalytic protocol.
In conclusion, we have successfully accomplished the trienamine catalysis of linear polyunsaturated ketones with substantial substitutions by using deconjugated 3,5 -dienones as 5 the substrates, which is previously not feasible with conjugated 2,4-dienone analogues. Highly stereoselective and β, ε regioselective Diels-Alder cycloadditions were developed with 3 -olefinic oxindole-based dienophiles under the catalysis of readily available cinchona-based primary amine, efficiently ${ }_{10}$ producing a spectrum of spirocyclic oxindole architectures with dense and diverse substitutions. Currently, more investigation is conducted to develop asymmetric reactions with polyunsaturated carbonyl substances via aminocatalysis in this laboratory.
We are grateful for the financial support from the National ${ }_{15}$ Natural Science Foundation of China (21125206, 21372160 and 21321061) and the National Basic Research Program of China (973 Program, 2010CB833300)

Notes and references

${ }^{a}$ Key Laboratory of Drug-Targeting and Drug Delivery System of the 20 Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Fax: 8628 85502609; E-mail:
ycchen@scu.edu.cn.
${ }^{b}$ College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
$25 \dagger$ Electronic Supplementary Information (ESI) available: Experimental procedures, structural proofs, CIF file of enantiopure product $4 \mathbf{i}$ (CCDC 992018). See DOI: 10.1039/b000000x/
\ddagger Footnotes should appear here.
301 For selected reviews on aminocatalysis, see: (a) S. Mukherjee, J. W. Yang, S. Hoffmann and B. List, Chem. Rev., 2007, 107, 5471; (b) A. Erkkilä, I. Majander and P. M. Pihko, Chem. Rev., 2007, 107, 5416; (c) D. B. Ramachary and Y. V. Reddy, Eur. J. Org. Chem., 2012, 865; (d) X. Yu and W. Wang, Org. Biomol. Chem., 2008, 6, 2037; (e) P. Melchiorre, Angew. Chem., Int. Ed., 2009, 48, 1360; (f) C. Grondal, M. Jeanty and D. Enders, Nat. Chem., 2010, 2, 167; (g) K. L. Jensen, G. Dickmeiss, H. Jiang, Ł. Albrecht and K. A. Jørgensen, Acc. Chem. Res., 2012, 45, 248; (h) O. V. Serdyuk, C. M. Heckel and S. B. Tsogoeva, Org. Biomol. Chem., 2013, 11, 7051; (i) Ł.
40 Albrecht, H. Jiang and K. A. Jørgensen, Chem. Eur. J., 2014, 20, 358.

2 (a) Z.-J. Jia, H. Jiang, J.-L. Li, B. Gschwend, Q.-Z. Li, X. Yin, J. Grouleff, Y.-C. Chen and K. A. Jørgensen, J. Am. Chem. Soc., 2011, 133, 5053; (b) Z.-J. Jia, Q. Zhou, Q.-Q. Zhou, P.-Q. Chen and Y.-C.
45 Chen, Angew. Chem., Int. Ed., 2011, 50, 8638; (c) H. Jiang, B. Gschwend, Ł. Albrecht, S. G. Hansen and K. A. Jørgensen, Chem. Eur. J., 2011, 17, 9032; (d) Y. Liu, M. Nappi, E. Arceo, S. Vera and P. Melchiorre, J. Am. Chem. Soc., 2011, 133, 15212; (e) K. S. Halskov, T. K. Johansen, R. L. Davis, M. Steurer, F. Jensen and K.
$50 \quad$ A. Jørgensen, J. Am. Chem. Soc., 2012, 134, 12943; (f) Ł. Albrecht, F. C. Acosta, A. Fraile, A. Albrecht, J. Christensen and K. A. Jørgensen, Angew. Chem., Int. Ed., 2012, 51, 9088; (g) C. Ma, Z.-J. Jia, J.-X. Liu, Q.-Q. Zhou, L. Dong and Y.-C. Chen, Angew. Chem., Int. Ed., 2013, 52, 948; (h) K. Zhu, H. Huang, W. Wu, Y. Wei and J.
55 Ye, Chem. Commun., 2013, 49, 2157; (i) A. Dieckmann, M. Breugst and K. N. Houk, J. Am. Chem. Soc., 2013, 135, 3237; (j) Z.-J. Jia, K. Jiang, Q.-Q. Zhou, L. Dong and Y.-C. Chen, Chem. Commun., 2013, 49, 5892; (k) S.-J. Zhang, J. Zhang, Q.-Q. Zhou, L. Dong and Y.-C. Chen, Org. Lett., 2013, 15, 968; (l) Ł. Albrecht, C. V. Gómez, C. B. Jacobsen and K. A. Jørgensen, Org. Lett., 2013, 15, 3010; (m) X. Li, M.-H. Lin, Y. Han, F. Wang and J.-P. Cheng, Org. Lett., 2014, 16, 114; (n) C. Ma, J. Gu, B. Teng, Q.-Q. Zhou, R. Li and Y.-C. Chen, Org. Lett., 2013, 15, 6206; for reviews, see: (o) E. Arceo and P. Melchiorre, Angew. Chem., Int. Ed., 2012, 51, 5290; (p) J.-L. Li, T.-
65 Y. Liu and Y.-C. Chen, Acc. Chem. Res., 2012, 45, 1491; (q) I.

Kumar, P. Ramaraju and N. A. Mir, Org. Biomol. Chem., 2013, 11, 709; (r) H. Jiang, Ł. Albrecht and K. A. Jørgensen, Chem. Sci., 2013, 4, 2287. (s) I. D. Jurberg, I. Chatterjee, R. Tannert and P. Melchiorre, Chem. Commun., 2013, 49, 4869.
703 X.-F. Xiong, Q. Zhou, J. Gu, L. Dong, T.-Y. Liu and Y.-C. Chen, Angew. Chem., Int. Ed., 2012, 51, 4401.
4 (a) X. Feng, Z. Zhou, C. Ma, X. Yin, R. Li, L. Dong and Y.-C. Chen, Angew. Chem., Int. Ed., 2013, 52, 14173; (b) for an example with 2,5-dienals, see: L. Prieto, G. Talavera, U. Uria, E. Reyes, J. L. Vicario and L. Carrillo, Chem. Eur. J., 2014, 20, 2145.
5 N. Ito and Y. Yamagami, Jpn. Kokai Tokkyo Koho., 2002241337, 28 August, 2002.
$6 \quad N$-Boc olefinic oxindole exhibited lower reactivity. For other application of related ecceptors, see: (a) G. Bencivenni, L.-Y. Wu, P. Melchiorre, Angew. Chem., Int. Ed., 2009, 48, 7200; (b) K. Jiang, Z.-J. Jia, S. Chen, L. Wu and Y.-C. Chen, Chem. Eur. J., 2010, 16, 2852; (c) A. Voituriez, N. Pinto, M. Neel, P. Retailleau and A. Marinetti, Chem. Eur. J. 2010, 16, 12541; (d) X.-C. Zhang, S.-H.
85 Cao, Y. Wei and M. Shi, Chem. Commun., 2011, 47, 1548; (e) G. Li, T. Liang, L. Wojtas and J. C. Antilla, Angew. Chem., Int. Ed., 2013, 52, 4628.
7 For reviews of cinchona-based primary aminocatalysis, see: (a) P. Melchiorre, Angew. Chem., Int. Ed., 2012, 51, 9748; (b) L. Jiang and Y.-C. Chen, Catal. Sci. Technol., 2011, 1, 354
8 (a) For a review on catalytic synthesis of chiral spirocyclic compounds, see: R. Rios, Chem. Soc. Rev., 2012, 41, 1060; for selected examples of catalytic asymmetric construction of spirocyclic 2-oxindoles, see: (b) B. M. Trost, N. Cramer and S. M. Silverman, J. Am. Chem. Soc., 2007, 129, 12396; (c) D. Hojo, K. Noguchi, M. Hirano and K. Tanaka, Angew. Chem., Int. Ed., 2008, 47, 5820; (d) X.-H. Chen, Q. Wei, S.-W. Luo, H. Xiao and L.-Z. Gong, J. Am. Chem. Soc., 2009, 131, 13819; (e) K. Jiang, Z.-J. Jia, X. Yin, L. Wu and Y.-C. Chen, Org. Lett., 2010, 12, 2766; (f) A. P. Antonchick, C. Gerding-Reimers, M. Catarinella, M. Schürmann, H. Preut, S. Ziegler, D. Rauh and H. Waldmann, Nat. Chem., 2010, 2, 735; (g) X. Jiang, Y. Cao, Y. Wang, L. Liu, F. Shen and R. Wang, J. Am. Chem. Soc., 2010, 132, 15328; (h) W.-B. Chen, Z.-J. Wu, Q.-L. Pei, L.-F. Cun, X.-M. Zhang and W.-C. Yuan, Org. Lett., 2010, 12, 3132; (i) F. Zhong, X. Han, Y. Wang and Y. Lu, Angew. Chem., Int. Ed., 2011, 50, 7837. (j) L.-T. Shen, W.-Q. Jia and S. Ye, Angew. Chem., Int. Ed., 2013, 52, 585; (k) F. Manoni and S. J. Connon, Angew. Chem., Int. Ed., 2014, 53, 2628.
9 For more details, see the Supplentary Information.

Table of contents

Deconjugated linear 3,5-dienones with substantial substitutions were used in β, ε-regioselective Diels-Alder cycloadditions with 3-olefinic oxindoles via trienamine catalysis of cinchona-based primary amine.

Trienamine Catalysis with Linear Deconjugated 3,5-Dienones

Peng-Qiao Chen, ${ }^{\text {a }}$ You-Cai Xiao, ${ }^{\text {a }}$ Cai-Zhen Yue, ${ }^{\text {a }}$ and Ying-Chun Chen ${ }^{\text {a,b }}$
${ }^{a}$ Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China, and ${ }^{\text {b }}$ College of Pharmacy, Third Military Medical University, Chongqing 400038, China

E-mail: ycchen@scu.edu.cn

Supporting Information

Table of Contents
\qquad2. Preparation of $\mathbf{3 , 5}$-dienone substratesS2-S4
3. More screening studies on different electron-deficient dienophiles S4-S5
4. General procedure for the Diels-Alder reaction of 3,5-dienones S5-16
5. Crystal data and structure refinement for enantiopure cycloadduct $4 i$ S16-17
6. NMR spectra and HPLC chromatograms S18-65

1. General methods

NMR data were obtained for ${ }^{1} \mathrm{H}$ at 400 MHz , and for ${ }^{13} \mathrm{C}$ at 100 MHz . Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl_{3} solution. ESI HRMS was recorded on a Waters SYNAPT G2. In each case, enantiomeric ratio was determined by HPLC analysis on a chiral column in comparison with authentic racemate, using a Daicel Chiralcel OD-H Column ($250 \times 4.6 \mathrm{~mm}$), Chiralpak AD-H Column ($250 \times 4.6 \mathrm{~mm}$) or Chiralpak IC Column ($250 \times 4.6 \mathrm{~mm}$). UV detection was monitored at 220 nm or 254 nm . Optical rotation was examined in CHCl_{3} solution at $20{ }^{\circ} \mathrm{C}$. Column chromatography was performed on silica gel (200-300 mesh) eluting with ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates. UV light and I_{2} were used to visualize products. All chemicals were used without purification as commercially available unless otherwise noted.

2. Preparation of $\mathbf{3 , 5}$-dienone substrates

Procedure A: The 3,5-dienone substrates 2 were synthesized according to the literature procedures from α, β-unsaturated aldehydes. ${ }^{1,2}$
(1) Y. Zou, D. Garayalde, Q. Wang, C. Nevado and A. Goeke, Angew. Chem., Int. Ed., 2008, 47, 10110.
(2) N. Ito and Y. Yamagami, Jpn. Kokai Tokkyo Koho., 2002241337, 28 August, 2002.

To a solution of α, β-unsaturated aldehyde in acetone was added NaOH . The mixture was stirred at $60^{\circ} \mathrm{C}$ for 1.5 h , and concentrated under reduced pressure. Flash chromatography on silica gel (petroleum ether/EtOAc $=50: 1$) gave 2,4-dienone $\mathbf{1}$ as a yellow oil. To a solution of t-BuOK in DMSO was added 1 in an ice bath. After 5 min , the mixture was diluted with saturated aqueous NaHCO_{3} and extracted with EtOAc. The organic layer was collected, dried over anhydrous sodium sulfate and concentrated under reduced pressure. Flash chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=50: 1$) gave $\mathbf{2}$ as a colorless oil.

$$
\underbrace{\text { 6-Methylhepta-4,6-dien-2-one: }{ }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.15(\mathrm{~d}, J=15.6} \begin{aligned}
& \mathrm{Hz}, 1 \mathrm{H}), 5.73-5.65(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}),
\end{aligned}
$$

$2.12(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

$$
\begin{aligned}
& \text { 5,6-Dimethylocta-4,6-dien-2-one: }{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.06(\mathrm{~d}, J= \\
& 15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.64-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}),
\end{aligned}
$$ $2.10(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

Methylhepta-4,6-dien-2-one: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.42(\mathrm{dd}, J=17.6 \mathrm{~Hz}$, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.20(\mathrm{~m}, 1 \mathrm{H}), 5.05-5.01(\mathrm{~m}, 1 \mathrm{H}), 3.28$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
 $1 \mathrm{H}), 5.07(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H})$ ppm.

Procedure B: 3,5-Dienones $\mathbf{2}$ with other α^{\prime}-group were synthesized from 3-methylbut-2-enal.

To a solution of ethyl 2-(diethoxyphosphoryl)acetate in dry THF was added NaH in an ice bath. The mixture was stirred at rt for 10 min , then 3-methylbut-2-enal was added. After a specific time, the reaction was quenched by cool water, and the mixture was extracted with EtOAc. The organic layer was collected, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude ester was stirred with LiOH at $65^{\circ} \mathrm{C}$ in a mixed solution of THF and $\mathrm{H}_{2} \mathrm{O}$ overnight. After completion, the mixture was extracted with EtOAc and the organic layer was collected, dried over anhydrous sodium sulfate and concentrated under reduced pressure. Flash chromatography on silica gel gave the acid as a white solid. To a solution of acid was added EDCI, TEA and N, O-Dimethylhydroxylamine hydrochloride in DCM. The mixture was stirred at rt for 8 h, and extracted with EtOAc. The organic layer was collected, dried over anhydrous sodium
sulfate and concentrated under reduced pressure. Flash chromatography on silica gel gave Wenreib amind as a colorless oil. To a solution of RMgBr in try THF was added amide in an ice bath. After 10 min, the reaction was quenched with cool water, and the mixture was extracted with EtOAc. The organic layer was collected, dried over anhydrous sodium sulfate and concentrated under reduced pressure. Flash chromatography on silica gel gave $\mathbf{1}$ as a yellow oil. Then a similar deconjugation procedure as outlined above was conducted to give $\mathbf{2}$ as a colorless oil.

7-Methylocta-5,7-dien-3-one: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.21(\mathrm{~d}, \mathrm{~J}=15.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.79-5.71(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.48(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

3. More screening studies on different electron-deficient dienophiles

To further expand the utility of this strategy, more electron-deficient dienophiles were explored in the reaction with 3,5-dienone 2a under the similar catalytic conditions. Unfortunately, the dienophiles as outlined in the above scheme did not react with 3,5-dienone 2a and failed to give the desired cycloadducts.

More reactive 3,5-dienone 2b was applied to the Diels-Alder reaction but also failed.

BA, Toluene, $55^{\circ} \mathrm{C}$

Other catalytic parameters were briefly screened. But almost no reaction was observed in the presence of different primary amine.

4. General procedure for the Diels-Alder reaction of 3,5-dienones

The reaction was performed with 3-olefinic oxindole $\mathbf{3}(0.10 \mathrm{mmol}), 3,5$-dienone $2(0.20 \mathrm{mmol})$, catalyst C1 $(0.02 \mathrm{mmol})$ and SA $(0.04 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL})$ at room temperature. After completion, product $\mathbf{4}$ was obtained by flash chromatography on silica gel (petroleum ether/EtOAc $=8: 1$).

(1S,2S,6S)-1'-Acetyl-6-benzoyl-4-methyl-2-(2-oxopropyl)spiro[cyclohex [3]ene-1,3'-indolin]-2'-one (4a): 4a was obtained as a colorless oil in 91\% yield after flash chromatography and the enantiomeric excess was determined to be 96% by HPLC analysis on Chiralcel OD-H column (30% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=5.03 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.43 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-19.6(c$ $=1.45$ in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=12.4 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28$
(dd, $J=18.4 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=18.4 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}$, 3 H), 2.43-2.38 (m, 2H), $2.14(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.6$, $200.2,181.1,170.8,139.8,136.1,133.6,133.2,132.7,128.7,128.4,127.9,124.6,123.7,122.8$, $116.4,49.2,45.7,45.0,39.6,31.9,29.9,26.5,23.0 \mathrm{ppm}$; ESI HRMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{4}+\mathrm{Na}^{+}$ 438.1676, found 438.1679.

Enantiomer of 4a was obtained as a colorless oil in 86% yield after flash chromatography and the enantiomeric excess was determined to be -94% by HPLC analysis on Chiralcel OD-H column (20% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $220 \mathrm{~nm}, \mathrm{t}_{\text {major }}=6.76 \mathrm{~min}, \mathrm{t}_{\text {minor }}=6.12 \mathrm{~min}$; $[\alpha]_{\mathrm{D}}{ }^{20}=+21.5\left(c=3.82\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

(1S,2S,3S)-1'-Acetyl-3-benzoyl-1-(2-oxopropyl)-5-phenylspiro[cyclohex
[5]ene-2,3'-indolin]-2'-one (4b): 4b was obtained as a white semisolid in 86% yield after flash chromatography and the enantiomeric excess was determined to be 91% by HPLC analysis on Chiralpak IC-H column (20% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $220 \mathrm{~nm}, \mathrm{t}_{\text {major }}=20.52 \mathrm{~min}, \mathrm{t}_{\text {minor }}=15.00 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-39.4$ ($c=0.65$ in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.14(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=12.4 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=18.4 \mathrm{~Hz}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.22$ (s, 1H), 3.13 (dd, $J=18.4 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=18.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.2,200.0,181.0,170.8$, $140.0,139.6,136.4,136.0,133.4,132.5,128.8,128.7,128.5,128.1,128.0,126.2,125.2,124.9$, 122.7, 116.5, 49.2, 45.8, 44.8, 40.2, 29.9, 29.4, 26.5 ppm; ESI HRMS: calcd. for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NO}_{4}+\mathrm{Na}^{+}$ 500.1832 , found 500.1839 .

(1S,2S,6S)-1'-Acetyl-6-benzoyl-3-methyl-2-(2-oxopropyl)spiro[cyclohex[3]ene-1,3'-indolin]-2'-one (4c): 4c was obtained as a white semisolid in 91% yield after flash chromatography and the enantiomeric excess was determined to be 96% by HPLC analysis on Chiralpak AD-H column (30% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $220 \mathrm{~nm}, \mathrm{t}_{\text {major }}=5.90 \mathrm{~min}, \mathrm{t}_{\text {minor }}=10.73 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-49.9$ $\left(c=0.87\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}$,
$2 \mathrm{H}), 7.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=12.4 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=$ $18.8 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.45(\mathrm{~m}, 5 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=206.6,200.4,181.2,170.8,139.9,136.0,135.1,133.1,132.5$, $128.6,128.4,127.8,124.7,122.8,121.7,116.5,49.5,44.8,43.4,43.2,29.8,27.6,26.4,22.4 \mathrm{ppm} ;$ ESI HRMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{4}+\mathrm{Na}^{+} 438.1676$, found 438.1684.

(1S,2S,6S)-1'-Acetyl-6-benzoyl-3-ethyl-2-(2-oxopropyl)spiro[cyclohex[3
]ene-1,3'-indolin]-2'-one (4d): 4d was obtained as a white semisolid in 82% yield after flash chromatography and the enantiomeric excess was determined to be 99% by HPLC analysis on Chiralpak AD-H column (30% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=5.49 \mathrm{~min}, \mathrm{t}_{\text {minor }}=9.43 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-41.6(c$ $=1.59$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{td}, J=8.8 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{td}, J=7.6 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=12.8 \mathrm{~Hz}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=18.8 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 5 \mathrm{H}), 2.18$ $(\mathrm{s}, 3 \mathrm{H}), 2.11-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.80(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=206.7,200.4,181.1,170.8,140.7,139.9,136.0,133.1,132.4,128.6,128.4,127.8$, 124.5, 123.0, 120.1, 116.4, 49.4, 44.9, 43.7, 41.7, 29.8, 28.0, 27.4, 26.4, 12.5 ppm; ESI HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{4}+\mathrm{Na}^{+} 452.1832$, found 452.1834.

(1S,2S,3S)-1'-Acetyl-1-benzoyl-3-(2-oxopropyl)-4-phenylspiro[cyclohex
[4]ene-2,3'-indolin]-2'-one (4e): 4e was obtained as a white semisolid in 88% yield after flash chromatography and the enantiomeric excess was determined to be 99% by HPLC analysis on Chiralpak AD-H column (30\% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=5.47 \mathrm{~min}, \mathrm{t}_{\text {minor }}=10.92 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+54.3$ ($c=1.55$ in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 6 \mathrm{H})$, $7.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=12.8 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.37(\mathrm{dd}, J=18.4 \mathrm{~Hz}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dt}, J=19.2 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=$ $18.4 \mathrm{~Hz}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.5,200.2,181.0,170.9,140.2,140.0,136.0,133.3,132.4,128.7,128.5$, 128.0, 127.9, 126.3, 124.9, 124.4, 122.8, 116.6, 49.6, 44.8, 43.9, 41.5, 29.7, 28.2, 26.4 ppm; ESI HRMS: calcd. for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NO}_{4}+\mathrm{Na}^{+} 500.1832$, found 500.1833.

Enantiomer of $\mathbf{4 e}$ was obtained as a white semisolid in 83% yield after flash chromatography and the enantiomeric excess was determined to be 85% by HPLC analysis on Chiralpak AD-H column (30% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV 220 nm , $\mathrm{t}_{\text {major }}=11.58 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.60 \mathrm{~min}$; $[\alpha]_{\mathrm{D}}{ }^{20}=-68.4\left(c=1.08\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
(1S,2S,3S,6R)-1'-Acetyl-1-benzoyl-6-methyl-3-(2-oxopropyl)-4-phenyls
 piro[cyclohex[4]ene-2,3'-indolin]-2'-one (4f): $\mathbf{4 f}$ was obtained as a white semisolid in 84% yield after flash chromatography and the enantiomeric excess was determined to be 99% by HPLC analysis on Chiralpak AD-H column (20% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV 220 nm , $\mathrm{t}_{\text {major }}=6.65 \mathrm{~min}, \mathrm{t}_{\text {minor }}=12.17 \mathrm{~min}$; $[\alpha]_{\mathrm{D}}{ }^{20}=-125.0\left(c=0.26\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.86 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.56 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29-7.28 (m, 5H), $7.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (dd, $J=18.4 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.12 ($\mathrm{s}, 1 \mathrm{H}$), 2.30 (d, $J=18.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.16 ($\mathrm{s}, 3 \mathrm{H}$), $2.08(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.7$, 201.4, $179.5,170.5,140.0,139.1,138.7,138.4,133.3,132.0,131.7,128.7,128.5,128.4,128.3,127.9$, 126.5, 125.2, 123.7, 116.4, 51.8, 49.2, 44.1, 40.7, 33.1, 29.7, 26.3, 20.1 ppm; ESI HRMS: calcd. for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{NO}_{4}+\mathrm{Na}^{+} 514.1989$, found 514.1993.

(1S,2S,5R,6S)-1'-Acetyl-6-benzoyl-3,5-dimethyl-2-(2-oxopropyl)spiro[c yclohex[3]ene-1,3'-indolin]-2'-one ($\mathbf{4 g}$): $\mathbf{4 g}$ was obtained as a white semisolid in 81% yield after flash chromatography and the enantiomeric excess was determined to be 94% by HPLC analysis on Chiralpak AD-H column (20% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=4.52 \mathrm{~min}, \mathrm{t}_{\text {minor }}=6.81 \mathrm{~min}$; $[\alpha]_{\mathrm{D}}{ }^{20}=-262.2\left(c=1.56\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=19.2 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.89(\mathrm{~s}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.74$ $(\mathrm{s}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.0,201.7$, 180.0, $170.5,139.0,138.8,133.2,133.0,131.8,129.5,128.5,128.3,128.1,125.0,123.7,116.2,51.7$, 49.3, 43.4, 42.8, 32.7, 29.8, 26.3, 22.2, 20.3 ppm ; ESI HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{4}+\mathrm{Na}^{+}$ 452.1832, found 452.1831.

(1S,2S,5R,6S)-1'-Acetyl-6-benzoyl-5-ethyl-2-(2-oxopropyl)spiro[cyclohe $\mathbf{x}[3]$ ene-1,3'-indolin]-2'-one (4h): 4h was obtained as a colorless oil in 74% yield after flash chromatography and the enantiomeric excess was determined to be 95% by HPLC analysis on Chiralpak AD-H column (10% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=6.79 \mathrm{~min}, \mathrm{t}_{\text {minor }}=10.94 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-231.9$ $\left(c=0.52\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.54(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{td}, J=7.6 \mathrm{~Hz}, J=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.77(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=$ $18.8 \mathrm{~Hz}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=18.8 \mathrm{~Hz}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.46-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.21(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.5,201.0,179.3,170.5,138.8,138.6,133.2,131.7,130.9$, $128.5,128.4,128.3,125.1,124.0,116.2,51.3,47.1,45.2,38.7,38.1,29.9,26.3,25.9,10.4 \mathrm{ppm} ;$ ESI HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{4}+\mathrm{Na}^{+} 452.1832$, found 452.1833.

(1S,2S,6S)-1'-Acetyl-6-benzoyl-4-methyl-2-(2-oxobutyl)spiro[cyclohex[3]ene-1,3'-indolin]-2'-one (4i): 4i was obtained as a white semisolid in 82% yield after flash chromatography and the enantiomeric excess was determined to be 96% by HPLC analysis on Chiralcel OD-H column (10% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=7.15 \mathrm{~min}, \mathrm{t}_{\text {minor }}=8.41 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-21.3(c$ $=1.56$ in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.55(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.04$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.44 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ (dd, $J=12.4 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.23(\mathrm{dd}, J=18.4 \mathrm{~Hz}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=18.4 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.54-2.36(m, 7H), $1.84(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$
209.1, 200.2, 181.1, 170.8, 139.9, 136.1, 133.5, 133.2, 132.7, 128.7, 128.4, 127.9, 124.6, 123.9, 122.8, 116.4, 49.3, 45.7, 43.9, 39.5, 35.7, 32.0, 26.5, 23.0, 7.6 ppm; ESI HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{4}+\mathrm{Na}^{+} 452.1832$, found 452.1837.

(1S,2S,6S)-1'-Acetyl-6-benzoyl-4-methyl-2-(2-oxohexyl)spiro[cyclohex[
3]ene-1,3'-indolin]-2'-one (4j): $\mathbf{4} \mathbf{j}$ was obtained as a colorless oil in $\mathbf{8 3 \%}$ yield after flash chromatography and the enantiomeric excess was determined to be 87% by HPLC analysis on Chiralpak AD-H column (10% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $220 \mathrm{~nm}, \mathrm{t}_{\text {major }}=7.57 \mathrm{~min}, \mathrm{t}_{\text {minor }}=8.37 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-23.0(c$ $=1.59$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=12.4 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ (dd, $J=18.4 \mathrm{~Hz}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=18.4 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.35$ $(\mathrm{m}, 7 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=208.8,200.2,181.0,170.8,139.9,136.1,133.4,133.2,132.8,128.6$, $128.4,127.8,124.6,123.9,122.8,116.4,49.3,45.7,44.2,42.4,39.4,32.0,26.5,25.6,23.0,22.3$, 13.8 ppm; ESI HRMS: calcd. for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NO}_{4}+\mathrm{Na}^{+} 480.2145$, found 480.2146 .

(1S,2S,6S)-1'-Acetyl-6-benzoyl-2-(2-oxo-2-phenylethyl)spiro[cyclohex[3]ene-1,3'-indolin]-2'-one (4k): 4k was obtained as a white semisolid in 71% yield after flash chromatography and the enantiomeric excess was determined to be 72% by HPLC analysis on Chiralpak AD-H column (20% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $220 \mathrm{~nm}, \mathrm{t}_{\text {major }}=10.13 \mathrm{~min}, \mathrm{t}_{\text {minor }}=8.97 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+42.7$ ($c=0.82$ in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, 2H), $7.80(\mathrm{~d}, ~ J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.35(\mathrm{~m}, 7 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.06$ ($\mathrm{s}, 1 \mathrm{H}$), $5.87(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=12.0 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=18.8 \mathrm{~Hz}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.24(\mathrm{~s}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.38$ (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=200.2,197.6,180.7,170.9,140.0,136.6,136.1,133.2,133.1$, $132.8,129.8,128.7,128.6,128.4,128.0,127.9,126.2,124.7,123.0,116.5,49.5,45.2,40.1,39.5$, 27.5, 26.4 ppm ; ESI HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NO}_{4}+\mathrm{Na}^{+} 486.1676$, found 486.1681 .

(1S,2S,6S)-Ethyl 1'-acetyl-4-methyl-2'-oxo-2-(2-oxopropyl)spiro[cyclohex[3]ene-1,3'-in doline]-6-carboxylate (41): $\mathbf{4 l}$ was obtained as a colorless oil in 87% yield after flash chromatography and the enantiomeric excess was determined to be 97% by HPLC analysis on Chiralpak AD-H column (40% 2-propanol/ n-hexane, $1 \mathrm{~mL} / \mathrm{min}), \mathrm{UV} 254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=5.62 \mathrm{~min}, \mathrm{t}_{\text {minor }}=4.28 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-15.4\left(c=1.7 \mathrm{in}_{\mathrm{CHCl}}^{3}\right.$ $) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{td}, J=8.8 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.11-7.04 (m, 2H), $5.37(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{dd}, J=11.6 \mathrm{~Hz}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=18.4 \mathrm{~Hz}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=18.4 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.49-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=18.8 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}$, 3 H), $1.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.6,180.9,171.8,170.9$, $139.8,133.1,131.5,128.2,124.7,123.0,122.9,116.2,60.9,48.7,45.1,42.0,39.0,30.1,29.8,26.5$, 22.9, 13.7 ppm; ESI HRMS: calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5}+\mathrm{Na}^{+} 406.1625$, found 406.1633.

(1S,2S,6S)-1'-Acetyl-6-benzoyl-5'-fluoro-4-methyl-2-(2-oxopropyl)spir o[cyclohex[3]ene-1,3'-indolin]-2'-one (4m): $\mathbf{4 m}$ was obtained as a white semisolid in 90% yield after flash chromatography and the enantiomeric excess was determined to be 92% by HPLC analysis on Chiralpak AD-H column (30% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=5.03 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.54 \mathrm{~min}$; $[\alpha]_{\mathrm{D}}{ }^{20}=-13.1\left(c=2.01\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.38(\mathrm{dd}, J=9.2 \mathrm{~Hz}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{td}, J=$ $9.2 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.8 \mathrm{~Hz}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J$ $=12.8 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=18.4 \mathrm{~Hz}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=18.4$ $\mathrm{Hz}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=206.5,200.2,180.8,170.6,159.9\left(\mathrm{~d},{ }^{1} J_{C, F}=240.6 \mathrm{~Hz}\right), 136.2,135.8$, $134.5\left(\mathrm{~d},{ }^{3} J_{C, F}=8.4 \mathrm{~Hz}\right), 133.7,133.4,128.7,128.4,123.5,117.5\left(\mathrm{~d},{ }^{3} J_{C, F}=8.3 \mathrm{~Hz}\right), 114.0(\mathrm{~d}$, $\left.{ }^{2} J_{C, F}=22.0 \mathrm{~Hz}\right), 110.5\left(\mathrm{~d},{ }^{2} J_{C, F}=25.4 \mathrm{~Hz}\right), 49.3,45.7,44.9,39.5,31.8,29.9,26.3,22.9 \mathrm{ppm}$; ESI HRMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{FNO}_{4}+\mathrm{Na}^{+} 456.1582$, found 456.1583.

(1S,2S,6S)-1'-Acetyl-6-benzoyl-5'-chloro-4-methyl-2-(2-oxopropyl)spi ro[cyclohex[3]ene-1,3'-indolin]-2'-one (4n): 4n was obtained as a colorless oil in 94% yield after flash chromatography and the enantiomeric excess was determined to be 92% by HPLC analysis on Chiralpak AD-H column (30% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=4.94 \mathrm{~min}$, $\mathrm{t}_{\text {minor }}=5.34 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-41.2\left(c=2.29 \mathrm{in} \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.35(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J$ $=9.2 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=12.8 \mathrm{~Hz}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=18.4 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=18.4 \mathrm{~Hz}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=206.6,200.2,180.6,170.7,138.4,135.8,134.6,133.7,133.4,129.9,128.7,128.4$, 127.7, 123.5, 123.1, 117.4, 49.2, 45.8, 44.9, 39.5, 31.8, 29.8, 26.3, 22.9 ppm; ESI HRMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{Cl}^{35} \mathrm{NO}_{4}+\mathrm{Na}^{+} 472.1286$, found $472.1292\left(\mathrm{Cl}^{35}\right), 474.1276\left(\mathrm{Cl}^{37}\right)$.

(1S,2S,6S)-1'-Acetyl-6-benzoyl-5'-bromo-4-methyl-2-(2-oxopropyl)spi ro[cyclohex[3]ene-1,3'-indolin]-2'-one (4o): 40 was obtained as a white semisolid in 88% yield after flash chromatography and the enantiomeric excess was determined to be 91% by HPLC analysis on Chiralpak IC-H column (20% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=9.01 \mathrm{~min}, \mathrm{t}_{\text {minor }}=10.41 \mathrm{~min}$; $[\alpha]_{\mathrm{D}}{ }^{20}=-43.1\left(c=2.76\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J$ $=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=12.8 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=18.8 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.91(\mathrm{~s}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=18.4 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$, $1.84(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=206.5,200.1,180.4,170.6,138.9$, 135.8, $135.0,133.7,133.3,130.7,128.7,128.4,125.9,123.5,117.9,117.7,49.2,45.9,44.9,39.5,31.8$, 29.8, 26.3, 22.9 ppm; ESI HRMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{Br}^{79} \mathrm{NO}_{4}+\mathrm{Na}^{+} 516.0781$, found 516.0790 $\left(\mathrm{Br}^{79}\right), 518.0775\left(\mathrm{Br}^{81}\right)$.
(1S,2S,6S)-1'-Acetyl-6-benzoyl-5'-iodo-4-methyl-2-(2-oxopropyl)spiro[cyclohex[3]ene-1,3'-in dolin]-2'-one ($\mathbf{4 p}$): 4p was obtained as a white semisolid in 85% yield after flash chromatography
 and the enantiomeric excess was determined to be 96% by HPLC analysis on Chiralpak AD-H column (5\% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV 254 $\mathrm{nm}, \mathrm{t}_{\text {major }}=21.54 \mathrm{~min}, \mathrm{t}_{\text {minor }}=19.78 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-58.4(c=2.00 \mathrm{in}$ CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.17(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{dd}, J=8.4 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=12.8 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (dd, $J=18.8 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=18.4 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}$, $3 \mathrm{H}), 2.39-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.5$, 200.1, 180.3, 170.7, 139.6, 136.8, 135.8, 135.2, 133.7, 133.4, 131.6, 128.7, 128.4, 123.5, 118.3, 88.7, 49.0, 45.9, 44.9, 39.4, 31.9, 29.8, 26.4, 22.9 ppm; ESI HRMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{INO}_{4}+\mathrm{Na}^{+}$ 564.0642, found 564.0641.

(1S,2S,6S)-1'-Acetyl-6-benzoyl-7'-fluoro-4-methyl-2-(2-oxopropyl)spiro [cyclohex[3]ene-1,3'-indolin]-2'-one (4q): 4q was obtained as a white semisolid in 89% yield after flash chromatography and the enantiomeric excess was determined to be 96% by HPLC analysis on Chiralpak AD-H column (20% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $220 \mathrm{~nm}, \mathrm{t}_{\text {major }}=7.51$ $\min , \mathrm{t}_{\text {minor }}=9.36 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-18.3\left(c=1.27 \mathrm{in} \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.79(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{dd}, J=$ $6.8 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=12.4 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}$, $J=18.8 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=18.4 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H})$, 2.44-2.39 (m, 2H), $2.16(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.5,200.1$, $180.1,168.5,149.9\left(\mathrm{~d},{ }^{1} J_{C, F}=251.6 \mathrm{~Hz}\right), 136.4,136.3,135.9,133.6,133.3,128.7,128.4,125.8(\mathrm{~d}$, $\left.{ }^{3} J_{C, F}=7.2 \mathrm{~Hz}\right), 123.6,118.6\left(\mathrm{~d},{ }^{4} J_{C, F}=3.0 \mathrm{~Hz}\right), 116.5\left(\mathrm{~d},{ }^{2} J_{C, F}=21.0 \mathrm{~Hz}\right), 50.4,46.0,44.9,39.4$, 31.9, 29.8, 25.8, 23.0 ppm; ESI HRMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{FNO}_{4}+\mathrm{Na}^{+} 456.1582$, found 456.1586.

(1S,2S,6S)-1'-Acetyl-6-benzoyl-5'-methoxy-4-methyl-2-(2-oxopropy 1)spiro[cyclohex[3]ene-1,3'-indolin]-2'-one (4r): 4r was obtained as a colorless oil in 86% yield after flash chromatography and the enantiomeric excess was determined to be 96% by HPLC analysis on Chiralpak AD-H column (30% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $220 \mathrm{~nm}, \mathrm{t}_{\text {major }}=6.06 \mathrm{~min}$,
$\mathrm{t}_{\text {minor }}=6.87 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-30.8\left(c=2.45 \mathrm{in} \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.32(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{dd}, J$ $=9.2 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=12.4 \mathrm{~Hz}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{dd}, J=18.4 \mathrm{~Hz}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=$ $18.0 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.4,200.2,181.0,170.5,156.6,136.0,134.1,133.5,133.2,128.7$, $128.4,123.7,123.6,116.9,110.8,110.7,55.3,49.3,45.7,45.0,39.5,31.8,29.9,26.3,23.0 \mathrm{ppm}$; ESI HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{5}+\mathrm{Na}^{+} 468.1781$, found 468.1787.

Enantiomer of $\mathbf{4 r}$ was obtained as a colorless oil in 84% yield after flash chromatography and the enantiomeric excess was determined to be 95% by HPLC analysis on Chiralpak AD-H column (30% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=6.78 \mathrm{~min}, \mathrm{t}_{\text {minor }}=6.03 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=$ $+10.2\left(c=1.39\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

(1S,2S,6S)-1'-Acetyl-6-benzoyl-4,5'-dimethyl-2-(2-oxopropyl)spiro[cycl ohex[3]ene-1,3'-indolin]-2'-one (4s): 4 s was obtained as a white semisolid in 86% yield after flash chromatography and the enantiomeric excess was determined to be 95% by HPLC analysis on Chiralpak AD-H column (20% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $220 \mathrm{~nm}, \mathrm{t}_{\text {major }}=5.73 \mathrm{~min}, \mathrm{t}_{\text {minor }}=6.26 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-31.0(c$ $=1.18$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.54(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H})$, $5.45(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=12.4 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=18.4 \mathrm{~Hz}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.95(\mathrm{~s}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=18.0 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}$, 3 H), $2.15(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.6,200.3,181.2,170.7$, $137.5,136.1,134.0,133.5,133.2,132.6,128.6,128.4,128.3,123.7,123.6,116.1,49.3,45.7,45.1$, 39.6, 31.9, 29.9, 26.4, 23.0, 21.6 ppm; ESI HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{4}+\mathrm{Na}^{+} 452.1832$, found 452.1835.

Enantiomer of $\mathbf{4 s}$ was obtained as a white semisolid in 83% yield after flash chromatography and the enantiomeric excess was determined to be 95% by HPLC analysis on Chiralpak AD-H column (20% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=5.98 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.48 \mathrm{~min}$; $[\alpha]_{\mathrm{D}}{ }^{20}=+18.8\left(c=0.87\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

(1S,2S,6S)-1'-Acetyl-6-benzoyl-4,5',7'-trimethyl-2-(2-oxopropyl)spiro[c yclohex[3]ene-1,3'-indolin]-2'-one (4t): 4t was obtained as a white semisolid in 91% yield after flash chromatography and the enantiomeric excess was determined to be 93% by HPLC analysis on Chiralpak IC-H column (20% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $220 \mathrm{~nm}, \mathrm{t}_{\text {major }}=10.94$ $\min , \mathrm{t}_{\text {minor }}=14.19 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+10.4\left(c=1.56\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.79$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H})$, $5.43(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=12.0 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=18.4 \mathrm{~Hz}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.95(\mathrm{~s}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.21$ (s , $3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.7,200.3,181.8,170.1$, $136.2,135.8,134.2,134.0,133.4,133.0,131.6,128.6,128.4,125.8,123.8,121.1,50.1,45.9,45.1$, 39.5, 31.9, 29.9, 26.2, 23.0, 21.5, 21.3 ppm ; ESI HRMS: calcd. for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{4}+\mathrm{Na}^{+} 466.1989$, found 466.1993.

(1S,2S,6S)-1'-Acetyl-6-benzoyl-4-methyl-2-(2-oxopropyl)-5'-(trifluo romethoxy)spiro[cyclohex[3]ene-1,3'-indolin]-2'-one (4u): 4u was obtained as a colorless oil in 87% yield after flash chromatography and the enantiomeric excess was determined to be 93% by HPLC analysis on Chiralpak IC-H column (20% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV 220 nm , $\mathrm{t}_{\text {major }}=6.32 \mathrm{~min}$, $\mathrm{t}_{\text {minor }}=6.94 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-14.7\left(c=2.73\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.42(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{dd}, J$ $=8.8 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=12.8 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.29$ (dd, $J=18.4 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=18.4 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.46(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 206.6, 200.1, 180.7, 170.7, 145.9, 138.3, 136.1, 135.7, 134.4, 133.9, 133.4, 128.7, 128.4, 123.4, $120.4\left(\mathrm{q}, J_{C, F}=255.6 \mathrm{~Hz}\right), 117.2,115.9,49.2,45.8,44.8,39.4,31.9,29.8,26.3,22.7 \mathrm{ppm}$; ESI HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{5}+\mathrm{Na}^{+} 522.1499$, found 522.1499.

3,5-Dienone 2a (0.20 mmol), maleimide $5(0.1 \mathrm{mmol})$, catalyst $\mathbf{C 1}(0.02 \mathrm{mmol})$ and $\mathbf{S A}(0.04$ $\mathrm{mmol})$ were stirred in toluene $(1 \mathrm{~mL})$ at rt . After 10 h , the reaction was directly purified by flash chromatography on silica gel to give product 6.91% yield; $[\alpha]_{\mathrm{D}}{ }^{20}=-14.1\left(c=1.84\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 81% ee, determined by HPLC analysis on Chiralpak AD-H column (20\% 2-propanol/ n-hexane, 1 $\mathrm{mL} / \mathrm{min})$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=16.09 \mathrm{~min}, \mathrm{t}_{\text {minor }}=12.49 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.56$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 3.45-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.22(\mathrm{~m}, 2 \mathrm{H})$, 2.87 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=18.4 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (dd, $J=14.4 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=207.9,178.5,177.2,137.5,132.2,130.7,127.9,124.7,122.3,44.5,41.5,40.5,31.1,30.4,29.5$, 23.1 ppm ; ESI HRMS: calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Br}^{79} \mathrm{NO}_{3}+\mathrm{Na}^{+} 398.0362$, found $398.0363\left(\mathrm{Br}^{79}\right), 400.0352$ $\left(\mathrm{Br}^{81}\right)$. The absolute and relative configuration of 6 was assigned on the basis of the similar catalytic mechanism to that of cycloadducts 4.

5. Crystal data and structure refinement for enantiopure cycloadduct $4 i$

Identification code
4i
Empirical formula
$\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{4}$

Formula weight	429.50
Temperature/K	291(2)
Crystal system	orthorhombic
Space group	$\mathrm{P} 2_{1} 2_{1} 2_{1}$
a/Å	10.30150(10)
b/Å	11.24590(10)
c/Å	19.9126(2)
$\alpha /{ }^{\circ}$	90.00
$\beta /{ }^{\circ}$	90.00
γ°	90.00
Volume/A ${ }^{3}$	2306.87(4)
Z	4
$\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}$	1.237
$\mathrm{m} / \mathrm{mm}^{-1}$	0.665
$\mathrm{F}(000)$	912.0
Crystal size/ mm^{3}	$0.42 \times 0.39 \times 0.32$
2Θ range for data collection	8.88 to 139.56°
Index ranges	$-11 \leq \mathrm{h} \leq 12,-13 \leq \mathrm{k} \leq 13,-23 \leq 1 \leq 24$
Reflections collected	20156
Independent reflections	$4300[\mathrm{R}(\mathrm{int})=0.0232]$
Data/restraints/parameters	4300/0/292
Goodness-of-fit on F^{2}	1.080
Final R indexes [$\mathrm{l}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0328, \mathrm{wR}_{2}=0.0906$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0332, \mathrm{wR}_{2}=0.0912$
Largest diff. peak/hole / e \AA^{-3}	0.11/-0.16
Flack parameter	0.03(16)

6. NMR spectra and HPLC chromatograms

	Peak Name	RT (min)	Area $\left({ }^{* s e c}\right)$	\% Area	Height (r)	\% Height
1	Peak1	5.108	12773063	49.01	1359061	53.13
2	Peak2	5.515	13288884	50.99	1199062	46.87

	RT (min)	Area $($ *sec)	\% Area	Height (r)	Height 1 6.120
1142951	2.76	94946	3.36		
2	6.761	40318384	97.24	2730932	96.64

4b

	Peak Name	RT (min)	Area $(* \mathrm{sec})$	\% Area	Height (\quad)	\% Height
1	Peak1	14.998	118487	4.69	3164	6.46
2	Peak2	20.522	2408054	95.31	45785	93.54

	Peak Name	RT (min)	Area $($ *sec $)$	\% Area	Height (r)	$\%$ Height
1	Peak1	5.896	5440332	97.97	396623	98.81
2	Peak2	10.728	112550	2.03	4784	1.19

	RT (min)	Area $($ *sec $)$	\% Area	Height (\quad)	\% Height
1	5.521	3241883	50.03	284819	60.37
2	9.366	3237771	49.97	186952	39.63

	Peak Name	RT (min)	Area (*sec)	$\%$ Area	Height (r)	$\%$ Height
1	Peak1	5.489	4759242	99.53	352230	99.55
2	Peak2	9.428	22599	0.47	1599	0.45

	RT (min)	Area $($ *sec $)$	$\%$ Area	Height (\quad)	$\%$ Height
1	5.471	14537842	49.92	1156647	63.11
2	10.878	14582381	50.08	675965	36.89

	RT (min)	Area $\left({ }^{* s e c}\right)$	$\%$ Area	Height (\quad)	$\%$ Height
1	5.579	9127188	49.83	658518	61.97
2	11.556	9188941	50.17	404115	38.03

	RT (min)	Area $($ *sec $)$	\% Area	Height (\quad)	$\%$ Height
1	5.597	1918105	7.57	114463	10.40
2	11.580	23419569	92.43	986668	89.60

	RT (min)	Area $($ *sec $)$	\% Area	Height (r)	$\%$ Height
1	6.556	17143949	48.57	1595730	63.39
2	12.127	18152888	51.43	921495	36.61

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (r)	$\%$ Height
1	6.647	7232301	99.40	715426	99.76
2	12.174	43890	0.60	1718	0.24

	RT (min)	Area $($ *sec $)$	\% Area	Height (r)	\% Height
1	4.517	3418714	97.03	208219	97.99
2	6.813	104724	2.97	4268	2.01

	RT (min)	Area $($ *sec $)$	\% Area	Height (\quad)	\% Height
1	6.780	1710165	50.86	137537	64.07
2	10.913	1652659	49.14	77146	35.93

	RT (min)	Area $\left({ }^{* s e c}\right)$	\% Area	Height (\quad)	$\%$ Height
1	6.791	3216495	97.70	254222	98.39
2	10.937	75815	2.30	4169	1.61

	Peak Name	RT (min)	Area $($ *sec $)$	\% Area	Height (\quad)	\% Height
1	Peak1	7.149	7705135	97.91	535843	98.57
2	Peak2	8.406	164798	2.09	7766	1.43

(

	Peak Name	RT (min)	Area (*sec)	\% Area	Height (\quad)	\% Height
1	Peak1	7.516	23983406	49.00	1825974	51.44
2	Peak2	8.303	24962532	51.00	1723748	48.56

	Peak Name	$\begin{gathered} \mathrm{RT} \\ (\mathrm{~min}) \end{gathered}$	$\begin{gathered} \text { Area } \\ \left(\begin{array}{c} \text { *sec }) \end{array}\right. \end{gathered}$	\% Area	Height ()	$\begin{array}{\|c\|} \hline \% \\ \text { Height } \end{array}$
1	Peak1	7.568	10269733	93.26	931942	93.83
2	Peak2	8.372	742034	6.74	61259	6.17

4k

	RT (min)	Area $\left({ }^{* s e c}\right)$	\% Area	Height (r)	$\%$ Height
1	8.947	7362425	50.03	491987	53.12
2	10.085	7353706	49.97	434190	46.88

	Peak Name	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (r)	\% Height
1	Peak1	8.971	652889	13.84	47728	16.21
2	Peak2	10.131	4064297	86.16	246779	83.79

41

1
2
3
4
5
6
7
8
9
10

	Peak Name	RT (min)	Area (sec)	\% Area	Height (\quad)	\% Height
1	Peak1	5.030	20988732	96.22	2263985	95.53
2	Peak2	5.535	824595	3.78	106022	4.47

	Peak Name	RT (min)	Area (*sec)	\% Area	Height (r)	$\%$ Height
1	Peak1	4.957	14539909	49.28	1916233	52.74
2	Peak2	5.330	14966093	50.72	1717117	47.26

	RT (min)	Area $($ *sec $)$	\% Area	Height (\quad)	$\%$ Height
1	4.938	18457891	95.83	2148241	95.80
2	5.342	802828	4.17	94179	4.20

Peak	RetTime	Type	Width [min]	Area		Height		Area
*	[min]			mAU	*s	[mAU	,	\%
1	9.021		0.3371	1.47	94 e 4	660.	8008	50.0021
2	10.414	VV	0.3810	1.47	2e 4	587.	7233	49.9979

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ {[\text { min }]} \end{gathered}$	Area		Height		Area
				mAU	*s	[mAU]	\%
1	9.006		0.3332	1.00	2 e 4	464	39960	95.5457
2	10.406	VB	0.4298	466	9796		8357	4.4543

$4 p$

$4 p$

	RT (min)	Area $(* \mathrm{sec})$	\% Area	Height $(\mathrm{s}$	\% Height
1	19.778	431703	2.10	16126	2.68
2	21.538	20151951	97.90	585499	97.32

	RT (min)	Area $\left({ }^{* s e c}\right)$	\% Area	Height (\quad)	\% Height
1	19.957	8376559	50.67	241587	61.26
2	21.455	8155940	49.33	152769	38.74

1

	RT (min)	Area $($ *sec)	\% Area	Height ()	\% Height
1	7.392	17775401	49.11	1500902	55.59
2	9.137	18419489	50.89	1198857	44.41

	Peak Name	RT (min)	Area $($ *sec $)$	\% Area	Height (\quad)	\% Height
1	Peak1	7.512	3279779	98.23	277830	98.45
2	Peak2	9.355	58987	1.77	4374	1.55

	RT (min)	Area $\left({ }^{* s e c}\right)$	\% Area	Height (\quad)	\% Height
1	6.064	11160620	97.89	852772	97.91
2	6.871	240624	2.11	18245	2.09

	RT (min)	Area $\left(\begin{array}{c}\text { *sec) }\end{array}\right.$	$\%$ Area	Height ()	$\%$ Height
1	6.034	535712	2.31	61077	3.09
2	6.784	22620178	97.69	1914903	96.91

	RT (min)	Area (sec$)$	\% Area	Height (\quad)	$\%$ Height
1	5.730	13563327	49.47	1597168	53.52
2	6.232	13852330	50.53	1387123	46.48

	RT (min)	Area $(* \mathrm{sec})$	\% Area	Height (r)	\% Height
1	5.727	6491143	97.45	783460	97.87
2	6.261	170120	2.55	17055	2.13

	RT (min)	Area $\left({ }^{* s e c}\right)$	\% Area	Height (\quad)	\% Height
1	5.484	720239	2.75	82621	3.51
2	5.977	25454859	97.25	2268161	96.49

	Peak Name	RT (min)	Area $\left({ }^{* s e c}\right)$	\% Area	Height (s)	$\%$ Height
1	Peak1	10.936	5248642	96.66	221720	97.33
2	Peak2	14.188	181099	3.34	6074	2.67

4u

1

	Peak Name	RT (min)	Area $($ *sec $)$	\% Area	Height (r)	$\%$ Height
1	Peak1	6.252	7837585	50.64	689305	53.30
2	Peak2	6.874	7638441	49.36	603996	46.70

	Peak Name	RT (min)	Area $(* \mathrm{sec})$	\% Area	Height (r)	$\%$ Height
1	Peak1	6.319	2119693	96.61	183747	96.83
2	Peak2	6.942	74342	3.39	6023	3.17

6

	Peak Name	RT (min)	Area $($ *sec $)$	\% Area	Height (r)	\% Height
1	Peak1	12.485	67227	9.39	3839	12.45
2	Peak2	16.093	648770	90.61	26987	87.55

