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Retrobiosynthesis tools harness the inherent promiscuities of enzymes for the de novo design of novel
biosynthetic pathways to key small molecules. Many existing pathway search algorithms rely on
exhaustively enumerating the space of all possible enzymatic reactions using generalized rules, followed by
an extensive analysis of the ensuing reaction network to extract candidate pathways for experimental
validation. While this approach is comprehensive, many false positive reactions are often generated given
the permissiveness of such reaction rules. Here, we have developed DORA-XGB, a enzymatic reaction
feasibility classifier. DORA-XGB can be used within our DORAnet framework to assess whether newly
enumerated enzymatic reactions and pathways would be feasible. To curate a training dataset for our
model, we extracted enzymatic reactions from public databases and screened them for their general
thermodynamic feasibility. We then considered alternate reaction centers on known substrates to
strategically generate infeasible reactions with high confidence, thereby circumventing the lack of negative
data in the literature. In training our model, we also experimented with various molecular fingerprinting
techniques and configurations for assembling reaction fingerprints, taking into account not just primary
substrate and primary product structures, but cofactor structures as well Our model's utility is
demonstrated through favorable benchmarking against a previously published classifier, the successful
recovery of newly published reactions, and the ranking of previously predicted pathways for the
biosynthesis of propionic acid from pyruvate.

Retrobiosynthesis tools aid in elucidating novel pathways for the sustainable biomanufacturing of small molecules. Such tools, however, may suggest many

false positive reactions that are far too dissimilar from the canonical reaction/s that a given enzyme is known to catalyze, thereby demanding unrealistic

extents of enzyme promiscuity. Here, we aim to reduce false positive predictions and enhance the accuracy of retrobiosynthesis tools by developing a

machine learning model to reliably predict the feasibility of proposed enzymatic reactions. In designing this model, we innovated around the lack of

infeasible reactions in the literature by introducing the concept of “alternate reaction centers”. These are functional groups that despite being identical to

the catalyzed moiety on a substrate, remain uncatalyzed in a reported reaction. Our novel hypothesis enables us to strategically infer infeasible reactions

from known positive reactions with higher confidence than previous approaches which assume any unseen reaction to be infeasible. After synthetically

generating negative data from known reactions, we trained a supervised learning classifier and optimized it via a Bayesian hyperparameter optimization

approach. Our model can be instantly dropped into pathway discovery workflows and even further improved upon in the future by incorporating additional
features, such as enzyme sequence data.

1. Introduction

Metabolic engineering is crucial in enabling the sustainable
biomanufacturing of commodity chemicals, biofuels, and
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lead to the synthesis of such key molecules have already been
extensively documented in publicly available metabolic
databases such as the Kyoto encyclopedia of genes and
genomes (KEGG)," BRENDA,” and MetaCyc.® Relying solely
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on known enzymatic reactions, however, is insufficient for
exploring the entire space of possible molecules that could
be  manufactured through  biosynthetic  pathways.
Synthesizing many valuable molecules may, in fact, require
novel, non-native enzymatic reactions that have yet to be
recorded in any database or the literature.”® The ability to
predict and investigate such promiscuous, underground
enzymatic activity is therefore necessary to expand the
portfolio of chemicals that can be synthesized biologically.

To this end, retrobiosynthesis tools can accelerate the de
novo design of biosynthetic pathways to key products in an
automated manner that circumvents costly trial-and-error based
experiments.” ™ Such tools, including our in-house platform,
DORAnet (formerly Pickaxe v2.0 (ref. 15)), typically use reaction
rules or templates to recursively transform simple precursors,
such as glucose or glycerol, into downstream metabolites of
interest. These reaction rules, in turn, digitally encode for the
potential promiscuities of enzymes by searching for
substructure matches between native and non-native, predicted
substrates.'®'” Despite their comprehensiveness, rule-based
algorithms can generate many false positive reactions
demanding unrealistic extents of enzyme promiscuity.

Throughout this work, we define positive reactions as those
in which a moiety or reaction center, e.g., a carboxylic acid
group, on a substrate successfully undergoes an enzyme-
catalyzed reaction, such as decarboxylation. Consequently,
false positives refer to predicted reactions within which a
moiety that is known not to be transformed, thus
representing a negative reaction, is incorrectly transformed
by a reaction rule. Such false positives can occur if the
substructure match required by a given rule only spans a
small chemical neighborhood around a substrate's reaction
center. For instance, our previously published JN1224MIN
generalized rules'® predict enzyme promiscuity by
considering only the reactive moieties present on a substrate
and not its surrounding chemical groups, which may still
influence catalysis due to their steric or electron donating/
withdrawing effects. Our subsequently upgraded intermediate
rules (available at https://github.com/tyo-nu/MINE-Database)
incorporate some chemical context around reaction centers
but still result in large metabolic in silico network expansions
(MINEs).

Although such large networks ensure that the space of all
possible reactions has been adequately explored, the high
false positive rate arising from the permissible nature of
reaction rules often results in far more pathways than can be
thoroughly analyzed. This impedes the selection of promising
pathways for experimental validation by users. DORAnet and
other retrobiosynthesis tools would therefore benefit from
the development of an automated reaction feasibility filter to
elucidate only the most feasible and realistic of reactions
suggested within a network expansion. While a variety of
chemical similarity and molecular weight filters already exist
within DORAnet to prune MINEs on-the-fly, these do not
evaluate the feasibility of reactions generated and cannot be
used to rank pathways once a network has been created.
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To develop a filter or a model that can classify predicted
reactions as feasible or infeasible, both positive and negative
examples are needed. While thousands of observed reactions
have already been recorded in BRENDA,” KEGG,' and
MetaCyc,® data for infeasible reactions are rare. A common
approach in overcoming this lack of negative data is to
assume unreported reactions as negative. This assumption
can certainly aid in synthetically generating negative
examples but has two key drawbacks. First, assuming that
any unreported reaction must necessarily be infeasible can
lead to generating negative reactions that are so strongly
dissimilar to known, positive reactions (Fig. 1(a)) that the
resulting classifier will suffer from a high degree of
uncertainty in trying to predict the feasibilities of reactions
with more intermediate degrees of similarity. The ideal
distribution of positive and negative reactions should instead
meaningfully delineate the boundary of reaction feasibility,
allowing the sampling of negative data from more confident
infeasible reactions only while positive data is sampled from
known reactions. This would enable a classifier trained on
such examples to also generalize well to real-world reactions
wherein positive and negative examples are not so dissimilar.
Moreover, the ‘unreported is negative’ assumption may lead
to mislabelling understudied reactions that could very well
be feasible, but because they have yet to be studied and/or
published, are labeled as infeasible (Fig. 1(a)). Such mislabelling
would introduce false negatives in a training set and also defeats
the purpose of retrobiosynthesis tools, which will inevitably
suggest new reactions. The explicit recovery of unreported
profiles using methods such as collaborative filtering has
been discussed in the literature,"®'® but the current space of
substrates for any given enzyme is so limited that these
methods may not apply to most classes of enzymatic
reactions. Still, if negative reaction data can be reliably
obtained, many artificial intelligence algorithms have been
shown to be effective at demarcating complex decision
boundaries in binary classification tasks across a diversity of
domains, from predicting antimalarial bioactivity’® to the
segmentation of coal mining faces.*!

Here, we address this lack of negative data in the
literature by proposing the stricter “alternate reaction center”
assumption, which enabled us to strategically and more
confidently infer negative reactions that more closely
resemble positive reactions (Fig. 1(b)) and used our dataset to
train a supervised reaction feasibility classifier. We define a
reaction center as the group of atoms in a substrate that
directly participates in a reaction. Rather than treating all
unreported reactions as negative datapoints, we posit that if
an enzyme is observed to catalyze the transformation of a
particular chemical moiety on a substrate but not that of
other, identical moieties (alternate reaction centers) on the
same substrate, then the transformation of those other,
identical moieties represents products that could have also
been formed in the same reaction but, since they were not
observed, are infeasible products (Fig. 1(c) and (d)). In
curating positive reactions from metabolic databases, we also
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(a) It is common to assume that all reactions complementary to the set of reported reactions are infeasible. This assumption, however,

may lead to sampling negative reactions that are too distant from positive reactions and/or mislabelling understudied reactions, which may
very well may be feasible, as infeasible. Incorporating such false negatives and true negatives that are so strongly dissimilar to true positives
can erode training data quality; (b) ideally, a high-quality training set should not comprise false negatives while true negatives should be as
close to true positives as possible; (c) here, we propose the “alternate reaction center” assumption to more confidently infer infeasible
reactions from reported reactions. Using the generalized alcohol dehydrogenase (ADH) transformation as an example, infeasible ADH reactions
can be strategically inferred from a substrate with two or more alcohol reaction centers (RCs), wherein the oxidation of only one alcohol group
(RC1) has been reported but not of the other (RC2). In this case, native or engineered ADH enzymes have been tested on the same substrate,
but only one of the two possible reactions has been observed, allowing the other reaction to be inferred as being infeasible; (d) depicted here
is an example of an infeasible ADH reaction with 3-hydroxybutyryl-coenzyme A (CoA) in which the generalized ADH transformation is not

observed on the CoA group.

screened such reactions for their thermodynamic feasibility
across a range of metabolite concentrations.”” Since reported
reactions are often a part of broader pathways that may only
be specific to certain organisms, our thermodynamic screen
elucidated which reactions would truly be most feasible in a
diversity of contexts. The combination of this thermodynamic
screen and our proposed ‘“alternate reaction center”
assumption created a dataset to train our classifier to
evaluate reaction feasibility as a function of both reaction
thermodynamics and enzyme specificity. To assess the
applicability of our classifier, we tested DORA-XGB across
various use-cases. Our model was found to achieve a high
recall on newly discovered MetaCyc® and EcoCyc>® reactions
and also outperformed another published, deep-learning
based feasibility classifier* when benchmarked against these
new reactions. Moreover, DORA-XGB was able to distinguish
between feasible and infeasible reactions when tested on a
high-throughput metabolomics dataset.>® Finally, we
implemented our feasibility classifier as a filter in the design
of propionic acid biosynthesis pathways®® and were able to
achieve greater than 95% reduction of infeasible compounds
and reactions while still preserving meaningful predictions of
the most promising pathways towards propionic acid.
Altogether, we demonstrate that our enzymatic reaction
feasibility classifier is generalizable across different classes of
reactions and enhances the computational prediction of
enzyme promiscuity towards various applications.

This journal is © The Royal Society of Chemistry and IChemE 2025

2. Materials and methods

2.1 Curation of known enzymatic reactions from public
metabolic databases

Processing of known enzymatic reaction data has been
detailed in our previous publication.’®  Briefly,
experimentally validated reactions were curated from three
publicly available metabolic databases: BRENDA,” KEGG,"
and Metacyc.® ChemAxon's structure checker (https://www.
chemaxon.com) and RDKit's neutralization module (https://
www.rdkit.org) were used for neutralization of molecules
and removal of stereochemistry in preprocessing curated
reactions. All transport and racemization reactions, along
with reactions involving cofactors only, were not considered.
Forward and reverse directions were considered as separate
enzymatic reactions. Subsequently, all sanitized reactions
were mapped to reaction rules within JN1224MIN,*® our
previously published generalized enzymatic rule set, so as to
categorize reactions by their minimal bond change pattern
around the reaction center. A list of common cofactors
(CoA, water, etc.) and cofactor pairs (ATP/ADP, NAD/NADH,
etc) can be found in our previous publication.'® After
removing null entries and duplicates across the three
databases as well as considering each reaction in both
forward and reverse directions, our final dataset comprised
35065 unique reactions that had been mapped to at least
one rule in JN1224MIN.
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2.2 Screening curated reactions through calculation of free
energies

In this study, we used eQuilibrator 3.0 (ref. 27) to calculate
the change in Gibbs free energy due to a reaction, A,G’. The
eQuilibrator 3.0 software platform uses the component
contribution method for first estimating the standard Gibbs
free energy change due to a reaction, A.G° at reactant
concentrations of 1 M. These A,G° values were then adjusted
to our specified conditions of temperature 298 K, ionic
strength 0.25 M, pH 7.4, and pMg 3.0 to calculate A,G' under
common cellular conditions. A ChemAxon license was used
to compute pKa values of new compounds and add them to
an eQuilibrator SQLite compound database that was
maintained locally and initially downloaded through the
Zenodo data repository (https://www.zenodo.org/records/
4128543). In computing A,G’ values, instead of using a fixed
concentration of 1 M for all metabolites, we allowed
metabolite concentrations to vary within a predetermined
range of 0.1 mM to 100 mM and optimized for the minimum
AG' value, A;G};, that can be attained within this range. In
computing  AG ;. reaction, the
concentrations of cofactors are subject to ratios (e.g. [NADH]/
[NAD+] = 0.1, [ATP]/[ADP] = 10) that have been empirically

values for each

(@) L-Lysine-1,6-lactamhydroylase
(EC 35211 ):

H
H o H,0

N

Sequoyitol dehydrogenase
(EC1.1.1.143 ):
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OH

HO a 0.
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measured and reported in the literature.”® We considered
NADH/NAD and NADPH/NADP as distinct cofactor pairs in
this work since they are bound by different concentration
ratios. The complete list of cofactor ratios used in computing
A:G);, values is outlined in Section 3.1 of the ESLf Our
approach is a simplified and truncated version of solving the
maximum/minimum driving force (MDF) problem, which
seeks a set of metabolite concentrations that minimizes the
A/G' value of the most thermodynamically uphill or
bottlenecked reaction within a multi-step pathway.** A,G
values of any kind were not computed for reactions within
which at least one species was represented by an incomplete
(as indicated by an asterisk) simplified molecular input linear
entry system (SMILES) string and/or possessed uncommon
atoms (i.e., atoms other than C, O, N, P, S, and H). The
distributions of A;G, ;, values for various classes of enzymatic

reactions can be found in ESI} Section 3.2 and Fig. S2-S7.

2.3 Assigning a threshold for thermodynamic feasibility

’

After computing A:G};,
curated dataset, a threshold value was required to label
reactions as feasible or infeasible. Instead of a classic
threshold value of 0 k] mol™ to delineate thermodynamic

values for each reaction in our

Feasibility label:
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(a) Curated reactions in our training dataset are labelled first using the minimum change in Gibbs free energy A,G,

OH
OH
o o
N = ™
“a 0
o OH
Y

min that can be released

during the reaction across a predetermined range of metabolite concentrations. Reactions such as that catalyzed by the enzyme L-lysine-1,6-
lactamhydrolase - with enzyme classification (EC) 3.5.2.11 - for which we find that A,G/,,,, > —10 kJ mol™* are labelled as infeasible; (b) conversely,
reactions for which A,Gp,,;, < -10 kJ mol ™! are labelled as feasible. For thermodynamically feasible reactions, such as that catalyzed by sequoyitol
dehydrogenase (EC 1.1.1.143), in which only the hydroxyl group in the (3 position to the methoxy sequoyitol is oxidized but not the hydroxy groups
in the a and y positions to this methoxy group, our “alternate reaction center” assumption can be applied to confidently infer infeasible reactions.
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feasibility, we set a threshold of -10 k] mol™, ie., reactions
with A.G,;, > —10 kJ] mol™' were labelled as infeasible
(Fig. 2(a)) while reactions with A;G! ;. < —10 k] mol ' were
labelled as feasible (Fig. 2(b)). Our decision in setting this
threshold is informed by the flux-force efficacy relationship,
which highlights that thermodynamic potentials are

inextricably linked to reaction kinetics:*

Ty exp(Fp) -1
Jr+J exp(AI;(Ty) +1

Here, J' is the flux carried in the forward direction of a given

reaction at temperature 7 while J~ is the flux carried in the
reverse direction at the same temperature. According to this
relationship, reactions that operate at A,G' ~ 0 k] mol™* may
be thermodynamically efficient but are kinetically inefficient
since the net flux in the forward direction, J* - J~, would only
comprise exactly 50% of the total flux, J* + J, carried
throughout the reaction. By contrast, at our threshold of
AGli < =10 k] mol™"  for thermodynamic feasibility,
96.5% of the total flux is in the forward direction only. Given
that we consider forward and reverse directions of reported
enzymatic reactions as distinct, our threshold ensures that
each curated reaction can be treated independently.
Reactions for which a A,G’ value could not be computed by
eQuilibrator 3.0 or could be computed but with an excessively
large uncertainty of 1.00 x 10> k] mol™" were not assigned a
thermodynamic feasibility label. For such reactions, at least
one of the species involved likely comprised at least one
chemical group for which a thermodynamic contribution has
yet to be reported or established with a high degree of
certainty. Overall, we were able to confidently compute
AcGy;,, for 22803 reactions and label them accordingly for

their thermodynamic feasibility.

2.4 Synthetic generation of non-reacting substrates

In this study, we have proposed the “alternate reaction
center” assumption, where a reactant must have two or more
identical moieties, and an enzyme is known to act on only
one of these moieties but not on the other (Fig. 1(c), (d) and
2(b)). Since the unreactive moiety was confronted with the
enzyme in the original experiment, but a product resulting
from the transformation of that moiety was not reported, we
believe that this is a more rigorous assumption than the
commonly used “unreported is negative” assumption wherein
the entire space of reactions outside the space of published
reactions is simply considered to be infeasible.

Here, we utilized DORAnet to synthetically generate a total
of 116412 wunique infeasible reactions by considering
alternate reaction centers (Fig. 2(b)). These synthetically
generated infeasible reactions were then pooled together with
reactions previously found to be thermodynamically
infeasible to give a total of 122573 negative reactions and
16 642 positive reactions (ESIT Section 3.3 and Fig. S8(a)—(c)).
For curated and thermodynamically feasible monosubstrate

This journal is © The Royal Society of Chemistry and IChemE 2025
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reactions of the form A + cofactors — B + cofactors, all
possible products beyond B are enumerated by expanding on
A using only the general rule/s onto which this
monosubstrate reaction had been mapped. For curated and
thermodynamically feasible multisubstrate reactions of the
form A + B + cofactors — C + D + cofactors, all possible
products beyond (C, D) product pairs are iteratively
enumerated first from A and then from B using only the
general rule/s onto which this multisubstrate reaction has
been mapped. Expanding on substrates only with mapped
JN1224MIN rule/s follows from our “alternate reaction
center” assumption.

By contrast, to generate the “unreported is negative”
dataset, we utilized DORAnet and all 1224 reaction rules to
expand upon each curated substrate/s and consequently
enumerate the entire space of products. This resulted in a
huge space of more than 11 million negative reactions. To
directly compare models trained on datasets generated under
each assumption, we randomly down-sampled 116412
negative reactions from these 11 million negative reactions.
All tautomeric forms of compounds involved in reactions
were comprehensively enumerated as part of our dataset.

2.5 Mitigating class imbalance between feasible and
infeasible reactions for machine learning

Given that the number of negative reactions in our dataset of
139215 labelled reactions far outweighs the number of
positive reactions by a ratio of nearly 8:1, any classifier
trained on such imbalanced data would be biased towards
making negative predictions by default.>® In order to
counteract this class imbalance, we utilized the synthetic
minority over-sampling technique®** (SMOTE) available
through scikit-learn's imbalanced-learn Python package (imb-
learn; https://www.imbalanced-learn.org). SMOTE creates
synthetic reaction fingerprints from the positive reactions in
our dataset by randomly picking a single positive reaction
and the fingerprints of its k nearest neighbors (we set k = 5).
The selected fingerprints are then added together to
introduce over-sampled positive reactions into our dataset,
which aids in balancing out negative reactions. SMOTE was
performed only on our training dataset to prevent any
leakage between training and testing sets. The class-weight
hyperparameter was also tuned in training our machine
learning models to further mitigate class imbalance.

2.6 Constructing reaction feature vectors using primary
substrate, primary product, and cofactor structures with
various molecular fingerprints and configurations

In constructing feature vectors to represent enzymatic
reactions, we fingerprinted the chemical structures of all
species involved in a given reaction instead of fingerprinting
only primary reactant and primary product structures (Fig. 3).
Chemical structures of all participating compounds were
converted to molecular fingerprints by first removing any
stereochemical information from their SMILES string and
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Fig. 3 While it is common to ignore cofactor chemical structures and focus only on primary reactant and product structures in featurizing
enzymatic reactions, in this work, we fingerprint all participating species to construct reaction feature vectors. Our decision is guided by the
knowledge that cofactors also mechanistically participate in reactions alongside primary reactants and products. Including their structures can
therefore lead to more interpretable models. As such, to predict feasibility, the input to DORA-XGB is a reaction string comprising all species, and
the output is a feasibility score ranging from 0 to 1. This output score can also be converted to a predicted label based on our reported thresholds.
We have experimented with various methods to arrange molecular fingerprints along a reaction feature vector and have provided the thresholds

for each arrangement.

then taking the canonical form of the SMILES string using
RDKit. We remove stereochemical information from all
species because our reaction rule templates do not take
stereochemistry into account. To decide on the optimal
fingerprinting method, machine learning models were
trained on a small prototyping set of 3013 alcohol
dehydrogenase reactions featurized using five types of
molecular fingerprints: (1) extended connectivity fingerprints
with 2048 bits and a radius of fragmentation of 2 bonds
(ECFP4),>"** (2) atom pair fingerprints®® with 2048 bits, (3)
MinHashed atom pair fingerprints®® with a radius of 2 and
2048 bits (MAP4), (4) Molecular ACCess System Keys®®
(MACCS), and (5) Mordred.*® Of these five fingerprinting
techniques, ECFP4, atom pair, and MAP4 are hashed
fingerprints, while MACCS and Mordred are descriptor-based
fingerprints.

Alongside attempting various molecular fingerprinting
techniques, we experimented with four different methods to
arrange these fingerprints for the assembly of reaction
feature vectors. Briefly, we explored arranging reactant and
product fingerprints in the order of ascending as well as
descending molecular weights and through simple
operations, such as the elementwise addition and
concatenation of reactant and product fingerprints (“add
then concatenate”) or the element-wise subtraction of the
sum of product fingerprints from that of reactant fingerprints
(“add then subtract”). We attempt such configurations to
determine the pattern of fingerprints in our reaction vectors

134 | Mol. Syst. Des. Eng., 2025, 10, 129-142

that would yield the highest predictive performance. Since
different reactions involve different numbers of species, to
ensure uniformity in reaction feature vector length, we zero-
padded shorter vectors to the length of the longest reaction
vector in our dataset for each fingerprinting technique and
configuration.

2.7 Prototyping machine learning models with different
architectures and fingerprints on a smaller set of alcohol
dehydrogenase reactions

In training reaction feasibility classifiers, four different
popular architectures are considered, namely logistic
regression, random forests, support vector machines, and
gradient boosted XGBoost models.®” Twenty models arising
from a combination of these four architectures and the five
molecular fingerprinting methods mentioned above are
prototyped on a smaller dataset of 1254 feasible and 1759
infeasible alcohol dehydrogenase reactions to find the
highest performing architecture-fingerprint pair (ESIT Section
4.1 and Fig. S9). A stratified 80/10/10 split ratio was used with
scikit-learn in distributing these 3013 alcohol dehydrogenase
reactions into train, validation, and test sets, respectively.
Stratified splits ensure that the distribution of feasible to
infeasible alcohol dehydrogenase reactions is largely
maintained across each of the three sets.

The hyperparameters of this alcohol dehydrogenase classifier
were optimized on its validation set via a Bayesian optimization

This journal is © The Royal Society of Chemistry and IChemE 2025
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procedure®® with the objective of maximizing the classifier's
area under its precision-recall curve (AUPRC). We opted for a
Bayesian approach to tuning model hyperparameters because
the large size of our final dataset necessitated an efficient and
targeted search of hyperparameter space. Other approaches to
hyperparameter tuning such as a grid-search or random-search
would be far too exhaustive and also less effective given that in
these searches, information from the model's previous
performance is not wused to inform the choice of
hyperparameters in the next iteration.®® A Bayesian approach
therefore allowed us to most efficiently balance exploration of
new hyperparameter combinations with the exploitation of
successful ones so as to reach optimal model hyperparameters
in fewer iterations. We downloaded and used the algorithm
that was freely available at https://www.github.com/bayesian-
optimization/BayesianOptimization in order to perform our
optimization. All regularization terms, where applicable, were
included in our tuning procedure for each model so as to
mitigate over-fitting. In training this classifier, reaction
fingerprints are created by arranging molecular fingerprints in
the order [substrate, NAD, product, NADH] for alcohol
dehydrogenase reactions in the oxidation direction and
[substrate, NADH, product, NAD] for reactions in the reduction
direction. After this initial prototyping phase, ECFP4
fingerprints and an XGBoost model were chosen as the
preferred fingerprint-architecture combination for training
future models (Fig. 3).

2.8 Training a consolidated classifier and comparing
performance against individual classifiers

In order to determine if training multiple individual
feasibility classifiers, each specific to a single rule, would be
the most accessible approach to predicting feasibility or if a
single, consolidated classifier would be best, we trained 33
individual classifiers with the XGBoost architecture. These
were trained on the top 33 classes of enzymatic reactions that
had the most reactions mapped to them in our curated
dataset. Reaction fingerprints for training these 33 classifiers
were trained with the “add then concatenate” reaction
fingerprint configuration. In order to directly compare
performance between individual and consolidated models,
our consolidated model was also trained using the “add then
concatenate configuration”.

For all classifiers, stratified train/validation/test sets were
created from corresponding reaction data using an 80/10/10
split ratio. The hyperparameters of all classifiers were also
optimized using the Bayesian approach described above for
consistency. Moreover, for the final dataset of 139 215 reactions,
stratified train/validation/test splits were performed iteratively
on a rule-by-rule basis for each family of reactions that had been
mapped to at least one generalizable rule under JN1224MIN.
This guarantees the presence of each generalized
transformation across all three sets. In creating these splits, unit
tests were performed to ensure that any duplicate reaction
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fingerprints are removed and consequently, that there is no
leakage of reaction fingerprints between all three sets.

2.9 Mining benchmark datasets to test feasibility classifier

We mined three experimentally validated enzymatic reaction
datasets to test whether our classifier could assess the
feasibility of novel reactions. First, we extracted newly
documented reactions in timesplit MetaCyc and EcoCyc
datasets. Part of our training data was derived from EcoCyc
V21 and MetaCyc V21, both published in 2017. Thus, 2810
and 270 reactions newly documented in MetaCyc V24 and
EcoCyc V24, respectively, which were both published in 2021,
were mined as benchmarking datasets. For these datasets,
reactions were considered in both directions, and feasibility
labels were assigned on the basis of thermodynamic
feasibility as described in Materials and methods 2.2-2.3.
Benchmarking studies were then performed with DeepRFC,
an existing classification model already published in the
literature. DeepRFC was downloaded and installed from the
publicly available bitbucket code repository: https://bitbucket.
org/kaistsystemsbiology/deeprfc.

Since DeepRFC was trained on monosubstrate reactions
only, even though our classifier is able to make predictions
on multisubstrate reactions, only monosubstrate reactions
were retained in our benchmarking set to enable a fair
comparison between models. Overall, 1281 newly reported
monosubstrate reactions could be confidently labelled for
their thermodynamic feasibility and were wused for
benchmarking. For feasibility classification of a given
reaction by DeepRFC, we used their stipulated threshold of
0.32 (calculated by subtracting half the predicted standard
deviation from the predicted mean).

Finally, we mined an E. coli metabolomics dataset, which
utilized a nontargeted approach to enable high-throughput
identification of novel, underground metabolic reactions. 2799
accurate masses were identified in the metabolite cocktail of
their experimental setup, and we were able to assign structures
for 2578 masses that correspond to 737 unique metabolites by
matching the reported metabolite names with those listed in
the ModelSEED Biochemistry database (for which compounds
are available at https://modelseed.org/biochem/compounds). In
their work, 30 novel, unique enzymatic reactions had been
experimentally discovered by 12 novel enzymes whose new
functions were experimentally validated. Expanding from the
cocktail of metabolites, we enumerated 16 796 monosubstrate
reactions that could have been catalyzed but were never
observed or were not present in known EcoCyc reactions and
thus could be plausibly treated as infeasible test reactions.

3. Results and discussion

3.1 Strategic generation of synthetic infeasible reactions
enables exploration of enzymatic reaction feasibility
boundaries more precisely

A common approach to generate synthetic negative data —
given the lack of reported unsuccessful reactions - follows
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the “unreported is negative” assumption. This assumption
considers all enumerated reactions that have not been
observed as being infeasible. Such an assumption has been
used previously for enzyme promiscuity prediction®**° as
reaction feasibility prediction within organic
chemistry"' but can lead to sampling negative reactions
that are too dissimilar from known, positive reactions as
mislabelling potentially feasible reactions as

well as

well as
infeasible.

Here, we instead propose a novel and more strategic way of
inferring negative reactions from known, positive reactions. We
denote our approach to synthetically generating such negative
data as the “alternate reaction center” assumption. While the
“unreported is negative” assumption samples negative examples
from the space of all reactions outside the corpus of reported
reactions, our “alternate reaction center” assumption only
samples negative examples from a smaller space of reactions
for which infeasibility can be more confidently established
(Fig. 1(b)). Our assumption is put into practice by considering
metabolites with two or more identical molecular moieties on
which an enzyme is known to transform only one of these
moieties but not the other/s (Fig. 1(c) and (d)). This assumption
is informed by the fact that many enzymes known to catalyze a
given functional group transformation have already been
validated on such metabolites. These enzymes - whether native
or engineered - could have possessed a certain degree of
promiscuity to catalyze the same transformation on other
identical reaction centers within the same substrate. Given that
no instances of reactions were observed on these alternate
reaction centers, however, we can assume the conditions of
such enzymatic transformations as less favorable and
confidently categorize such reactions as infeasible. Further,
examining alcohol dehydrogenase reactions through
dimensionality reduction techniques reveals that putative
infeasible products are evenly distributed amongst feasible
products, thereby indicating a uniform sampling of chemical
space, free of any biases (ESIT Fig. S8(a)).

3.2 Screening curated reactions for thermodynamic feasibility

Along with introducing our novel “alternate reaction center”
assumption, we have screened curated reactions for their
thermodynamic feasibility. This was done by optimizing for
the minimum Gibbs free energy of reaction, A.G};,, that can
be released under typical cellular conditions when the
concentrations of all metabolites participating in a given
reaction are constrained to a predetermined range with
cofactor concentrations subject to empirically determined

ratios®® (outlined in ESIt Section 1.1). Our optimization of

A:G,;, is a truncated version of solving the MDF problem®
(see Materials and methods 2.2-2.3) to eliminate
thermodynamic bottlenecks along multi-step pathways.

Reactions with A.G!

" in < —10 k] mol™! are labelled as
feasible while reactions with AG.. > —10 k] mol™" are
labelled as infeasible (Fig. 2). This screen, along with our

stringent threshold for thermodynamic feasibility, are
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essential components of our model development pipeline for
the following reasons.

First, our curated reaction set comprises reactions in
both directions. This follows from our previously published
JN1224MIN rule set also comprising bidirectional operators,
enabling retrobiosynthesis tools, such as DORAnet, the
flexibility of being used in both the forward and reverse
synthesis directions. The presence of such bidirectional
rules is true for other rule sets published in the literature as
well.'”*> While every enzymatic reaction is microscopically
reversible, not all reactions are macroscopically reversible
under typical cellular conditions. A thermodynamic screen
can therefore quantitatively determine which set of
functional group transformations and their associated
reactions are most biochemically “realistic” and energetically
favorable within general cellular contexts. For instance,
alcohol dehydrogenase reactions that fall under the 1.1.1.x
enzyme classification (EC) number are often favorable in
both the oxidation and reduction directions (ESIf Fig. S3).
Monooxygenation reactions (EC 1.14.13.x), by contrast, are
only favorable in the direction of oxygen consumption (ESIt
Fig. S2), given the extremely high energetic barrier that
needs to be overcome to form NADH and oxygen as
products in the reverse monooxygenation direction. Further,
instead of the threshold of A.G.;, <0 k] mol™" that is
commonly invoked, our less permissive thermodynamic
feasibility threshold of AG!;, < —10 k] mol " allows us to
truly treat each reaction as independent of its reverse. This
is because when A;G,;, = —10 kJ mol™', 96.5% of the flux
in a given reaction is carried in the forward direction only
owing to the flux-force efficacy relationship (see Materials
and methods 2.2-2.3).

Finally, our thermodynamic screen is necessary since the
presence of a reported reaction in a metabolic database does
not simply guarantee its general feasibility. Often, databases
report enzymatic reactions within the context of a broader
pathway in a specific organism, wherein multiple factors, such
as enzyme concentrations,” cellular compartmentalization,*
energy coupling to other exothermic reactions,*** and
metabolic channeling®™*® may help to drive a reaction forward.
Given the difficulty of simultaneously accounting for all of these
factors, our stricter bound of thermodynamic feasibility can
help determine if a reported reaction would truly be feasible
outside of the context in which it was reported. Consequently,
our DORA-XGB classifier is able to evaluate the feasibility of
novel reactions as a function of both enzyme specificit