RSC Advances

View Article Online

View Journal | View Issue

REVIEW

Check for updates

Cite this: RSC Adv., 2024, 14, 20492

Light-driven photocatalysis as an effective tool for degradation of antibiotics

Praveen P. Singh, ¹ ^a Geetika Pandey,^b Yogesh Murti,^c Jagriti Gairola,^{de} Shriya Mahajan,^f Harsimrat Kandhari,^g Shraddha Tivari^h and Vishal Srivastava ¹ *^h

Antibiotic contamination has become a severe issue and a dangerous concern to the environment because of large release of antibiotic effluent into terrestrial and aquatic ecosystems. To try and solve these issues, a plethora of research on antibiotic withdrawal has been carried out. Recently photocatalysis has received tremendous attention due to its ability to remove antibiotics from aqueous solutions in a cost-effective and environmentally friendly manner with few drawbacks compared to traditional photocatalysts. Considerable attention has been focused on developing advanced visible light-driven photocatalysts in order to address these problems. This review provides an overview of recent developments in the field of photocatalytic degradation of antibiotics, including the doping of metals and non-metals into ultraviolet light-driven photocatalysts, the formation of new semiconductor photocatalysts, the advancement of heterojunction photocatalysts, and the building of surface plasmon resonance-enhanced photocatalytic systems.

Received 9th May 2024 Accepted 22nd June 2024

DOI: 10.1039/d4ra03431g

rsc.li/rsc-advances

1. Introduction

Since antibiotics have the ability to affect humans and natural ecosystems, as well as to cause pathogenic bacteria to acquire antibiotic resistance at microconcentrations, the issue of water contamination via antibiotic residues is of concern globally.1 Treatment for infectious diseases and agricultural productivity²⁻⁵ have significantly improved as a result of the widespread use of antibiotics. On the basis of pharmacological characteristics, antibiotics are mainly divided into aminoglycosides, sulfonamides (SAs), glycopeptides macrolides, βlactams, quinolones and tetracyclines.6 Antibiotics are more difficult to remove because of their strong chemical stability. The parent structure of various antibiotics, classification and their characteristics have been summarized in Table 1.

Pharmaceutical antibiotics usually get poorly absorbed and metabolised by humans as well as animals. The release of polluted water, faeces, and urine from the aforementioned contact spots along with an escalated concentration of antibiotic residues, poses possible risks to the ecosystem (Fig. 1).17 Consequently, the advancement of an affordable and efficient antibiotic decontamination technique is required. Until lately a variety of strategies, including photoelectric Fenton, biological elimination, photocatalytic degradation, membrane filtering, and adsorption, have been used to remediate antibiotic wastewater contaminants.18a-h In the realm of environmental remediation, photocatalytic technology is widely employed to oxidise antibiotics into molecules that are easily biodegradable, less hazardous, and even harmless due to which it has received much concern from scientists.^{18i,j} As we continue our work on photocatalyzed organic synthesis,19,20 this article provides an overview of current developments in the state-ofthe-art design and production of photocatalysts with visible light sensitivity for the photocatalytic degradation of wastewater containing antibiotics.

2. Methods for antibiotic degradation

There are now multiple techniques to remove antibiotic residues in water and wastewater before releasing them back into the environment. The primary approaches employed as of right now includes both long-standing methods and more contemporary ideas.^{21–24} Unfortunately, substantial mineralization is either extremely difficult to attain or would take excessively prolonged. Because of their poor selectivity, these techniques can have the unintended consequence of killing non-target creatures that leads to unintended damages.^{25,26} This approach also has significant operating and capital expenditures. When removing antibiotic residues from water,

^aDepartment of Chemistry, United College of Engineering & Research, Prayagraj, U.P.-211010, India. E-mail: ppsingh23@gmail.com

^bDepartment of Physics, Faculty of Science, United University, Prayagraj-211012, India ^cInstitute of Pharmaceutical Research, GLA University, Mathura-281406, India

^dSchool of Pharmacy, Graphic Era Hill University, Clement Town, Dehradun, 248002 Uttarakhand, India

^eDepartment of Allied Sciences, Graphic Era (Deemed to be University) Clement Town, Dehradun, 248002 Uttarakhand, India

^fCentre of Research Impact and Outcome, Chitkara University, Rajpura-140417, Punjab, India

^sChitkara Centre for Research and Development, Chitkara University, Himachal Pradesh-174103, India

^hDepartment of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, U.P.-211002, India. E-mail: vishalgreenchem@gmail.com

Table 1 Classification and characteristics of antibiotics

human

© 2024 The Author(s). Published by the Royal Society of Chemistry

Table 1 (Contd.)

a combination of chemical and physical degradation methods can greatly lower the toxicity of treated effluents. However, these techniques are expensive and complicated.²⁷

Conversely, having a distinct advantages of photocatalysis, makes it a viable option for environmental remediation because of its (1) easily attainable reaction conditions (*i.e.*, almost ambient temperature and pressure), its ability to use air oxygen as a potent oxidant, and its ability to use solar radiation as an energy source; (2) the potential complete breakdown of organic pollutants into harmless inorganic molecules like carbon dioxide and water; and (3) its strong redox ability, low cost, lack of adsorption saturation, and long durability. As a result, photocatalysis has attracted attention from all around the world and been widely used in innovative methods of energy extraction and environmental control. Several methods²⁸⁻⁴⁷ for antibiotic degradation have been reported incorporating materials, operating conditions and disadvantages of antibiotics.

Fig. 1 Schematic representation of antibiotics consumption routes and impact on water bodies along with proposal of treating the same with solar energy-driven photocatalysis technique. Reproduced with permission from ref. 17. Copyright 2021 Elsevier Publishers.

3. General mechanism of photocatalytic antibiotics degradation

Techniques have been developed to treat contaminated water and waste water with organic pollutants. Fig. 2 depicts the mechanism of the photocatalytic degradation. An equivalent number of positively charged holes are produced in the valence band (VB) of a semiconductor when it is subjected to radiation with energy greater than its optical band gap. This is caused by excited electrons that are moved from the VB to the CB. When the potential of VB vs. NHE is more positive than $H_2O/$ OH'(+2.72 V vs. NHE) or OH-/'OH(+1.89 V vs. NHE) and the potential of CB vs. NHE is more negative than O_2/O_2^- (-0.33 V vs. NHE), the semiconductor will be able to generate OH' and O_2^{-} . After that, the photoinduced electrons and holes separate out and go to the semiconductor's surface, where redox reactions take place at the reactive site (Fig. 2).^{21,48} The reaction mechanisms of semiconductor photocatalysis are typically expressed by the following equations:49

semiconductor + light energy
$$(\lambda \ge E_g) \rightarrow$$

semiconductor $(e_{cb}^{-}+h_{vb}^{+})$ (1)

 $h_{vb}^{+} + H_2O \rightarrow H^+ + OH (H_2O/OH + 2.72 V vs. NHE)$ (2)

$$h_{vb}^{+} + OH^{-} \rightarrow OH (OH^{-}/OH + 1.89 \text{ V vs. NHE})$$
(3)

Fig. 2 General mechanism of the semiconductor photocatalytic degradation of organic pollutants. Reproduced with permission from ref. 21. Copyright 2020 Elsevier B.V. All rights reserved.

$$e_{cb}^{-} + O_2 \rightarrow O_2^{-}(O_2^{\prime}O_2^{-}) - 0.33 \text{ V vs. NHE}$$
 (4)

By these chemical processes solar energy can be directly converted and utilized. The consequences of photocatalytic activity are, however, lessened by restricted optical usage and the rapid annihilation of photoexcited electron-hole pairs. If photocatalysts satisfy the following requirements, they can overcome these deficiencies: (1) suitable spectral absorption range; (2) appropriate band energy structure for sufficient electron-hole pair separation and transport; and (3) sufficient active sites for adsorption or reaction.⁵⁰ To increase photocatalytic efficiency, it is imperative to meet the three previously mentioned requirements. Several attempts have been made to methodically design photocatalysts and enhance photocatalytic dynamics.

An acceptor is reduced by this excited electron, and donor molecules are oxidised by the acceptor's hole. The redox levels of the substrate⁵¹⁻⁶⁴ and the respective locations of the semiconductor's valence and conduction bands determine what happens to the excited electron and hole.

While considering photoabsorption capability and photocatalytic efficiency, optical bandgap (E_g) plays a crucial role in predicting the applicability and efficacy of a particular type of photocatalytic material. Polyfluorene co-polymers acting as photocatalysts^{65,66} are classified as photonic and electrochemical bandgaps by Ghaedi *et al.*, who also proposed a method and criterion for bandgap measurement. Furthermore, they came to the conclusion that by keeping charges from recombining, the active holes' lifetime would increase and their ability to degrade antibiotics would be improved. This approach to the interfacial charge transfer from a distinct energy surface to a molecular continuous surface from solids^{65,66} turned out to be highly effective in increasing the activity of photocatalysts under visible light.

Overall, the process of photocatalysis for the degradation of antibiotics can be broken down into five primary steps: (1) the antibiotics are transferred from the fluid phase to the surface; (2) they are adsorbed; (3) a reaction occurs in the adsorbed phase; (4) the products are desorption; and (5) the products are removed from the interface region.^{67,68} However, when the electrons that had been excited to CB quickly recombine with the separated holes in the VB before producing free radicals, photocatalytic degradation suffers from the issue of electronhole recombination in the photocatalyst.⁶⁸ Adoption of particular photocatalysts with a low CB-VB bandgap energy and photocatalyst modifications are proposed as solutions for these issues, however this depends on numerous variable alternatives, such as tailored experimental conditions.^{69,70}

4. Synthesis techniques of nanostructured photocatalysts

Several synthesis techniques have been used as summarised in Fig. 3. It is noteworthy that the following characteristics are essential for an efficient photocatalyst: (a) robust absorption of visible and UV light (*i.e.*, a suitable bandgap value, typically less

Fig. 3 Synthesis techniques of nanostructured photocatalysts. Reproduced with permission from ref. 75a. Copyright ©2019 Elsevier B.V. All rights reserved.

than 3.0 eV); (b) stability against photocorrosion in terms of temperature, chemical composition, and mechanical properties; (c) high efficiency in quantum conversion; (d) rapid generation and efficient transfer of photocarriers (e^- and h^+); and (e) slow recombination rate of photogenerated charge carriers. Additionally, the nanopowder photocatalysts must be able to rapidly and easily recover from the solution while maintaining a sufficient level of reusability, or without noticeably losing effectiveness. To achieve the listed attributes, many tactics are now employed, such as tuning of particle

Fig. 4 The proposed photocatalytic degradation pathways of tetracyclines.

Table 2 Photocatalytic degradation of tetracyclines at different conditions

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Optimum cond	itions	_	
$ \begin{array}{c} \mbox{Tetracycline} \\ Tetracyc$	Target antibiotic	Photocatalyst	Source of light	Initial concentration	Catalyst concentration	Degradation (%)	Ref.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		·		1	1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline Tetracycline	C dots modified MoO ₃ /g-C ₃ N ₄ g-C ₃ N ₄ /Hydroxyapatite	Visible light Simulated sunlight	$\begin{array}{c} 20 \text{ mg L}^{-1} \\ 50 \text{ mg L}^{-1} \end{array}$	0.6 g L^{-1} 1 g L ⁻¹	88.4% (90 min) Almost 100% (15 min)	88 89
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	β-Bi ₂ O ₃ /g-C ₃ N ₄ core/shell nanocomposites	Visible light	$10 \mathrm{~mg~L}^{-1}$	$0.5~{ m g~L^{-1}}$	80.2% (50 min)	90
$ \begin{array}{cccc} Tetracycline & Cdoped Cs.N.dBi.o.O.Cl. & Visible light 20 ng L^{-1} 0.5 g L^{-1} 94.0% (60 min) 92 \\ Tetracycline & NCQDe BiO/MAND,O_A & Visible light 10 ng L^{-1} 0.5 g L^{-1} 87.2% (60 min) 93 \\ Tetracycline & NCQDe BiO/MAND,O_A & Visible light 20 ng L^{-1} 0.5 g L^{-1} 81.1% (300 min) 96 \\ sunight & unaccine & unac$	Tetracycline	rGO/g-C ₃ N ₄ /BiVO ₄	Visible light	35 mg L^{-1}	$1~{ m g~L^{-1}}$	72.5% (150 min)	91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	C-doped C ₃ N ₄ /Bi ₁₂ O ₁₇ Cl ₂	Visible light	20 mg L^{-1}	1 g L^{-1}	94.0% (60 min)	92
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	CeVO ₄ /3D rGO aerogel/BiVO ₄	Visible light	20 mg L^{-1}	0.5 g L^{-1}	100% (60 min)	93
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	NGQDs-BiOI/MnNb ₂ O ₆	Visible light	10 mg L^{-1}	0.5 g L^{-1}	87.2% (60 min)	94
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	TiO ₂ /g-C ₃ N ₄	Simulated sunlight	20 mg L^{-1}	1 g L ⁻¹	100% (9 min)	95
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	Amorphous TiO ₂ /mesoporous-rutile TiO ₂	UV light	50 mg L^{-1}	0.5 g L^{-1}	81.1% (300 min)	96
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tetracycline	Magnetic Fe ₂ O ₃ ultrathin nanosheets/	Simulated	10 mg L^{-1}	0.3 g L^{-1}	99.3% (50 min)	97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		mesoporous black TiO_2	sunlight	- 0 - 1	o . 1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	$Bl_5Fell_3O_{15}$	Visible light	5.0 mg L^{-1}	0.4 g L^{-1}	99.4% (60 min)	98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	$Bl_2WO_6/CUBl_2O_4$	Visible light	15 mg L	0.5 g L	91.0% (60 min)	100
$ \begin{array}{c} \mbox{letta} product p$	Tetracycline	Agi/BivO ₄	Visible light	20 mg L	3 g L	94.9% (60 min)	100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	AgI/WO_3	Visible light	35 mg L	3 g L	75.0% (60 min)	101
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	$Ag_3 VO_4 / WO_3$	visible light	10 mg L 40 mg L $^{-1}$	0.5 g L	71.2% (30 min)	102
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			sunlight	40 mg L	1 g L		105
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	FeNi ₃ /SiO ₂ /CuS	UV light	10 mg L^{-1}	5 g L^{-1}	96.7% (90 min)	104
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	Pb/MaQ	visible light	50 mg L 20 mg L $^{-1}$	0.5 g L	96.6% (180 min)	105
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Totrogueline	PD/M004	sunlight	20 mg L	IgL	99.0% (120 min)	100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	Spo. /g C N	Visible light	10 mg L	$2 \mathrm{cr} \mathrm{I}^{-1}$	88.4% (80 IIIII)	107
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	$PGO_{2}/g^{-}O_{3}N_{4}$	Visible light	30 mg L^{-1}	3 g L	93.9% (120 mm)	100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline		Visible light	100 mg L^{-1}	$15 \sigma L^{-1}$	100% (60 min)	1109
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	BiaSnaO-/B-BiaOa	Visible light	40 mg L^{-1}	$2 \sigma L^{-1}$	95 5% (60 min)	111
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	MoS ₂ /TiO ₂	Visible light	10 mg L^{-1}	$0.1 \circ L^{-1}$	95.0% (100 min)	112
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	BioSnoO-/BioMoO	Visible light	35 mg L^{-1}	0.02 g L^{-1}	98.7% (100 min)	113
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	Ti ₂ C ₂ @TiO ₂	Visible light	20 mg L^{-1}	0102 8 2	90.0% (90 min)	114
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	NiCo-S@CN	Solar light	100 mg L^{-1}	2 g L^{-1}	99.0% (60 min)	115 <i>a</i>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	Bi ₂ Sn ₂ O ₇ /Bi ₂ MoO ₆	Visible light	20 mg L^{-1}	0.035 g L^{-1}	98.7% (100 min)	115 <i>b</i>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	Bi ₂ WO ₆ /Ta ₃ N ₅	Visible light	20 mg L^{-1}	0.04 g L^{-1}	86.7% (120 min)	115c
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetracycline	Ag/Ag ₂ S/Bi ₂ MoO ₆	Visible light	20 mg L^{-1}	0.03 g L^{-1}	87.3% (120 min)	115d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Oxytetracycline	Au–CuS–TiO ₂ nanobelts	Simulated sunlight	5.0 mg L^{-1}	$0.114 \text{ cm}^2 \text{ ml}^{-1}$	96.0% (60 min)	116
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Oxytetracycline	N–TiO ₂ /graphene	UV light	30 mg L^{-1}		63.0% (160 min)	117
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Oxytetracycline	Ag ₃ PO ₄ /TiO ₂ /MoS ₂	Visible light	5 mg L^{-1}	0.5 g L^{-1}	90.0%	118
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Oxytetracycline	Ti-MCM-41	UV light	50 mg L^{-1}	1 g L^{-1}	92.0% (180 min)	119
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Oxytetracycline	$g-C_3N_4$	Visible light	20 mg L^{-1}	0.3 g L^{-1}	79.3% (60 min)	120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Oxytetracycline	Fe _{2.8} Ce _{0.2} O ₄ /GO	Visible light	30 mg L^{-1}	0.8 g L^{-1}	82.0% (120 min)	121
OxytetracyclineSnO ₂ /BiOIVisible light10 mg L ⁻¹ 1 g L ⁻¹ 94.6% (90 min)123OxytetracyclineMU-0.15Simulated20 mg L ⁻¹ 0.5 g L ⁻¹ 86.6% (120 min)124Simulated20 mg L ⁻¹ 0.3 g L ⁻¹ 86.6% (120 min)124OxytetracyclineCoFe@NSC-1000Visible light50 mg L ⁻¹ 0.3 g L ⁻¹ 82.7% (150 min)125OxytetracyclineFe ₃ O ₄ /rGO/Co-doped ZnO/g-C ₃ N ₄ Visible light30 mg L ⁻¹ 0.16 g L ⁻¹ 82.0% (70 min)126OxytetracyclineBiOI/NH ₂ -MIL125(Ti)Visible light10 mg L ⁻¹ 0.5 g L ⁻¹ 96.2% (60 min)127OxytetracyclineMnFe ₂ O ₄ /g-C ₃ N ₄ Visible light10 mg L ⁻¹ 0.5 g L ⁻¹ 96.2% (60 min)128OxytetracyclineMIL-100(Fe)Visible light25 mg L ⁻¹ 0.05 g L ⁻¹ 99.0% (240 min)130OxytetracyclineMIL-100(Fe)Visible light10 mg L ⁻¹ 0.4 g L ⁻¹ 90.43% (70 min)130OxytetracyclineTiO ₂ Visible light10 mg L ⁻¹ 95.0% (180 min)131OxytetracyclineSnO ₂ /BiOIVisible light10 mg L ⁻¹ 1 g L ⁻¹ 90.0% (60 min)133DoxycyclineAg/AgCl/CdMoO ₄ UV light10 mg L ⁻¹ 0.01 g L ⁻¹ 79.0% (30 min)135DoxycyclineriO ₂ /g-C ₃ N ₄ UV light10 mg L ⁻¹ 0.15 g L ⁻¹ 85.0% (60 min)136DoxycyclineriO ₂ /g-C ₃ N ₄ UV light10 mg L ⁻¹ 99.3% (60 min)137 <td>Oxytetracycline</td> <td>Rhombohedral corundum-type In₂O₃</td> <td>UV light</td> <td>10 mg L^{-1}</td> <td>1 g L^{-1}</td> <td>89.5% (120 min)</td> <td>122</td>	Oxytetracycline	Rhombohedral corundum-type In ₂ O ₃	UV light	10 mg L^{-1}	1 g L^{-1}	89.5% (120 min)	122
OxytetracyclineMU-0.15Simulated sunlight 20 mg L^{-1} 0.5 g L^{-1} 86.6% (120 min) 124 OxytetracyclineCoFe@NSC-1000Visible light 50 mg L^{-1} 0.3 g L^{-1} 82.7% (150 min) 125 OxytetracyclineFe_3O_4/rGO/Co-doped ZnO/g-C_3N_4Visible light 30 mg L^{-1} 0.16 g L^{-1} 82.0% (70 min) 126 OxytetracyclineBiOI/NH ₂ -MIL125(Ti)Visible light 10 mg L^{-1} 0.5 g L^{-1} 96.2% (60 min) 127 OxytetracyclineMnFe_2O_4/g-C_3N_4Visible light 10 mg L^{-1} 0.5 g L^{-1} 96.2% (60 min) 128 OxytetracyclineMIL-100(Fe)Visible light 10 mg L^{-1} 0.5 g L^{-1} 90.0% (240 min) 129 OxytetracyclineAg/BiVO_4/GOVisible light 10 mg L^{-1} 0.4 g L^{-1} 90.43% (70 min) 130 OxytetracyclineTiO_2Visible light 10 mg L^{-1} 0.4 g L^{-1} 90.0% (180 min) 131 OxytetracyclineSnO_2/BiOIVisible light 10 mg L^{-1} 1 g L^{-1} 90.0% (60 min) 133 DoxycyclineAg/AgCl/CdMOO_4UV light 10 mg L^{-1} 0.01 g L^{-1} 79.0% (30 min) 135 DoxycyclineTiO_2-MCM-41UV light 10 mg L^{-1} 0.15 g L^{-1} 99.3% (60 min) 134 Doxycycline $a_{B_2O_3/g-C_3N_4}$ UV light 10 mg L^{-1} 0.15 g L^{-1} 99.3% (60 min) <td< td=""><td>Oxytetracycline</td><td>SnO₂/BiOI</td><td>Visible light</td><td>$10 \text{ mg } \text{L}^{-1}$</td><td>$1 \text{ g L}^{-1}$</td><td>94.6% (90 min)</td><td>123</td></td<>	Oxytetracycline	SnO ₂ /BiOI	Visible light	$10 \text{ mg } \text{L}^{-1}$	1 g L^{-1}	94.6% (90 min)	123
OxytetracyclineCoFe@NSC-1000Visible light 50 mg L^{-1} 0.3 g L^{-1} $82.7\% (150 \text{ min})$ 125 OxytetracyclineFe ₃ O ₄ /rGO/Co-doped ZnO/g-C ₃ N ₄ Visible light 30 mg L^{-1} 0.16 g L^{-1} $82.0\% (70 \text{ min})$ 126 OxytetracyclineBiOI/NH ₂ -MIL125(Ti)Visible light 10 mg L^{-1} 0.5 g L^{-1} $96.2\% (60 \text{ min})$ 127 OxytetracyclineMnFe ₂ O ₄ /g-C ₃ N ₄ Visible light 10 mg L^{-1} 0.5 g L^{-1} $96.2\% (60 \text{ min})$ 128 OxytetracyclineMIL-100(Fe)Visible light 10 mg L^{-1} 0.05 g L^{-1} $99.0\% (240 \text{ min})$ 129 OxytetracyclineAg/BiVO ₄ /GOVisible light 40 mg L^{-1} 0.4 g L^{-1} $90.43\% (70 \text{ min})$ 130 OxytetracyclineTiO ₂ Visible light 10 mg L^{-1} 0.5 g L^{-1} $90.0\% (180 \text{ min})$ 131 OxytetracyclineMnFe ₂ O ₄ /g-C ₃ N ₄ Visible light 10 mg L^{-1} $90.0\% (1 \text{ min})$ 132 DoxycyclineSnO ₂ /BiOIVisible light 10 mg L^{-1} $90.0\% (60 \text{ min})$ 133 DoxycyclineAg/AgCl/CdMoO ₄ UV light 10 mg L^{-1} $90.0\% (60 \text{ min})$ 134 DoxycyclineTiO ₂ -MCM-41UV light 10 mg L^{-1} 0.15 g L^{-1} $85.0\% (60 \text{ min})$ 136 DoxycyclineIn ₂ O ₃ /g-C ₃ N ₄ 10 mg L^{-1} 0.15 g L^{-1} $85.0\% (60 \text{ min})$ 136 Doxycycline <td>Oxytetracycline</td> <td>MU-0.15</td> <td>Simulated sunlight</td> <td>20 mg L^{-1}</td> <td>0.5 g L^{-1}</td> <td>86.6% (120 min)</td> <td>124</td>	Oxytetracycline	MU-0.15	Simulated sunlight	20 mg L^{-1}	0.5 g L^{-1}	86.6% (120 min)	124
Oxytetracycline $Fe_3O_4/rGO/Co-doped ZnO/g-C_3N_4$ Visible light 30 mg L^{-1} 0.16 g L^{-1} 82.0% (70 min) 126 OxytetracyclineBiOI/NH2-MIL125(Ti)Visible light 10 mg L^{-1} 0.5 g L^{-1} 96.2% (60 min) 127 OxytetracyclineMnFe_2O_4/g-C_3N_4Visible light 10 mg L^{-1} 0.5 g L^{-1} 96.2% (60 min) 128 OxytetracyclineMIL-100(Fe)Visible light 25 mg L^{-1} 0.05 g L^{-1} 99.0% (240 min) 129 OxytetracyclineAg/BiVO_4/GOVisible light 40 mg L^{-1} 0.4 g L^{-1} 90.43% (70 min) 130 OxytetracyclineTiO_2Visible light 10 mg L^{-1} 0.5 g L^{-1} 90.0% (180 min) 131 OxytetracyclineMnFe_2O_4/g-C_3N_4Visible light 10 mg L^{-1} 0.5 g L^{-1} 90.0% (1 min) 132 DoxycyclineSnO_2/BiOIVisible light 10 mg L^{-1} 90.0% (60 min) 133 DoxycyclineAg/AgCl/CdMoO_4UV light 10 mg L^{-1} 90.0% (30 min) 134 DoxycyclineTiO_2-MCM-41UV light 10 mg L^{-1} 0.15 g L^{-1} 85.0% (60 min) 135 DoxycyclineIn_2O_3/g-C_3N_4IOUV light 10 mg L^{-1} 90.3% (60 min) 136 DoxycyclineIn_2O_3/g-C_3N_4IOIO 10 mg L^{-1} 90.3% (60 min) 137	Oxytetracycline	CoFe@NSC-1000	Visible light	50 mg L^{-1}	0.3 g L^{-1}	82.7% (150 min)	125
OxytetracyclineBiOI/NH2-MIL125(Ti)Visible light10 mg L $^{-1}$ 0.5 g L $^{-1}$ 96.2% (60 min)127OxytetracyclineMnFe2O4/g-C_3N4Visible light10 mg L^{-1}80.5% (10 min)128OxytetracyclineMIL-100(Fe)Visible light25 mg L^{-1}0.05 g L^{-1}99.0% (240 min)129OxytetracyclineAg/BiVO4/GOVisible light40 mg L^{-1}0.4 g L^{-1}90.43% (70 min)130OxytetracyclineTiO2Visible light10 mg L^{-1}0.5 g L^{-1}95.0% (180 min)131OxytetracyclineMnFe2O4/g-C_3N4Visible light10 mg L^{-1}90.0% (1 min)132DoxycyclineSnO2/BiOIVisible light10 mg L^{-1}1 g L^{-1}90.0% (60 min)133DoxycyclineAg/AgCl/CdMoO4UV light10 mg L^{-1}82.4% (60 min)134DoxycyclineTiO2-MCM-41UV light10 mg L^{-1}0.15 g L^{-1}85.0% (60 min)135DoxycyclineTiO2-MCM-41UV light10 mg L^{-1}99.3% (60 min)136	Oxytetracycline	Fe ₃ O ₄ /rGO/Co-doped ZnO/g-C ₃ N ₄	Visible light	$30 \text{ mg } \text{L}^{-1}$	0.16 g L^{-1}	82.0% (70 min)	126
OxytetracyclineMnFe2O4/g-C_3N4Visible light10 mg L \cdot 80.5% (10 min)128OxytetracyclineMIL-100(Fe)Visible light25 mg L ⁻¹ 0.05 g L^{-1} 99.0% (240 min)129OxytetracyclineAg/BiVO4/GOVisible light40 mg L ⁻¹ 0.4 g L^{-1} 90.43% (70 min)130OxytetracyclineTiO2Visible light10 mg L ⁻¹ 0.5 g L^{-1} 95.0% (180 min)131OxytetracyclineMnFe2O4/g-C_3N4Visible light10 mg L ⁻¹ 0.5 g L^{-1} 90.0% (1 min)132DoxycyclineSnO2/BiOIVisible light10 mg L ⁻¹ 1 g L^{-1} 90.0% (60 min)133DoxycyclineAg/AgCl/CdMoO4UV light10 mg L ⁻¹ 82.4% (60 min)134DoxycyclineTiO2-MCM-41UV light10 mg L ⁻¹ 0.15 g L^{-1} 85.0% (60 min)135DoxycyclineTiO2-MCM-41UV light10 mg L ⁻¹ 0.15 g L^{-1} 85.0% (60 min)136DoxycyclineIn2O3/g-C_3N410 mg L ⁻¹ 0.15 g L^{-1} 85.0% (60 min)136	Oxytetracycline	BiOI/NH ₂ -MIL125(Ti)	Visible light	10 mg L^{-1}	0.5 g L	96.2% (60 min)	127
OxytetracyclineMIL-100(Fe)Visible light 25 mg L^{-1} 0.05 g L^{-1} 99.0% (240 min) 129 OxytetracyclineAg/BiVO ₄ /GOVisible light 40 mg L^{-1} 0.4 g L^{-1} 90.43% (70 min) 130 OxytetracyclineTiO ₂ Visible light 10 mg L^{-1} 0.5 g L^{-1} 95.0% (180 min) 131 OxytetracyclineMnFe ₂ O ₄ /g-C ₃ N ₄ Visible light 10 mg L^{-1} 0.5 g L^{-1} 90.0% (1 min) 132 DoxycyclineSnO ₂ /BiOIVisible light 10 mg L^{-1} 1 g L^{-1} 90.0% (60 min) 133 DoxycyclineAg/AgCl/CdMoO ₄ UV light 10 mg L^{-1} 0.01 g L^{-1} 82.4% (60 min) 134 DoxycyclineTiO ₂ -MCM-41UV light 10 mg L^{-1} 0.15 g L^{-1} 85.0% (60 min) 136 DoxycyclineIiO ₂ -MCM-41UV light 10 mg L^{-1} 99.3% (60 min) 137	Oxytetracycline	$MnFe_2O_4/g-C_3N_4$	Visible light	10 mg L^{-1}	o o z z -1	80.5% (10 min)	128
Oxytetracycline Ag/BIVO ₄ /GO Visible light 40 mg L 0.4 g L 90.43% (70 min) 130 Oxytetracycline TiO ₂ Visible light 10 mg L ⁻¹ 0.5 g L ⁻¹ 95.0% (180 min) 131 Oxytetracycline MnFe ₂ O ₄ /g-C ₃ N ₄ Visible light 10 mg L ⁻¹ 0.5 g L ⁻¹ 90.0% (1 min) 132 Doxycycline SnO ₂ /BiOI Visible light 10 mg L ⁻¹ 1 g L ⁻¹ 90.0% (60 min) 133 Doxycycline Ag/AgCl/CdMoO ₄ UV light 10 mg L ⁻¹ 82.4% (60 min) 134 Doxycycline α -Bi ₂ O ₃ /g-C ₃ N ₄ + H ₂ O ₂ Visible light 25 mg L ⁻¹ 0.01 g L ⁻¹ 79.0% (30 min) 135 Doxycycline TiO ₂ -MCM-41 UV light 10 mg L ⁻¹ 0.15 g L ⁻¹ 85.0% (60 min) 136 Doxycycline In ₂ O ₃ /g-C ₃ N ₄ 10 mg L ⁻¹ 99.3% (60 min) 137	Oxytetracycline	MIL-100(Fe)	Visible light	25 mg L^{-1}	0.05 g L^{-1}	99.0% (240 min)	129
Oxycertacycline 110_2 Visible light 10 ing L^{-1} 0.5 g L^{-1} 95.0% (180 min) 131 Oxytetracycline MnFe ₂ O ₄ /g-C ₃ N ₄ Visible light 10 mg L^{-1} 90.0% (1 min) 132 Doxycycline SnO ₂ /BiOI Visible light 10 mg L^{-1} 10 mg L^{-1} 90.0% (60 min) 133 Doxycycline Ag/AgCl/CdMoO ₄ UV light 10 mg L^{-1} 10 mg L^{-1} 90.0% (60 min) 134 Doxycycline α -Bi ₂ O ₃ /g-C ₃ N ₄ + H ₂ O ₂ Visible light 25 mg L^{-1} 0.01 g L^{-1} 79.0% (30 min) 135 Doxycycline TiO ₂ -MCM-41 UV light 10 mg L^{-1} 0.15 g L^{-1} 85.0% (60 min) 136 Doxycycline In ₂ O ₃ /g-C ₃ N ₄ 10 mg L^{-1} 0.15 g L^{-1} 85.0% (60 min) 136	Oxytetracycline	Ау/ыv0 ₄ /б0 т:0	Visible light	40 mg L $^{-1}$	0.4 g L^{-1}	90.43% (/0 min)	130
Oxycertacycline Mirc ₂ O ₄ /g-O ₃ N ₄ Visible light 10 mg L 90.0% (1 min) 132 Doxycycline SnO ₂ /BiOI Visible light 10 mg L ⁻¹ 1 g L ⁻¹ 90.0% (60 min) 133 Doxycycline Ag/AgCl/CdMoO ₄ UV light 10 mg L ⁻¹ 82.4% (60 min) 134 Doxycycline α -Bi ₂ O ₃ /g-C ₃ N ₄ + H ₂ O ₂ Visible light 25 mg L ⁻¹ 0.01 g L ⁻¹ 79.0% (30 min) 135 Doxycycline TiO ₂ -MCM-41 UV light 10 mg L ⁻¹ 0.15 g L ⁻¹ 85.0% (60 min) 136 Doxycycline In ₂ O ₃ /g-C ₃ N ₄ 10 mg L ⁻¹ 99.3% (60 min) 137	Oxytetracycline	$MnEe \Omega / c C N$	Visible light	10 IIIg L 10 mg I $^{-1}$	0.5 g г	95.0% (180 mm)	131
Doxycycline Ag/AgCl/CdMoO ₄ Visible light 10 mg L 1 g L 90.0% (60 min) 133 Doxycycline Ag/AgCl/CdMoO ₄ UV light 10 mg L ⁻¹ 82.4% (60 min) 134 Doxycycline α -Bi ₂ O ₃ /g-C ₃ N ₄ + H ₂ O ₂ Visible light 25 mg L ⁻¹ 0.01 g L ⁻¹ 79.0% (30 min) 135 Doxycycline TiO ₂ -MCM-41 UV light 10 mg L ⁻¹ 0.15 g L ⁻¹ 85.0% (60 min) 136 Doxycycline In ₂ O ₃ /g-C ₃ N ₄ 10 mg L ⁻¹ 99.3% (60 min) 137	Dovievaline	$s_{1} = c_{2} = c_{3} = c_{3$	Visible light	10 mg L $^{-1}$	$1 \alpha I^{-1}$	90.0% (1 IIIII)	132
Doxycycline $R_2/R_2G_1/GdNOO_4$ OV fight Io fig L 82.4% (60 fillin) 134 Doxycycline α -Bi ₂ O ₃ /g-C ₃ N ₄ + H ₂ O ₂ Visible light 25 mg L ⁻¹ 0.01 g L ⁻¹ 79.0% (30 min) 135 Doxycycline TiO ₂ -MCM-41 UV light 10 mg L ⁻¹ 0.15 g L ⁻¹ 85.0% (60 min) 136 Doxycycline In ₂ O ₃ /g-C ₃ N ₄ 10 mg L ⁻¹ 99.3% (60 min) 137	Doxycycline	Ag/AgCl/CdMoO	IW light	10 mg L	туг	90.070 (00 IIIII) 82.4% (60 min)	124
Doxycycline $x D_2 O_3 / g O_3 A_4 + H_2 O_2$ Visible light $25 \text{ mg L}^ 0.01 \text{ g L}^ 75.0\%$ (50 min) 133 Doxycycline TiO ₂ -MCM-41 UV light 10 mg L^{-1} 0.15 g L^{-1} 85.0% (60 min) 136 Doxycycline In ₂ O ₃ /g-C ₃ N ₄ 10 mg L^{-1} 99.3% (60 min) 137	Doxycycline	α -Bi ₂ O ₂ / α -C ₂ N ₄ + H ₂ O ₂	Visible light	25 mg L^{-1}	$0.01 \mathrm{g L^{-1}}$	79.0% (30 min)	134
Doxycycline In $_2O_3/g$ - C_3N_4 In mgL^{-1} 99.3% (60 min) 137	Doxycycline	TiO_2 -MCM-41	UV light	10 mg L^{-1}	0.15 g L^{-1}	85.0% (60 min)	136
	Doxycycline	$In_2O_3/g-C_3N_4$	0	10 mg L^{-1}	0	99.3% (60 min)	137

Table 2 (Contd.)

		Optimum conditions		_	
Target antibiotic Photocatalyst	Source of light	Initial concentration	Catalyst concentration	Degradation (%)	Ref.
Doxycycline $Cu_2O/SrBi_4Ti_4O_{15}$	Simulated sunlight Visible light UV light	40 mg L ⁻¹ 30 mg L ⁻¹		92.2% (60 min) 54.0% (160 min)	138 139
Chlorotetracycline $Bi_2O_3/MIL101(Fe)$	Visible light	20 mg L^{-1}	$0.3~g~L^{-1}$	88.2% (120 min)	140

dimensions, morphology, and size. Moreover, different photocatalyst compositions result in heterojunctions, composites, core-shell structures, element substitutions, intercalation compounds, and plasmon sensitization.^{51,71-75}

5. Photocatalytic degradation of different antibiotics

5.1. Photocatalytic degradation of tetracyclines

Tetracycline is a broad-spectrum antibiotic that is commonly used to treat a wide range of illnesses. Because of its high efficacy and low cost, it is regarded as the second most frequently used antibiotic in human activities and livestock breeding.^{75–78} On the other hand, prolonged and excessive TC usage pollutes the environment and is a major social concern.⁷⁹ Tetracycline has been removed using a variety of methods, such as adsorption,⁸⁰ ion exchange,⁸¹ membrane filtering,⁸² biological processes,⁸³ electrolysis,⁸⁴ ozonation,⁸⁵ advanced oxidation processes,⁸⁶ and photocatalysis.⁸⁷ The most efficient, affordable, simple to implement, and environmentally benign of these processes are thought to be the photocatalysis and advanced oxidation processes. Generating charges such as holes, hydroxyl radicals, electrons, and superoxide anion radicals efficiently is essential to the photocatalysis process. Again, the exciton creation and its subsequent dissociation into photo-induced electrons and holes are prerequisites for the production of hydroxyl radical and superoxide anion radical.

Tetracyclines are generally used worldwide. They have four linked rings with several ionizable functional groups. The most widely used tetracyclines are oxytetracycline, tetracycline, and chlortetracycline. The degradation mechanisms of tetracyclines are more intricate because of their complex molecular structure.77 Tetracycline degradation processes under various photocatalytic systems are summarised in Fig. 4. Tetracyclines are commonly degraded via four different processes: hydroxylation, deamidation, N-demethylation, and dehydration. Table 2 comprises a summary of the information regarding the photocatalytic degradation of tetracyclines using various photocatalysts.

5.2. Photocatalytic degradation of sulfonamides

Sulfonamides are a class of synthetic pharmaceuticals that emerged in 1906 and contain the sulfonamide chemical group. Since 1940, more than 150 of these agents have been utilised as antimicrobials, making them the most commonly used antibiotics in the field of medicine with good hydrophilicity.^{141,142}

Fig. 5 The proposed photocatalytic degradation pathways of sulfonamides.

Ref. 144

145 146 147

148 149 150

151 152 153

180

181

182

183

184

185

186

187

188

189

			Optimum condit		
Target antibiotic	Photocatalyst	Source of light	Initial concentration	Catalyst concentration	Degradation (%)
Sulfamethoxazole	Doped metals (Na, K, Ca, Mg) on g - C_3N_4	Visible light	5.0 mg L^{-1}	$0.05~{ m g~L}^{-1}$	g-CN-K > g-CN-Na > g-CN-Mg > g-CN-Ca
Sulfamethoxazole	$\Delta \alpha = P co-doped-\alpha - C \cdot N$	Visible light	$5.0 \text{ mg } \text{L}^{-1}$	$1.0 \sigma L^{-1}$	> g-CN 99% (30 min)
Sulfamethoxazole	Ag $P_{-\alpha-C}$ N	Visible light	0.1 mg L^{-1}	1.0 g L 0.1 g L^{-1}	100% (20 min)
Sulfamethoxazole	Ag/a - C - N_1/Bi - T_2O	Visible light	5.0 mg L $^{-1}$	0.1 g L 0.5 g L ⁻¹	98% (25 min)
Sulfamethoxazole	rGO/WO	Visible light	10.0 mg L^{-1}	0.5 g L 2.0 g L ⁻¹	98.0% (25 mm)
Sulfamethoxazole	Ag BO /N-doped rCO	Visible light	20.0 mg L^{-1}	2.0 g L	93.0% (100 mm)
Sulfamethoxazole	TiO ₂ -rGO	Simulated	0.10 mg L^{-1}	0.2 g L 0.1 g L^{-1}	$87.0 \pm 4\%$ (60 min)
Sulfamethoxazole	TiO ₂ supported on reed straw biochar	UV light	10.0 mg L^{-1}	$1.25~\mathrm{g~L}^{-1}$	91.3% (180 min)
Sulfamethoxazole	W Modified TiO ₂	Simulated sunlight	1.0 mg L^{-1}	$0.25~{\rm g~L}^{-1}$	100% (90 min)
Sulfamethoxazole	F-Pd co-doped-TiO ₂	Simulated sunlight	30.0 mg L^{-1}	$1.0 \mathrm{~g~L}^{-1}$	94.2% (20 min)
Sulfamethoxazole	p(HEA/NMMA)-CuS	UV light	$50.0 { m ~mg~L}^{-1}$	$2.0~{ m g~L}^{-1}$	95.9% (24 h)
Sulfamethoxazole	ZnO/fluoride ions	UV light	$250.0 { m mg L}^{-1}$	$1.5 \mathrm{g L}^{-1}$	97.0% (30 min)
Sulfamethoxazole	Mn-WO ₃	LED light	$3.25~\mathrm{mg~L}^{-1}$	2.3 g L^{-1}	100% (70 min)
Sulfamethoxazole	Co-CuS@TiO2	Solar light	$5.0 \mathrm{~mg~L}^{-1}$	$1.0~{ m g~L}^{-1}$	100% (120 min)
Sulfamethoxazole	ZnO/ZnIn ₂ S ₄	Visible light	2.5 mg L^{-1}	0.20 g L^{-1}	74.9% (6.5 h)
Sulfamethoxazole	TiO ₂ -based materials	Sunlight or LED	$10.0~{ m mg~L}^{-1}$		90.0% (30 min)
Sulfamethoxazole	TiO ₂ /BC	UV light	30.0 mg L^{-1}	$0.02~{ m g~L^{-1}}$	89.0% (60 min)
Sulfamethoxazole	PAN-TiO ₂ and PAN-rGTi	Solar light	$5.0 { m mg L}^{-1}$		100% (120 min)
Sulfamethoxazole	Fe_2O_3/g - C_3N_4	Visible light	$10.0~{ m mg~L}^{-1}$	$0.3 { m g L}^{-1}$	99.2% (30 min)
Sulfamethoxazole	P-TiO ₂ /g-C ₃ N ₄	Visible light	$10.0 { m mg L}^{-1}$	$0.7~{ m g~L^{-1}}$	99.0% (90 min)
Sulfamethoxazole	$\begin{array}{l} TiO_2 @Fe_2O_3 @g-C_3N_4 \\ (MFTC) \end{array}$	Solar light	$10.0 \mathrm{~mg~L}^{-1}$	$0.5~{ m g~L}^{-1}$	96.8% (120 min)
Sulfamethoxazole	Pd-BiVO ₄	Visible light	$10 \mathrm{~mg~L}^{-1}$		98.8% (210 min)
Sulfamethoxazole	CoP/BVO	Simulated sunlight	$500 { m mg L}^{-1}$	$1.0 \mathrm{g L}^{-1}$	89.0% (180 min)
Sulfamethoxazole	$MoS_2 @CoS_2$	Visible light	20.0 mg L^{-1}		95.0% (80 min)
Sulfamethoxazole	ZrFe ₂ O ₄ @ZIF-8	Visible light	5.0 mg L^{-1}	0.02 g L^{-1}	100% (180 min)
Sulfamethoxazole	CN/N ₂ PG-0.02	Simulated sunlight	10 mg L^{-1}		90.0% (120 min)
Sulfamethoxazole	g-C ₃ N ₄ /GSBC	Visible light	10.0 mg L^{-1}		87.2% (90 min)
Sulfamethoxazole	Pt/PtO _x /BiVO ₄	Visible light	10.0 mg L^{-1}	0.5 g L^{-1}	99.0% (150 min)
Sulfamethoxazole	Fe–Co/γ-Al ₂ O ₃	UV light	10 mg L^{-1}	1.0 g L^{-1}	98.0% (60 min)
Sulfamethoxazole	Sulfur-doped-Bi ₂ O ₃ / MnO ₂ (S-BOMO)	Visible light	5.0 mg L^{-1}	$0.5 \mathrm{g L}^{-1}$	86.0% (240 min)
Sulfamethoxazole	Ag ₃ PO ₄	UV light	20.0 mg L^{-1}	1	99.9% (60 min)
Sulfamethoxazole	Cd doped γ-Bi ₂ MoO ₆ (Cd- BMO)	Visible light	5.0 mg L^{-1}	0.05 g L^{-1}	97.9% (210 min)
Sulfamethoxazole	AgNbO ₃	Visible light	10.0 mg L^{-1}	$0.5~\mathrm{g~L}^{-1}$	98.0% (8 h)
Sulfamethoxazole	Fc@rGO-ZnO	UV light	10 mg L^{-1}		95.0% (180 min)
Sulfamethoxazole	CoFe ₂ O ₄ /PMS	UV light	10 mg L^{-1}	$0.1 \text{ g L}^{-1}/0.4 \text{ g}$ L^{-1}	91.0% (10 min)
Sulfamethazine	g-C ₃ N ₄	Visible light	$10.0 { m mg L}^{-1}$	$0.5 { m g L}^{-1}$	95.0% (24 h)
Sulfamethazine	$g-C_3N_4$	Visible light	$10.0 { m ~mg~L^{-1}}$	$1.0 { m g L}^{-1}$	97.0% (60 min)

Visible light

Visible light

Visible light

Visible light

Simulated

Simulated

Visible light

sunlight

sunlight

UV light

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Open Access Article. Published on 27 June 2024. Downloaded on 8/12/2024 5:59:43 PM. BY-NC

Sulfamethazine Sulfamethazine Sulfamethazine Sulfamethazine Sulfamethazine Sulfamethazine Sulfamethazine

Sulfamethazine

Sulfamethazine Sulfamethazine

g-C₃N₄/Cu, N-TiO₂

g-C₃N₄

TiO₂

C Doping g-C₃N₄

AgI/Bi₄V₂O₁₁

Bi₂WO₆/RGO

 Bi_2WO_6 $W_{10}O_{32}^{4-}$

2D/1D g-C₃N₄/TNTs

Graphene aerogel/

99.7% (60 min)

98.0% (60 min)

61.0% (120 min)

91.5% (60 min)

55.8% (120 min)

95.8% (240 min)

100% (5 h)

57.6% (8 h)

85.0% (4 h)

 $0.5 \ \mathrm{g} \ \mathrm{L}^{-1}$

 $1.0~{\rm g}~{\rm L}^{-1}$

 $0.2\;\bar{g}\;L^{-1}$

 $0.5 \; {\rm g} \; L^{-1}$

 $0.1 \ g \ L^{-1}$

 $0.33~g~L^{-1}$

 $30.0~\text{mg}~\text{L}^{-1}$

 $10.0\ mg\ L^{-1}$

 $5.0~mg^{-1}$

 $20.0\ \mathrm{mg\ L^{-1}}$

 10.0 mg L^{-1}

 $10.0\ mg\ L^{-1}$

 10.0 mg L^{-1}

 $13.9~\mathrm{mg}~\mathrm{L}^{-1}$

 $10 \text{ mg} \text{L}^{-1}$

			Optimum conditions			
Target antibiotic	Photocatalyst	Source of light	Initial concentration	Catalyst concentration	Degradation (%)	Ref.
		Simulated				
		sunlight				
Sulfamethazine	Cu-Cu _x O/TiO ₂	Visible light	10 mg L^{-1}		98.2% (60 min)	190
Sulfamethazine	PhC ₂ Cu/Ag/Ag ₂ MoO ₄ (PAM)	Visible light	10.0 mg L^{-1}	$0.4 \mathrm{g L}^{-1}$	97.7% (20 min)	191
Sulfamethazine	G-CDs	Simulated sunlight	10.0 mg L^{-1}		94.0% (75 min)	192
Sulfanilamide	WO ₃ /Ag	Visible light	$10.0 { m mg L}^{-1}$	0.5 g L^{-1}	96.2% (5 h)	193
Sulfanilamide	Ag/ZnFe ₂ O ₄ /Ag/	Visible light	10.0 mg L^{-1}	$1.0~{ m g}~{ m L}^{-1}$	100% (6 h)	194
	$BiTa_{1-x}V_xO_4$	-	-	-		
Sulfanilamide	Mo-BiOBr	Visible light	10.0 mg L^{-1}	0.3 g L^{-1}	48.3% (80 min)	195
Sulfadiazine	BiOCl-Au-CdS	Simulated sunlight	20.0 mg L^{-1}	$1.0 \mathrm{\ g\ L^{-1}}$	100% (240 min)	196
Sulfadiazine	Cu ₂ O/Bi/Bi ₂ MoO ₆	Visible light	$10.0 { m mg L}^{-1}$		98.6% (100 min)	197
Sulfadiazine	Porous g-C ₃ N ₄ with C vacancies	Visible light	5.0 mg L^{-1}	$0.02~{\rm g~L}^{-1}$	100% (20 min)	198
Sulfadiazine	NSFe-TiO ₂	UV light	20.0 mg L^{-1}	$0.01~{ m g~L^{-1}}$	90.0% (120 min)	199
Sulfadiazine	Bi ₂ O ₃ -TiO ₂ /PAC	Visible light	20.0 mg L^{-1}	0.2 g L^{-1}	72.0% (30 min)	200
Sulfadiazine	TiO ₂ /ZEO	UV light	10.0 mg L^{-1}	$1.0~{ m g}~{ m L}^{-1}$	90.0% (120 min)	201
Sulfadiazine	Degussa P25 TiO ₂	Visible light	10.0 mg L^{-1}	1.0 g L^{-1}	99.0% (60 min)	202
Sulfadiazine	C, N−TiO₂@C	Visible light	20.0 mg L^{-1}	$1.0~{ m g}~{ m L}^{-1}$	99.3% (140 min)	203
Sulfadiazine	BC_TiO ₂ _MagEx	Visible light	5.0 mg L^{-1}	$1.0 \mathrm{g} \mathrm{L}^{-1}$	76.0% (240 min)	204
Sulfadiazine	ZIF-67/Ag NPs/NaYF ₄ :	Simulated	$10 \text{ mg} \text{L}^{-1}$	5	95.4% (180 min)	205
	Yb,Er	sunlight	-		. ,	

Among these, sulfanilamide, sulfadiazine, sulfamethazine/ sulfadimidine, and sulfamethoxazole are frequently used. These contaminants alter the biological population, which could have an adverse effect on human health. Numerous studies indicate that the paths and capabilities of sulfonamide degradation are connected to their substituents.¹⁴³ Fig. 5 concludes the sulfonamide degradation routes in different photocatalytic systems. Sulfonamides would degrade primarily due to sulfonamide cleavage of the S–N and C–N bonds, amino group oxidation, hydroxylation, and cleavage of the S–C bond between the sulphur and benzene ring by attacking radicals, which would progressively produce the corresponding byproducts.⁷⁷ Table 3 provides an overview of the results of the efficient degradation of sulphonamides using semiconductor photocatalytic technology.

5.3. Photocatalytic degradation of fluoroquinolones

Since the late 1980s, fluoroquinolones have been used as medications for humans and animals to prevent bacterial infections.²⁰⁶ Fluoroquinolones are found in the environment in significant amounts due to animal waste from farms, human waste from residential areas and hospitals, and fertiliser dispersal in agriculture. Generally, fluoroquinolones are prepared primarily by adding fluorine and piperazine groups to form the quinolones core structure²⁰⁷ in which ciprofloxacin, norfloxacin, levofloxacin/ofloxacin, enrofloxacin are the common used fluoroquinolones.^{208,209} Since their longer half-

life (10.6 days in surface water and 580 days in sediments), more than 70% fluoroquinolones are discharged unmetabolized.²¹⁰ Moreover, due to their chemical stability, these fluoroquinolones are hard to be degraded thoroughly in the environment, which have potential harm to the ecological environment.²⁰⁹

Recent studies have demonstrated the development of highly effective photocatalytic devices for fluoroquinolone degradation. Table 4 displays the outcomes. The fluoroquinolone contaminants are discovered to be efficiently destroyed in the presence of light by employing photocatalysts. The chemical structures of fluoroquinolones and the conditions under which photocatalytic processes occur can be responsible for significant modification in the degradation capacity of fluoroquinolones by various photocatalytic processes.⁷⁷ Fig. 6, comprises the fluoroquinolone degradation pathways under various photocatalytic processes.

5.4. Photocatalytic degradation of macrolides

Macrolides are monocyclic lactones with a high substitution rate having potency to prevent the synthesis of proteins.²⁹¹ They belong to the class of large-ringed natural lactones, which typically have 12, 14, or 16 members. Examples of these lactones are tylosin, erythromycin, spiramycin, oleandomycin, clarithromycin, and azithromycin.²⁹² Macrolides are not completely eradicated in sewage treatment plants, and it has been revealed that they do not readily hydrolyze in the environment, This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 27 June 2024. Downloaded on 8/12/2024 5:59:43 PM.

(cc) BY-NC

Table 4 Photocatalytic degradation of fluoroquinolones at different conditions

			Optimum conditions			
Target antibioti	ic Photocatalyst	Source of light	Initial concentration	Catalyst concentration	Degradation (%)	Ref.
Ciprofloxacin	Ag/SiO ₂	Sunlight	$10.0 { m mg L}^{-1}$	$0.12~{ m g~L}^{-1}$	98.0% (180 min)	211
Ciprofloxacin	ZnO/CD	Sunlight	$10.0 { m mg L}^{-1}$	0.6 g L^{-1}	98.0% (110 min)	212
Ciprofloxacin	NCuTiO ₂ /CQD	Visible light	20.0 mg L^{-1}	0.8 g L^{-1}	89.0% (180 min)	213
Ciprofloxacin	ZnO/Co ₃ O ₄	Visible light	10.0 mg L^{-1}	2.4 g L^{-1}	100% (30 min)	214
Ciprofloxacin	TiO ₂ /Ce	UV light	40.0 mg L^{-1}	6.0 g L^{-1}	93.0% (180 min)	215
Ciprofloxacin	TiO ₂ /WO ₃	UV light	20.0 mg L^{-1}	0.5 g L^{-1}	100% (120 min)	216
Ciprofloxacin	CuO	Visible light	10.0 mg L^{-1}	5.0 g L^{-1}	60.0% (300 min)	217
Ciprofloxacin	CeO_2/Co_3O_4	Visible light	5.0 mg L^{-1}	0.5 g L^{-1}	87.8% (50 min)	218
Ciprofloxacin	TiO ₂ /N	UV light	30.0 mg L^{-1}	1.0 g L^{-1}	94.5% (120 min)	219
Ciprofloxacin	$TiO_2/La (0.1\%)$	Visible light	10.0 mg L^{-1}	0.6 g L^{-1}	99.5% (300 min)	220
Ciprofloxacin	TiO_2/Sm (0.1%)	Visible light	10.0 mg L^{-1}	0.9 g L^{-1}	99.0% (300 min)	221
Ciprofloxacin	TiO_2/Er (0.1%)	Visible light	10.0 mg L^{-1}	0.9 g L^{-1}	99.0% (300 min)	221
Ciprofloxacin	2nO/Nd (0.1%)	Visible light	6.0 mg L^{-1}	0.9 g L^{-1}	99.0% (120 min)	222
Ciprofloxacin	Fe_3O_4/Bl_2WO_6	Visible light	10.0 mg L^{-1}	0.3 g L^{-1}	99.7% (25 min)	223
Ciprofloxacin	$MMT/CuFe_2O_4$	UV light	32.5 mg L^{-1}	0.78 g L	80.0% (47.5 min)	224
Ciprofloxacin	Au-RGO/TiO ₂	Visible light	10.0 mg L^{-1}	0.05 - 1 -1	96.93% (180 min)) 225
Ciprofloxacin	CeO_2/ZnO	UV light	10.0 mg L^{-1}	0.25 g L	92.0% (360 min)	226
Ciprofloxacin	$MgFe_2O_4/010-67$	Visible light	10.8 mg L	0.051	99.62% (90 min)	227
Ciprofloxacin	$B_2O_3/N-rGO$	Visible light	15.0 mg L 10.0 mg L $^{-1}$	0.25 g L	98.0% (180 min)	228
Ciproflowacin	$GO/BI_4O_5BF_2$	Visible light	10.0 mg L 10.0 mg L $^{-1}$	0.5 g L	97.6% (60 min)	229
Ciproflovacin	NiALLDH/Eq. 0 rCO	Visible light	10.0 mg L 10.0 mg L $^{-1}$	0.25 g L	91.5% (60 mm)	230
Ciproflovacin	NIAI LDH/F e_3O_4 -IGO	VISIDIE light	10.0 IIIg L 20.0 mg L $^{-1}$	0.25 g L	91.36% (150 mm)	231
Ciprofloxacin	Ag_2MOO_4 SiC/g-C N	Visible light	20.0 IIIg L 10.0 mg L $^{-1}$	0.5 g L	98.0% (40 mm)	232
Ciprofloxacin	$SiC/g-C_3N_4$ R Ce TiO /FPS film	Sunlight	10.0 mg L $^{-1}$	1.4 g L	95.0% (50 mm)	233) 224
Ciprofloxacin	rCO-7rO	Sunlight	10.0 mg L	1.0 g L	03.17% (240 min)	225
Ciprofloxacin	SnO-2102	UV light	50.0 mg L ^{-1}	$0.5 \mathrm{g L^{-1}}$	99.1% (240 mm)	235
Ciprofloxacin	BEO/biochar	Solar light	10.0 mg L^{-1}	$2.0 \mathrm{gL}^{-1}$	70.4% (120 min)	230
Ciprofloxacin	g-C ₂ N ₄ /Fe ₂ O ₂	UV light	10.0 mg L^{-1}	$0.3 \circ L^{-1}$	100% (60 min)	238
Ciprofloxacin	$\operatorname{Bi}_{2}O_{2}CO_{2}$	Visible light	10.0 mg L^{-1}	1.0 g L^{-1}	76.8% (60 min)	239
Ciprofloxacin	Bi ₂ WO ₆ /BiO ₂	Visible light	10.0 mg L^{-1}	0.5 g L^{-1}	91.8% (120 min)	240
Ciprofloxacin	GO@Fe ₂ O₄@TiO ₂	Visible light	10.0 mg L^{-1}	0.1 g L^{-1}	91.5% (240 min)	241
Ciprofloxacin	MIL-68(In, Bi)-NH ₂ @BiOBr	Visible light	5.0 mg L^{-1}	0.35 g L^{-1}	91.1% (90 min)	242
Ciprofloxacin	Sm ₂ O ₃ /In ₂ S ₃	Visible light	20.0 mg L^{-1}	0.05 g L^{-1}	99.4% (55 min)	243
Ciprofloxacin	ZnCrLDO/FA	Visible light	10.0 mg L^{-1}	U	98.0% (120 min)	244
Ciprofloxacin	2D Bi ₂ O ₂ CO ₃	UV-vis light	10.0 mg L^{-1}	$1.0 { m g L}^{-1}$	76.8% (60 min)	245
Ciprofloxacin	In ₂ O ₃ /BiOBr	Visible light	10.0 mg L^{-1}	-	93.5% (90 min)	246
Ciprofloxacin	BiOI/MOF/F-BC	Simulated sunlight	10.0 mg L^{-1}		94.4% (180 min)	247
Ciprofloxacin	BiOCl/diatomite	Simulated sunlight	10.0 mg L^{-1}	0.5 g L^{-1}	94.0% (10 min)	248
Ciprofloxacin	Ti ₃ C ₂ -Bi/BiOCl	Visible light	20.0 mg L^{-1}	1.0 g L^{-1}	89.0% (100 min)	249
Ciprofloxacin	3D tripyramid TiO ₂	Simulated sunlight	10.0 mg L^{-1}	1.0 g L^{-1}	90.0% (60 min)	250
Ciprofloxacin	ZnSnO ₃	Simulated sunlight	$10.0 { m mg L}^{-1}$	0.5 g L^{-1}	85.9% (100 min)	251
Ciprofloxacin	ZnO-SnO ₂ -Zn ₂ SnO ₄	Simulated sunlight	$10.0 { m mg L}^{-1}$	0.5 g L^{-1}	95.8% (80 min)	252
Levofloxacin	WO_{12}/g - C_3N_4	Visible light	10.0 mg L^{-1}		90.8% (70 min)	253
Levofloxacin	Au@ZnONPs-MoS2-rGO	Visible light	$10.0 { m mg L}^{-1}$	1.0 g L^{-1}	99.8% (120 min)	254
Levofloxacin	LaFeO ₃ /CdS	Visible light	$10.0 { m mg L}^{-1}$		97.3% (100 min)	255
Levofloxacin	Fe-doped BiOCl	Visible light	$15.0 { m mg L}^{-1}$	0.5 g L^{-1}	94.7% (60 min)	256
Levofloxacin	Mn-doped ZnIn ₂ S ₄	Visible light	$10.0 { m mg L}^{-1}$		100% (30 min)	257
Levofloxacin	g-C ₃ N ₄ /TiO ₂	Solar light and UV irradiation	5.0 mg L^{-1}	0.5 g L^{-1}	100% (50 min)	258
Levofloxacin	WO ₃ /TiO ₂	Solar and UV light	5.0 mg L^{-1}	0.5 g L^{-1}	66.0% (50 min)	258
Levofloxacin	Sb ₂ S ₃ /In ₂ S ₃ /TiO ₂	Visible light	10.0 mg L^{-1}		86.7% (160 min)	259
Levofloxacin	Fe–ZnO/WO ₃	Visible light	10.0 mg L^{-1}	0.5 g L^{-1}	96.0% (60 min)	260
Levofloxacin	Co_3O_4/Bi_2MoO_6 g- C_3N_4	Visible light	10.0 mg L^{-1}		95.21%	261
Levofloxacin	Bi ₂ O ₂ CO ₃ /Ti ₃ C ₂ T _x	Visible light	10.0 mg L^{-1}		95.4% (80 min)	262
Ofloxacin	g-C ₃ N ₄ /NH ₂ -MIL-88B(Fe)	Visible light	10.0 mg L^{-1}	0.4 g L^{-1}	96.5% (150 min)	263
Ofloxacin	$TS-1/C_3N_4$	Visible light	10.0 mg L^{-1}	1.55 g L^{-1}	90.0% (70 min)	264
Otloxacin	BiFeO ₃	Visible light	10.0 mg L^{-1}	0.5 g L^{-1}	80.0% (180 min)	265
Otloxacin	Mg–Ni co-doped TiO ₂	Visible light	40.0 mg L^{-1}	2.0 g L^{-1}	96.0% (60 min)	266
Otloxacin	PEB-DBT/ α -Fe ₂ O ₃	Visible light	40.0 mg L^{-1}	1	98.0% (50 min)	267
Otloxacin	U1O-66/wood	Simulated sunlight	10.0 mg L^{-1}	0.02 g L^{+}	80.96% (270 min)) 268
Ofloxacin	ZnFe ₂ O ₄ /BiVO ₄	Visible light	20.0 mg L^{-1}	1.0 g L 1	97.0% (30 min)	269

Target antibiotic Photocatalyst			Optimum conditions	Optimum conditions		
		Source of light	Initial concentration	Catalyst concentration	Degradation (%)	Ref.
Ofloxacin	Ag_2O -g- C_3N_4	Visible light	$10.0~{ m mg~L^{-1}}$	$0.5~{ m g~L^{-1}}$	99.1% (15 min)	270
Norfloxacin	AgI/BiOI	Visible light	20.0 mg L^{-1}	1.0 g L^{-1}	98.8% (120 min)	271
Norfloxacin	Fe ₃ O ₄ @La-BiFeO ₃	Visible light	10.0 mg L^{-1}	0	93.8% (60 min)	272
Norfloxacin	Y-TiO ₂ /5A/NiFe ₂ O ₄	Visible light	30.0 mg L^{-1}	2.0 g L^{-1}	96.55% (60 min)	273
Norfloxacin	AgI/BiOI	Visible light	10.0 mg L^{-1}	1.0 g L^{-1}	98.8% (120 min)	274
Norfloxacin	Ni ₂ O ₃ @PC	UV light	10.0 mg L^{-1}	0.1 g L^{-1}	59.0% (180 min)	275
Norfloxacin	ZnO/g-C ₃ N ₄	Visible light	15.0 mg L^{-1}	1.8 g L^{-1}	92.8% (120 min)	276
Norfloxacin	RGO–SnSe	Visible light	40.0 mg L^{-1}	1.0 g L^{-1}	90.7% (70 min)	277
Norfloxacin	SnS_2	Solar light	20.0 mg L^{-1}	0.05 g L^{-1}	80.0% (110 min)	278
Norfloxacin	$Cu_2O@WO_3$	Visible light	10.0 mg L^{-1}	0.2 g L^{-1}	90.0% (90 min)	279
Norfloxacin	Fe(III)–SrTiO ₃ -GO	Visible light	10.0 mg L^{-1}		92.3% (120 min)	280
Norfloxacin	GCNQDs/Ni ₅ P ₄	UV light	40.0 mg L^{-1}	$0.1 { m g L}^{-1}$	92.0% (120 min)	281
Norfloxacin	BiOCl/ZnS-V _{Zn+O}	Visible light	20.0 mg L^{-1}	0.5 g L^{-1}	97.9% (50 min)	282a
Norfloxacin	Au/MIL-101(Fe)/BiOBr	Visible light	10.0 mg L^{-1}	0.1 g L^{-1}	100% (20 min)	282b
Enrofloxacin	Strontium-doped TiO ₂ /CDs	Visible light	10.0 mg L^{-1}	0.05 g L^{-1}	84.7% (70 min)	283
Enrofloxacin	Ag–ZnFe ₂ O ₄ –rGO	Visible light	10.0 mg L^{-1}		99.1% (60 min)	284
Enrofloxacin	C _{sx} WO ₃ /BiOI	Visible light	10.0 mg L^{-1}	0.5 g L^{-1}	100% (60 min)	285
Enrofloxacin	Zero-valent copper (nZVC)	Visible light	10.0 mg L^{-1}	0.5 g L^{-1}	99.51% (70 min)	286
Enrofloxacin	CdS/CuAg	Visible light	10.0 mg L^{-1}	$0.02~{ m g~L}^{-1}$	99.9% (45 min)	287
Enrofloxacin	$Fe_{3-x}S_{4-y}/g-C_3N_4$	Visible light	10.0 mg L^{-1}	0.5 g L^{-1}	100% (30 min)	288
Enrofloxacin	P/O co-doped g-C ₃ N ₄ /TiO ₂	Visible light	10.0 mg L^{-1}	1.0 g L^{-1}	98.5% (60 min)	289
Enrofloxacin	Ball-milled biochar	Visible light	$20.0 \text{ mg } \text{L}^{-1}$	0.2 g L^{-1}	80.2% (150 min)	290 <i>a</i>
Enrofloxacin	MIL-101(Fe)/BiOBr	Visible light	10.0 mg L^{-1}	0.1 g L^{-1}	84.4% (40 min)	290 <i>b</i>

suggesting that they may continue to exist in the environment. Thus, it is important that we pay attention to the issue of macrolides causing environmental contamination.²⁹³ Tylosin is the most often utilised agent among macrolides, and one of the best technologies for their removal is photocatalytic oxidation.^{77,294} The photodegradation of macrolides by various photocatalysts can be briefly summarized in the Fig. 7. When a photon flows surpassing a semiconductor's band gap, an electron (e⁻) moves from the valence band (VB) to the conduction band (CB), generating a photogenerated hole on the VB. The chemical reaction will then occur when the separated

charge carriers diffuse into the semiconductor/liquid interface's catalytically active regions (Fig. 7).

Three types of radicals can be formed by holes: (1) directly oxidising macrolides into certain byproducts; (2) reacting with H_2O to generate hydroxyl radicals (OH) with high oxidation potential; and (3) reacting with O_2 to form superoxide radicals (O_2^{-}) with significant reducibility of electrons. In the end, these produced oxidation radicals can break down macrolides into hazardous or harmless byproducts, which can then be broken down further into CO_2 and H_2O by extending the reaction period. According to numerous research conducted recently,

Review

photocatalytic oxidation technologies are an excellent way to treat macrolides. Unfortunately, not much research has been done to fully understand how macrolides' complicated structure and enormous molecular weight affect their degradation processes. Table 5 summarises the photocatalytic degradation of macrolides under various circumstances.

5.5. Photocatalytic degradation of β-lactams

 β -Lactams as broad-spectrum antibiotics that are mainly classified as penicillin and cephalosporin. Amoxicillin (AMX) and ampicillin (AMP) are examples of penicillins that are generated from penicillium and have the ability to prevent amino acid

chains in bacterial cell walls from cross-linking. The semisynthetic antibiotic class referred to as cephalosporins, which includes ceftiofur sodium (CFS), ceftriaxone sodium, cephalexin (CLX), and other similar antibiotics, is derived from 7aminocephalosporanic acid (7-ACA).^{77,317,318}

Investigations have shown that municipal wastewater treatment plants³¹⁹ have greater quantities of penicillin and cephalosporin. β -Lactams, on the other hand, were not expected to survive in the environment because of their strong polarity, reduced adsorption capacity, and capacity to hydrolyze to the soil. Fig. 8 summarises the processes *via* which various, β -lactam antibiotics degrade. Table 6 summarises the results of the photocatalytic degradation of β -lactams using various photocatalysts.

Table 5 Photocatalytic degradation of macrolides at different con-
--

			Optimum conditions			
Target antibiotic	Photocatalyst	Source of light	Initial concentration	Catalyst concentration	Degradation (%)	Ref.
Tylosin	ZnCrNi/GO	Visible light	$10.0~{ m mg~L}^{-1}$		90.0% (80 min)	295
Tylosin	Au/TiO ₂ -CCBs	Visible light	U		92.0% (180 min)	296
Tylosin	TiO_2	UV light	20 mg L^{-1}	$0.1 { m g L}^{-1}$	80.0% (300 min)	297
Tylosin	$g-C_3N_4$	Simulated sunlight	5 mg L^{-1}	$0.05~{ m g~L}^{-1}$	99.0% (30 min)	298
Tylosin	Sm-doped gC ₃ N ₄	Simulated sunlight	25 mg L^{-1}	$0.5~\mathrm{g~L}^{-1}$	78.4% (90 min)	299
Tylosin	Er-doped g-C ₃ N ₄	Simulated sunlight	25 mg L^{-1}	0.5 g L^{-1}	70% (90 min)	300
Tylosin	Goethite-modified	Simulated sunlight	5 mg L^{-1}	$0.5 { m g L}^{-1}$	99.0% (30 min)	301
	C ₃ N ₄ /ZnFe ₂ O ₄					
Erythromycin	SnO ₂ -doped TiO ₂	Visible light	50 mg L^{-1}	$0.5 { m g L}^{-1}$	67.0% (240 min)	302
Erythromycin	CaCO ₃ (nano-calcite)	Sunlight	30 mg L^{-1}	$0.5~\mathrm{g~L}^{-1}$	93.0% (360 min)	303
Erythromycin	Graphene-based TiO ₂	Simulated sunlight	0.10 mg L^{-1}	$0.1 { m g L}^{-1}$	84.0% (60 min)	304
Erythromycin	TiO_2	UV light	10 mg L^{-1}	$0.25~{ m g~L}^{-1}$	90.0% (250 min)	305
Erythromycin	g-C ₃ N ₄ /CdS	Simulated sunlight	50 mg L^{-1}	$0.5 { m g L}^{-1}$	81.02% (60 min)	306
Erythromycin	$ZnIn_2S_4$	Visible light	10 mg L^{-1}	$0.05~{ m g~L}^{-1}$	100% (180 min)	307
Spiramycin	TiO_2	UV light	25 mg L^{-1}	$0.25~{ m g~L}^{-1}$	100% (180 min)	308
Spiramycin	TiO ₂ and ZnO	UV/Visible light	10 mg L^{-1}	$0.05~{ m g~L}^{-1}$	100% (120 min)	309
Spiramycin	N-doped TiO ₂	Visible light	40 mg L^{-1}	3.0 g L^{-1}	74.0% (240 min)	310
Spiramycin	g-C ₃ N ₄ /ZnFe ₂ O ₄	Visible light	20 mg L^{-1}	$1.0 { m g L}^{-1}$	95.0% (240 min)	311
Clarithromycin	Graphene-based TiO ₂	Simulated sunlight	$0.10 { m mg L}^{-1}$	$0.1 { m g L}^{-1}$	86.0 (60 min)	312
Azithromycin	ZrO ₂ /Ag/TiO ₂	Visible light	20 mg L^{-1}	$0.2~\mathrm{g~L}^{-1}$	90% (9 h)	313
Azithromycin	GO/Fe ₃ O ₄ /ZnO/SnO ₂	UV light	30 mg L^{-1}	$1.0 { m g L}^{-1}$	90.06% (120	314
					min)	
Azithromycin	Doped TiO ₂ /fberglass-	UV light	$250~{ m mg~L^{-1}}$	$0.02~{ m g~L}^{-1}$	70.0% (15 min)	315
Azithromycin	PAC/Fe/Ag/Zn	UV light	$40 \text{ mg } \text{L}^{-1}$	$0.04~{ m g~L^{-1}}$	99.5% (120 min)	316

Table 6 Photocatalytic degradation of β -lactams (antibiotics) at different conditions

			Optimum conditions			
Target antibiotic	Photocatalyst	Source of light	Initial concentration	Catalyst concentration	Degradation (%)	Ref.
Amoxicillin	Fe ₃ O ₄ @void@CuO/ZnO	Visible light	$10.0 { m mg L}^{-1}$		100% (70 min)	320
Amoxicillin	Iron nanoparticle (IPP)	Visible light	10.0 mg L^{-1}	2.5 g L^{-1}	60.0% (60 min)	321
Amoxicillin	TiO ₂ -Cr	Visible light	10 mg L^{-1}	0.33 g L^{-1}	100% (90 min)	322
Amoxicillin	CuI/FePO₄	Visible light	10 mg L^{-1}	0	90.0% (60 min)	323
Amoxicillin	GO/TiO ₂	UV light	50 mg L^{-1}	0.6 g L^{-1}	99.84% (60 min)	324
Amoxicillin	CN-T	Visible light	$50 \text{ mg } \text{L}^{-1}$	0.3 g L^{-1}	100% (48 h)	325
Amoxicillin	Magnetite/SCB biochar	Visible light	100 mg L^{-1}	$0.12~{ m g~L}^{-1}$	73.51% (240 min)	326
Amoxicillin	TiO ₂ @nZVI/PS	Visible light	20 mg L^{-1}	1.0 g L^{-1}	99.0% (60 min)	327
Amoxicillin	Ni doped ZnO	UV-visible light	$10 \text{ mg } \text{L}^{-1}$	0	86.21% (120 min)	328
Amoxicillin	ZnONPs	UV light	$100 \text{ mg } \text{L}^{-1}$	$0.2 \mathrm{g L^{-1}}$	90.0% (120 min)	329
Amoxicillin	TiO_2/Fe_2O_2	Solar light	50 mg L^{-1}	$1.0 \circ L^{-1}$	100% (180 min)	330
Amovicillin	MIL-53(Al)/ZnO	Visible light	10 mg L^{-1}	$1.0 \mathrm{gL}^{-1}$	100% (60 min)	331
Amoxicillin	Mn-doped Cu ₂ O	Sunlight	15 mg L^{-1}	$1.0 \mathrm{g}\mathrm{L}^{-1}$	92.0% (180 min)	332
Amoxicillin	WO ₃	Simulated sunlight	20 mg L^{-1}	0.104 g L^{-1}	99.99% (180 min)	333
Amoxicillin	TiO ₂	UV light	$10 \text{ mg } \text{L}^{-1}$	$0.25~{ m g~L}^{-1}$	65.0% (150 min)	334
Amoxicillin	ZnO@TiO ₂	Visible light	10 mg L^{-1}	0.1 g L^{-1}	80.0% (70 min)	335
Amoxicillin	Mesoporous $g-C_3N_4$	Visible light	$2 \text{ mg } \text{L}^{-1}$	1.0 g L^{-1}	99% (60 min)	336
Amoxicillin	Ag/TiO ₂ /Mesoporous g-C ₃ N ₄	Visible light	5 mg L^{-1}	1.0 g L^{-1}	99% (60 min)	337
Amoxicillin	BiVO ₄	Visible light	$5 \text{ mg } \text{L}^{-1}$	0	97.45% (90 min)	338
Amoxicillin	C-dots/Sn ₂ Ta ₂ O ₇ /SnO ₂	Simulated sunlight	20 mg L^{-1}		88.3% (120 min)	339
Ceftiofur sodium	$CdFe_2O_4/2$ - C_3N_4	Visible light	30 mg L^{-1}		68.6% (60 min)	340
Ceftiofur sodium	Ag–ZnO	Visible light	$10 \text{ mg } \text{L}^{-1}$		89.0% (6 h)	341
Ceftiofur sodium	Ag-TiO ₂	Visible light	10 mg L^{-1}		92.0% (90 min)	342
Ceftriaxone sodium	g-C ₃ N ₄ -ZnO	UV light	10 mg L^{-1}		100% (60 min)	343
Ceftriaxone	$ZnO/ZnIn_2S_4$	Visible light	$10 {\rm ~mg~L^{-1}}$	$0.4 \mathrm{g L}^{-1}$	83.5% (150 min)	344
Ceftriaxone	CdS-g-C ₃ N ₄	Visible light	15 mg L^{-1}	$0.06 {\rm ~g~L}^{-1}$	92.55% (81 min)	345
Ceftriaxone sodium	CdSe QDs@MoS ₂	UV light	$20~{\rm mg~L}^{-1}$	0.012 g L^{-1}	85.47% (180 min)	346
Cephalexin	ZnO	Simulated sunlight	20 mg L^{-1}	0.1 g L^{-1}	96.0% (25 min)	347
Cephalexin	Sodium persulfate (SPS) and fenton	UV light	10 mg L^{-1}	0.1 g L^{-1}	100% (60 min)	348
Cephalexin	g-C ₃ N ₄ /Zn doped Fe ₃ O ₄	Visible light	10 mg L^{-1}		91.0% (5 h)	349
Cephalexin	CeO ₂ @WO ₃	Visible light	$20 \text{ mg } \text{L}^{-1}$	$0.019 \mathrm{~g~L}^{-1}$	98.8% (95 min)	350

5.6. Photocatalytic degradation of nitroimidazoles

Nitroimidazoles are widely utilised in both human and veterinary medicine, mostly for the treatment of infectious illnesses. Nitroimidazoles are easily accumulated in hospitals, fish and poultry farms, animal husbandry, and the meat industry due to their high solubility, limited degradability, and carcinogenicity, all of which pose a major concern to human health and the ecosystem. As a result, creating effective strategies for the removal of nitroimidazoles77,351-354 is crucial. One popular

Table 7 Photocatalytic degradation of nitroimidazoles at different conditions

			Optimum condit		
Target antibiotic	Photocatalyst	Source of light	Initial concentration	Catalyst concentration	Degradation (%) Ref.
Metronidazole	Ag-doped- Ni _{0.5} Zn _{0.5} Fe ₂ O ₄ (Ag-d-NZF)	UV light	50.0 mg L^{-1}	$0.01~{ m g~L}^{-1}$	99.9% (360 min) 355
Metronidazole	Ag-N-SnO ₂	Visible light	10.0 mg L^{-1}	$0.4 \mathrm{g L}^{-1}$	97.03% (120 356 min)
Metronidazole	TiO ₂ decorated magnetic reduced graphene oxide	Visible light	$20.0~{\rm mg~L^{-1}}$	$0.75 {\rm ~g~L^{-1}}$	100% (120 min)
Metronidazole	Co-TiO ₂ /sulphite	Visible light	20.0 mg L^{-1}	$0.8 { m g L}^{-1}$	94.0% (18 min) 357
Metronidazole	ZEO/HDTMA-Br/CuS	Simulated sunlight	10.0 mg L^{-1}	0.01 g L^{-1}	100% (180 min) 358
Metronidazole	$Co/g-C_3N_4/Fe_3O_4$	Visible light	5.0 mg L^{-1}	$0.7 { m g L}^{-1}$	100% (60 min) 359
Metronidazole	UiO-66-NH ₂	Solar light	5.0 mg L^{-1}	0.125 g L^{-1}	68.0% (360 min) 360
Metronidazole	PAC/Fe_3O_4	UV light	30.0 mg L^{-1}	0.6 g L^{-1}	99.87% (90 min) 361
Metronidazole	ZnFe ₂ O ₄ @Uio-66	UV light	90.0 mg L^{-1}	0.05 g L^{-1}	93.7% (120 min) 362
Metronidazole	ZnO/biochar	Visible light	10.0 mg L^{-1}	U	97.1% (40 min) 363
Metronidazole	CN-PPy-MMt	Visible light	10.0 mg L^{-1}	$0.8 { m g L}^{-1}$	99.3% (40 min) 364
Metronidazole	TiO ₂ -Fe ₃ O ₄	Visible light	20.0 mg L^{-1}	1.0 g L^{-1}	96.0% (180 min) 365
Metronidazole	SBA-15/TiO ₂	UV light	10.0 mg L^{-1}	0.5 g L^{-1}	87.7% (200 min) 366
Metronidazole	ZnO–ZnAl ₂ O ₄	Sunlight	20.0 mg L^{-1}	0.4 g L^{-1}	50.0% (120 min) 367
Metronidazole	CuS/NiS	Visible light	150.0 mg L^{-1}	0.2 g L^{-1}	23.31% (120 368 min)
Metronidazole	MoS ₂ /Bi ₂ S ₃	NIR light	10 mg L^{-1}		91.54% (40 min) 369
Metronidazole	HKUST-1-based SnO ₂	UV/Visible light	40.0 mg L^{-1}	2.0 g L^{-1}	98.0% (240 min) 370
Metronidazole	Fe ₃ O ₄ @SiO ₂ @TiO ₂ /rGO	UV light	10.0 mg L^{-1}	0.1 g L^{-1}	94.0% (60 min) 371
Metronidazole	TiO ₂	UV light	80.0 mg L^{-1}	0.7 g L^{-1}	100% (600 min) 372
Metronidazole	FeNi ₃ /chitosan/BiOI	Simulated sunlight	20.0 mg L^{-1}	$0.04~{ m g~L}^{-1}$	100% (200 min) 373
Metronidazole	$Ag_2S/BiVO_4(a)\alpha$ - Al_2O_3	Visible light	30.0 mg L^{-1}	1.0 g L^{-1}	90.5% (120 min) 374
Tinidazole	rGO/BiOCl	UV light	18.0 mg L^{-1}	$0.001~{ m g~L^{-1}}$	97.0% (5 min) 375
Tinidazole	Co/NCHPs	UV/Visible light	20.0 mg L^{-1}	C	99.99% (6 min) 376
Tinidazole	Ag/HAp/In ₂ S ₃ QDs	Visible light	20.0 mg L^{-1}	$0.24~{ m g~L}^{-1}$	96.32% (30 min) 377
Ornidazole	TiO ₂	UV light	50.0 mg L^{-1}	$1.0 \text{ g} \text{ L}^{-1}$	66.15% (180 378 min)
Ornidazole	$Y^{3+}\text{-}Bi_5Nb_3O_{15}$	Visible light	$20.0~\mathrm{mg}~\mathrm{L}^{-1}$	2.0 g L^{-1}	90.5% (180 min) 379

Fig. 9 The proposed photocatalytic degradation pathways of metronidazole.

Table 8 Photocatalytic degradation of other antibiotics at different conditions

			Optimum conditions			
Target antibiotic	Photocatalyst	Source of light	Initial concentration	Catalyst concentration	Degradation (%)	Ref.
Chloramphenicol	Fe/TaON/β-Si ₃ N ₄ /β-Si ₃ Al ₃ O ₃ N ₅	Visible light	$20.0 { m mg L}^{-1}$	$0.01~{ m g~L}^{-1}$	98.0% (30 min)	380
Chloramphenicol	$SmVO_4/g-C_3N_4$ (SM/CN)	Visible light	10.0 mg L^{-1}	0.5 g L^{-1}	94.35% (105 min)	381
Chloramphenicol	BiOI/ZnO/rGO	Visible light	10.0 mg L^{-1}	U	100% (180 min)	382
Chloramphenicol	CuInS ₂	Visible light	10.0 mg L^{-1}	0.2 g L^{-1}	94.3% (120 min)	383
Chloramphenicol	Bi_2S_3/ZrO_2 and Bi_2WO_6/ZrO_2	Visible light	10.0 mg L^{-1}	0.2 g L^{-1}	96.0% (15 min)	384
Chloramphenicol	PbS/TiO ₂	Sunlight	10.0 mg L^{-1}	0.06 g L^{-1}	76.0% (240 min)	385
Chloramphenicol	rGO–ZnO	UV light	10.0 mg L^{-1}	0.5 g L^{-1}	90.0% (100 min)	386
Gentamicin	TiO ₂ nps	Visible light	10.0 mg L^{-1}	U	95.0% (80 min)	387
Gentamicin	ZnO	UV light	20.0 mg L^{-1}	0.2 g L^{-1}	93.0% (30 min)	388
Lincomycin	O-g/C ₃ N ₄	Visible light	100.0 mg L^{-1}	-	99.0% (180 min)	389
Lincomycin	TNWs/TNAs	Visible light	500.0 mg L^{-1}		85.0% (20 min)	390
Vancomycin	TNWs/TNAs	Visible light	500.0 mg L^{-1}		100% (20 min)	390
Vancomycin	TiO ₂	UV light	$58.2 \text{ mg} \text{ L}^{-1}$	$0.23 \mathrm{~g~L}^{-1}$	93.0% (36.3 min)	391
Vancomycin	TiO ₂ -clinoptilolite	UV light	30.0 mg L^{-1}	$0.2 \text{ g} \text{L}^{-1}$	97.0% (50.9 min)	392

method for treating nitroimidazoles is photocatalysis. The three most used nitroimidazoles are ornidazole, tinidazole, and metronidazole. The photocatalytic degradation and routes associated with metronidazole have been the subject of the greatest research among them. Table 7 provides an overview of the data from current investigations on the photocatalytic degradation of nitroimidazole.

Further observation from these investigations shows that the nitroimidazole degradation routes are comparable and may be summed up as denitration and the removal of their unique substituents. For instance, Fig. 9 illustrates the various stages of the metronidazole degradation process during the majority of the photocatalytic oxidation process. Three different reaction products were suggested for each of the two metronidazole degradation pathway 1, metronidazole undergoes denitration and then loss of *N*-ethanol group, with the generation of products A, B, and E, respectively. In pathway 2, the *N*-ethanol group is first oxidized to carboxyl to produce C, which converts to D through loss of the *N*-acetic acid group. Besides, product D further transforms to E by denitration.

5.7. Photocatalytic degradation of other antibiotics

Apart from the previously stated antibiotic, some research continues to concentrate on the photocatalytic breakdown of antibiotics such as lincomycin, glycopeptides, aminoglycosides, and chloramphenicol. Table 8 provides an overview of the data regarding photocatalytic degradation of these antibiotics.

6. Conclusions and perspective

The extensive discovery and application of antibiotics in recent decades has impacted human health and environmental systems to some extent. Antibiotic contamination has become a more significant scientific and practical issue overall. Since previous research has already acquired significant fundamental scientific and technical expertise, the photocatalytic technique represents an intriguing promise for attaining the elimination of antimicrobial contaminants. We are able to choose this

technology for both indoor and outdoor water treatment systems owing to the freedom in selecting light sources. In addition, it is an industry-friendly technology because it is feasible to use sunlight. Photoscatalysis is a cost-effective method since it requires less space and maintenance than biodegradation. This review therefore provides an overview of the most recent advancements in the photocatalytic degradation of different antibiotics including tetracycline, sulfonamide, fluoroquinolones, macrolides, β-lactams, nitroimidazoles as well as miscellaneous antibiotics in aqueous solution under various reaction circumstances and critically examines recent methods for photocatalytic antibiotic degradation by involving the doping of metal and non-metal into ultraviolet light-driven photocatalysts, the generation of new semiconductor photocatalysts, the development of heterojunction photocatalysts, the building of surface plasmon resonance-enhanced photocatalytic systems that offers a basic understanding of the photocatalytic water treatment process. Utilising solar energy to reduce antimicrobial contaminants through photocatalytic technologies is promising from an industrialization and commercialization standpoint. A useful strategy for increasing photocatalytic activity, decreasing photogenerated carrier recombination, and improving charge separation and transfer efficiency at the photocatalyst interface is the development of heterojunctions. Building several heterojunctions with various semiconductors is therefore a typical tactic. As a result, due to their exceptional photocatalytic activity and acceptable redox ability, heterojunction photocatalysts have gained a lot of interest recently. The development of these photocatalysts on a wide scale and the formation of more efficient photocatalytic water purification systems will be greatly facilitated by future advancements.

Data availability

No primary research results, software or code have been included and no new data were generated or analysed as part of this review.

Conflicts of interest

There are no conflicts to declare.

References

- 1 J. Niu, K. Wang, Z. Ma, F. Yang and Y. Zhang, *ChemistrySelect*, 2022, 5, 12353–12364.
- 2 D. W. Graham, S. Olivares-Rieumont, C. W. Knapp, L. Lima, D. Werner and E. Bowen, *Environ. Sci. Technol.*, 2011, 45, 418–424.
- 3 D. Li and W. Shi, Chin. J. Catal., 2016, 37, 792-799.
- 4 X. Bai, W. Chen, B. Wang, T. Sun, B. Wu and Y. Wang, *Int. J. Mol. Sci.*, 2022, **23**, 8130.
- 5 M. H. Abdurahman, A. Z. Abdullah and N. F. Shoparwe, *Chem. Eng. J.*, 2021, **413**, 127412.
- 6 (*a*) J. O. Adeyemi, T. Ajiboye and D. C. Onwudiwe, *Water, Air, Soil Pollut.*, 2021, **232**, 219; (*b*) K. Kümmerer, *Chemosphere*, 2019, 75, 417–434.
- 7 (a) F. Zhao, D. Zhang, C. Y. Xu, J. S. Liu and C. S. Shen, *Ecotoxicol. Environ. Saf.*, 2020, **196**, 110552; (b) J. Jeong,
 W. Song, W. J. Cooper, J. Jung and J. Greaves, *Chemosphere*, 2010, **78**(5), 533-540; (c) R. Daghrir and
 P. Drogui, *Environ. Chem. Lett.*, 2013, **11**(3), 209-227.
- 8 (a) S. M. Marques, E. A. Enyedy, C. T. Supuran, N. I. Krupenko, S. A. Krupenko and M. A. Santos, *Bioorg. Med. Chem.*, 2010, 18, 5081–5089; (b) W. Baran, E. Adamek, J. Ziemianska and A. Sobczak, *J. Hazard. Mater.*, 2011, 196, 1–15; (c) Y. Zhang, J. Xu, Z. Zhong, C. Guo, L. Li, Y. He, W. Fan and Y. Chen, *Environ. Sci. Pollut. Res. Int.*, 2013, 20(4), 2372–2380.
- 9 (a) N. Casson and G. Greub, Int. J. Antimicrob. Agents, 2006,
 27, 541–544; (b) M. Feng, Z. Wang, D. D. Dionysiou and
 V. K. Sharma, J. Hazard. Mater., 2018, 344, 1136–1154; (c)
 N. Janecko, L. Pokludova, J. Blahova, Z. Svobodova and
 I. Literak, Environ. Toxicol. Chem., 2016, 35(11), 2647–2656.
- 10 (a) B. J. Ni, S. T. Zeng, W. Wei, X. H. Dai and J. Sun, *Sci. Total Environ.*, 2020, 703, 134899; (b) C. S. McArdell, E. Molnar, M. J.-F. Suter and W. Giger, *Environ. Sci. Technol.*, 2003, 37(24), 5479–5486; (c) S. Babic, L. Curkovic, D. Ljubas and M. Cizmic, *Curr. Opin. Green Sustainable Chem.*, 2017, 6, 34–41.
- 11 (a) H. Cho, T. Uehara and T. G. Bernhardt, Cell, 2014, 159, 1300–1311; (b) I. Braschi, S. Blasioli, C. Fellet, R. Lorenzini, A. Garelli, M. Pori and D. Giacomini, Chemosphere, 2013, 93(1), 152–159; (c) S. Dancer, J. Antimicrob. Chemother., 2001, 48(4), 463–478; (d) P. Ray, K. F. Knowlton, C. Shang and K. Xia, PLoS One, 2014, 9(11), e112343; (e) J. Dewdney, L. Maes, J. Raynaud, F. Blanc, J. Scheid, T. Jackson, S. Lens and C. Verschueren, Food Chem. Toxicol., 1991, 29(7), 477–483; (f) R. Gothwal and T. Shashidhar, Clean: Soil, Air, Water, 2015, 43(4), 479–489.
- 12 (a) P. W. Seo, N. A. Khan and S. H. Jhung, *Chem. Eng. J.*, 2017, 315, 92–100; (b) A. Mantovani and A. Macri, *J. Exp. Clin. Cancer Res.*, 2002, 21(4), 445–456.
- 13 (a) F. Santos-Beneit, M. Ordonez-Robles and J. F. Martin, *Biochem. Pharmacol.*, 2017, **133**, 74–85; (b) F. J. Angulo,

O. E. Heuer, A. M. Hammerum, P. Collignon and H. C. Wegener, *Clin. Infect. Dis.*, 2006, **43**(7), 911–916.

- 14 (a) D. Sharma, M. Lata, M. Faheem, A. U. Khan, B. Joshi,
 K. Venkatesan, S. Shukla and D. Bisht, *Microb. Pathog.*,
 2019, 132, 150–155; (b) S. Ji, F. Zhang, X. Luo, B. Yang,
 G. Jin, J. Yan and X. Liang, *J. Chromatogr. A*, 2013, 1313,
 113–118.
- 15 (a) A. Chatzitakis, C. Berberidou, I. Paspaltsis, G. Kyriakou,
 T. Sklaviadis and I. Poulios, *Water Res.*, 2008, 42(1–2), 386–394; (b) X. Liu, J. C. Steele and X.-Z. Meng, *Environ. Pollut.*, 2017, 223, 161–169.
- 16 (a) C.-H. Liu, Y.-H. Chuang, H. Li, B. J. Teppen, S. A. Boyd, J. M. Gonzalez, C. T. Johnston, J. Lehmann and W. Zhang, *J. Environ. Qual.*, 2016, 45(2), 519–527; (b) L. Ge, Q. Liu, D. Jiang, L. Ding, Z. Wen, Y. Guo, C. Ding and K. Wang, *Biosens. Bioelectron.*, 2019, 135, 145–152.
- K. R. Davies, Y. Cherif, G. P. Pazhani, S. Anantharaj, H. Azzi,
 C. Terashima, A. Fujishima and S. Pitchaimuthu, *J. Photochem. Photobiol.*, *C*, 2021, 48, 100437.
- 18 (a) M. B. Ahmed, J. L. Zhou, H. H. Ngo, W. Guo, N. S. Thomaidis and J. Xu, J. Hazard. Mater., 2017, 323, 274-298; (b) S. Li, C. You, K. Rong, C. Zhuang, X. Chen and B. Zhang, Adv. Powder Mater., 2024, 3, 100183; (c) M. Cai, Y. Liu, K. Dong, X. Chen and S. Li, Chin. J. Catal., 2023, 52, 239-251; (d) S. Li, M. Cai, Y. Liu, C. Wang, R. Yan and X. Chen, Adv. Powder Mater., 2023, 2, 100073; (e) A. L. Valenzuela, M. Green and X. Chen, Gen. Chem., 2021, 7, 210006; (f) S. Li, M. Cai, Y. Liu, C. Wang, K. Lv and X. Chen, Chin. J. Catal., 2022, 43, 2652-2664; (g) X. Shen, B. Song, X. Shen, C. Shen, S. Shan, Q. Xueb, X. Chene and S. Li, Chem. Eng. J., 2022, 445, 136703; (h) S. Li, C. You, K. Rong, C. Zhuang, X. Chen and B. Zhang, Adv. Powder Mater., 2024, 3, 100183; (i) S. Li, M. Cai, C. Wang and Y. Liu, Adv. Fiber Mater., 2023, 5, 994-1007; (j) C. Wang, K. Rong, Y. Liu, F. Yang and S. Li, Sci. China Mater., 2024, 67, 562-572.
- 19 (a) P. P. Singh, S. Sinha, P. Nainwal, P. K. Singh and V. Srivastava, RSC Adv., 2024, 14, 2590-2601; (b) P. P. Singh and V. Srivastava, ChemistrySelect, 2023, 8(44), e202302732; (c) V. Srivastava, S. Sinha, D. Kumar and P. P. Singh, Tetrahedron Green Chem., 2023, 1, 100009; (d) P. P. Singh, J. Singh and V. Srivastava, RSC Adv., 2023, 13, 10958; (e) P. P. Singh, P. K. Singh and V. Srivastava, Org. Chem. Front., 2023, 10, 216; (f) P. P. Singh, S. Sinha, G. Pandey and V. Srivastava, RSC Adv., 2022, 12, 29826; (g) V. Srivastava, P. K. Singh and P. P. Singh, J. Photochem. Photobiol., C, 2022, 50, 100488; (h) V. Srivastava, P. K. Singh, S. Tivari and P. P. Singh, Org. Chem. Front., 2022, 9, 1485; (i) P. P. Singh, S. Sinha, P. Nainwal, S. Tivari and V. Srivastava, Org. Biomol. Chem., 2024, 22, 2523-2538.
- 20 (a) S. Tivari, M. Z. Beg, A. Kashyap, P. K. Singh, P. P. Singh,
 P. Gahtori and V. Srivastava, *Results Chem.*, 2024, 7, 101249;
 (b) M. Z. Beg, S. Tivari, A. Kashyap, P. K. Singh, P. P. Singh,
 P. Nainwal and V. Srivastava, *J. Heterocycl. Chem.*, 2024, 61, 458–465; (c) R. Kumar, K. Garima, V. Srivastava, P. P. Singh and P. K. Singh, *Tetrahedron Lett.*, 2023, 133, 154841; (d)

V. P. Singh, A. K. Singh, V. Srivastava and P. P. Singh, *Tetrahedron*, 2023, 147, 133658; (e) M. Mishra, P. P. Singh,
P. Nainwal, S. Tivari and V. Srivastava, *Tetrahedron Lett.*, 2023, 129, 154749; (f) V. Srivastava, S. Tivari, P. K. Singh and P. P. Singh, *Catal. Lett.*, 2024, 154, 771–779; (g)
M. Z. Beg, P. K. Singh, P. P. Singh, M. Srivastava and V. Srivastava, *Mol. Divers.*, 2024, 28, 61–71; (h) S. P. Singh,
V. Srivastava, P. K. Singh and P. P. Singh, *Tetrahedron*, 2023, 132, 133245; (i) M. Mishra, V. Srivastava, P. K. Singh and P. P. Singh, *Croat. Chem. Acta*, 2022, 95(1), 25–30; (j)
S. Tivari, P. K. Singh, P. P. Singh and V. Srivastava, *RSC Adv.*, 2022, 12, 35221.

- 21 X. Yang, Z. Chen, W. Zhao, C. Liu, X. Qian, M. Zhang,
 G. Wei, E. Khan, Y. H. Ng and Y. S. Ok, *Chem. Eng. J.*,
 2021, 405, 126806.
- 22 B. Akyon, M. McLaughlin, F. Hernandez, J. Blotevogel and K. Bibby, *Environ. Sci.: Processes Impacts*, 2019, 21, 279–290.
- 23 Z. Cetecioglu and M. Atasoy, *Toxicity and Biodegradation Testing*, 2018, pp. 29–55.
- 24 (a) J. Zhang, H. Lin, J. Ma, W. Sun, Y. Yang and X. Zhang, *Sci. Total Environ.*, 2019, 649, 396–404; (b) C. Zhuang, Y. Chang, W. Li, S. Li, P. Xu, H. Zhang, Y. Zhang, C. Zhang, J. Gao, G. Chen, T. Zhang, Z. Kang and X. Han, *ACS Nano*, 2024, 18, 5206–5217.
- 25 L. V. de Souza Santos, A. M. Meireles and L. C. Lange, *J. Environ. Manage.*, 2015, **154**, 8–12.
- 26 M. S. Yahya, N. Oturan, K. El Kacemi, M. El Karbane, C. Aravindakumar and M. A. Oturan, *Chemosphere*, 2014, 117, 447–454.
- 27 V. Homem and L. Santos, J. Environ. Manage., 2011, 92, 2304–2347.
- 28 A. Boukhelkhal, O. Benkortbi and M. Hamadache, *Environ. Technol.*, 2018, **40**, 3328–3336.
- 29 J. Luo, X. Li, C. Ge, K. Müller, H. Yu, P. Huang, J. Li, D. C. W. Tsang, N. S. Bolan, J. Rinklebe and H. Wang, *Bioresour. Technol.*, 2018, 263, 385–392.
- 30 J. Wang, Q. Yao, C. Sheng, C. Jin and Q. Sun, *J. Nanomater.*, 2017, 2017, 1–10.
- 31 Q. Zhao, S. Zhang, X. Zhang, L. Lei, W. Ma, C. Ma, L. Song, J. Chen, B. Pan and B. Xing, *Environ. Sci. Technol.*, 2017, 51, 13659–13667.
- 32 I. A. Lawal and B. Moodley, J. Chem. Technol. Biotechnol., 2017, 92, 808–818.
- 33 C. H. Liu, Y. H. Chuang, H. Li, B. J. Teppen, S. A. Boyd, J. M. Gonzalez, C. T. Johnston, J. Lehmann and W. Zhang, *J. Environ. Qual.*, 2016, **45**, 519–527.
- 34 G. Li, Y. Feng, W. Zhu and X. Zhang, Korean J. Chem. Eng., 2015, 32, 2109–2115.
- 35 V. M. Nurchi, M. Crespo-Alonso, M. I. Pilo, N. Spano, G. Sanna and R. Toniolo, *Arabian J. Chem.*, 2019, 12, 1141–1147.
- 36 W. C. Li and M. H. Wong, *Int. J. Environ. Sci. Technol.*, 2014, 12, 2731–2740.
- 37 A. Zhou, Y. Zhang, R. Li, X. Su and L. Zhang, *Water Treat.*, 2016, 57, 388.
- 38 S. Jia, Z. Yang, K. Ren, Z. Tian, C. Dong, R. Ma, G. Yu and W. Yang, J. Hazard. Mater., 2016, 317, 593–601.

- 39 O. A. Alsager, M. N. Alnajrani, H. A. Abuelizz and I. A. Aldaghmani, *Ecotoxicol. Environ. Saf.*, 2018, **158**, 114– 122.
- 40 Y. Ji, Z. Pan, D. Yuan and B. Lai, *Clean: Soil, Air, Water*, 2018, **46**, 1700666.
- 41 R. Kidak and S. Dogan, *Ultrason. Sonochem.*, 2018, **40**, 131–139.
- 42 M. Feng, L. Yan, X. Zhang, P. Sun, S. Yang, L. Wang and Z. Wang, *Sci. Total Environ.*, 2016, **541**, 167–175.
- 43 K. S. Tay and N. Madehi, *Sci. Total Environ.*, 2015, **520**, 23–31.
- 44 R. B. P. Marcelino, M. M. D. Leao, R. M. Lago and C. C. Amorim, *J. Environ. Manage.*, 2017, **195**, 110–116.
- 45 S. S. M. Hassan, H. I. Abdel-Shafy and M. S. M. Mansour, *Arabian J. Chem.*, 2016, **12**, 4074–4083.
- 46 B. Kamarehie, F. Ahmadi, F. Hafezi, A. Abbariki, R. Heydari and M. A. Karami, *Data Brief*, 2018, **18**, 96–101.
- 47 (a) P. Karaolia, I. Michael-Kordatou, E. Hapeshi, J. Alexander, T. Schwartz and D. FattaKassinos, *Chem. Eng. J.*, 2017, **310**, 491–502; (b) V. Sharma, R. Vinoth Kumar, K. Pakshirajan and G. Pugazhenthi, *Powder Technol.*, 2017, **321**, 259–269; (c) J. Zheng, C. Su, J. Zhou, L. Xu, Y. Qian and H. Chen, *Chem. Eng. J.*, 2017, **317**, 309–316; (d) M. R. Ramli, N. M. Sulaiman, M. A. Mohd and M. F. Rabuni, *Water Sci. Technol.*, 2015, **72**, 1611–1620.
- 48 (a) S. Chang, X. Yang, Y. Sang and H. Liu, *Chem. Asian J.*, 2016, **11**, 2352–2371; (b) U. I. Gaya and A. H. Abdullah, *J. Photochem. Photobiol.*, *C*, 2008, **9**, 1–12; (c) J. C. Colmenares and R. Luque, *Chem. Soc. Rev.*, 2014, **43**, 765–778.
- 49 (a) E. S. Elmolla and M. Chaudhuri, *Desalination*, 2010, 252, 46–52; (b) A. C. Nogueira, L. E. Gomes, J. A. P. Ferencz, J. E. F. S. Rodrigues, R. V. Gonçalves and H. Wender, *J. Phys. Chem. C*, 2019, 123, 25680–25690.
- 50 (a) W. Tu, Y. Zhou and Z. Zou, *Adv. Funct. Mater.*, 2013, 23, 4996–5008; (b) H. L. Tan, F. F. Abdi and Y. H. Ng, *Chem. Soc. Rev.*, 2019, 48, 1255–1271.
- 51 A. A. Oladipo and F. S. Mustafa, *Beilstein J. Nanotechnol.*, 2023, 14, 291–321.
- 52 X. Bai, W. Chen, B. Wang, T. Sun, B. Wu and Y. Wang, *Int. J. Mol. Sci.*, 2022, **23**, 8130.
- 53 Photocatalytic Degradation of Toxic Pesticides, ed. A. A. Oladipo, M. Gazi, A. O. Ifebajo, A. S. Oladipo and E. O. Ahaka, Wiley, Chicago, 2020, pp. 93–138, DOI: 10.1002/9781119631422.ch4.
- 54 Advanced Oxidation Processes for Waste Water Treatment, ed. S. C. Ameta and R. Ameta, Elsevier, Academic Press, 2018, DOI: 10.1016/c2016-0-00384-4.
- 55 Z. Wei, J. Liu and W. Shangguan, *Chin. J. Catal.*, 2020, **41**, 1440–1450.
- 56 T. Velempini, E. Prabakaran and K. Pillay, *Mater. Today Chem.*, 2021, **19**, 100380.
- 57 S. S. Imam, R. Adnan and N. H. M. Kaus, *Toxicol. Environ. Chem.*, 2018, **100**, 518–539.
- 58 K. Qin, Q. Zhao, H. Yu, X. Xia, J. Li, S. He, L. Wei and T. An, *Environ. Res.*, 2021, **199**, 111360.

- 59 M. A. Gunawan, J.-C. Hierso, D. Poinsot, A. A. Fokin, N. A. Fokina, B. A. Tkachenko and P. R. Schreiner, *New J. Chem.*, 2014, 38, 28–41.
- 60 Y. Li, Y. Fu and M. Zhu, Appl. Catal., B, 2020, 260, 118149.
- 61 K. Soutsas, V. Karayannis, I. Poulios, A. Riga,
 K. Ntampegliotis, X. Spiliotis and G. Papapolymerou, *Desalination*, 2010, 250, 345–350.
- 62 X. Chen, J. Yao, B. Xia, J. Gan, N. Gao and Z. Zhang, J. Hazard. Mater., 2020, 383, 121220.
- 63 M. F. Pinto, M. Olivares, A. Vivancos, G. Guisado-Barrios, M. Albrecht and B. Royo, *Catal. Sci. Technol.*, 2019, 9, 2421–2425.
- 64 M. Muruganandham and M. Swaminathan, Sol. Energy Mater. Sol. Cells, 2004, 81, 439-457.
- 65 A. Taghizadeh, M. Taghizadeh, M. M. Sabzehmeidani, F. Sadeghfar and M. Ghaedi, Chapter 1—Electronic Structure: From Basic Principles to Photocatalysis, in *Interface Science and Technology*, ed. M. Ghaedi, Elsevier, Amsterdam, The Netherlands, 2021, vol. 32, pp. 1–53, ISBN 1573-4285.
- 66 F. Sadeghfar, Z. Zalipour, M. Taghizadeh, A. Taghizadeh and M. Ghaedi, Chapter 2—Photodegradation Processes, in *Interface Science and Technology*, ed. M. Ghaedi, Elsevier, Amsterdam, The Netherlands, 2021, vol. 32, pp. 55–124, ISBN 1573-4285.
- 67 O. Sacco, V. Vaiano, C. Han, D. Sannino and D. D. Dionysiou, *Appl. Catal.*, *B*, 2015, 164, 462–474.
- 68 G. Zhao, J. Ding, F. Zhou, X. Chen, L. Wei, Q. Gao, K. Wang and Q. Zhao, *Chem. Eng. J.*, 2021, **405**, 126704.
- 69 E. Topkaya, M. Konyar, H. C. Yatmaz and K. Öztürk, J. Colloid Interface Sci., 2014, 430, 6–11.
- 70 M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy, *Renew. Sustain. Energy Rev.*, 2007, **11**, 401–425.
- 71 V. Subhiksha, S. Kokilavani and S. S. Khan, *Chemosphere*, 2022, **290**, 133228.
- 72 F. Zhu, Y. Lv, J. Li, J. Ding, X. Xia, L. Wei, J. Jiang, G. Zhang and Q. Zhao, *Chemosphere*, 2020, **252**, 126577.
- 73 L. Wang, Z. Wang, L. Zhang and C. Hu, *Chem. Eng. J.*, 2018, 352, 664–672.
- 74 M. Batool, M. F. Nazar, A. Awan, M. B. Tahir, A. Rahdar, A. E. Shalan, S. Lanceros-Méndez and M. N. Zafar, *Nano-Struct. Nano-Objects*, 2021, 27, 100762.
- 75 (a) P. Khanna, A. Kaur and D. Goyal, J. Microbiol. Methods, 2019, 163, 105656; (b) N. Baig, I. Kammakakam and W. Falath, Adv. Mater., 2021, 2, 1821–1871.
- 76 F. Ahmad, D. Zhu and J. Sun, *Environ. Sci. Eur.*, 2021, **33**, 64.
- 77 Y. Chen, J. Yang, L. Zeng and M. Zhu, *Crit. Rev. Environ. Sci. Technol.*, 2022, 52(8), 1401–1448.
 78 S. Liv, Y. J. Zhu, W. J. Zhu, J.
- 78 S. Liu, X.-r. Zhao, H.-y. Sun, R.-p. Li, Y.-f. Fang and Y.-p. Huang, *Chem. Eng. J.*, 2013, **231**, 441–448.
- 79 F. Guo, W. Shi, H. Wang, M. Han, H. Li, H. Huang, Y. Liu and Z. Kang, *Catal. Sci. Technol.*, 2017, 7, 3325–3331.
- 80 D. Qiao, Z. Li, J. Duanb and X. He, *Chem. Eng. J.*, 2020, **400**, 125952.
- 81 G. Rathee, N. Singh and R. Chandra, *ACS Omega*, 2020, 5, 2368–2377.

- 82 Z. Liu, M. Zhu, L. Zhao, C. Deng, J. Ma, Z. Wang, H. Liu and H. Wang, *Chem. Eng. J.*, 2017, **314**, 59–68.
- 83 J. Yang, Y. Lin, X. Yang, T. B. Ng, X. Ye and J. Lin, *J. Hazard. Mater.*, 2017, **322**, 525–531.
- 84 N. K. Eswar, S. A. Singh and G. Madras, *Chem. Eng. J.*, 2018, 332, 757–774.
- 85 M. H. Khan, H. Bae and J. Y. Jung, J. Hazard. Mater., 2010, 181, 659–665.
- 86 Y. Ji, Y. Shi, W. Dong, X. Wen, M. Jiang and J. Lu, *Chem. Eng. J.*, 2016, **298**, 225–233.
- 87 K. Chakraborty, T. Pal and S. Ghosh, ACS Appl. Nano Mater., 2018, 1, 3137–3144.
- 88 Z. Xie, Y. Feng, F. Wang, D. Chen, Q. Zhang, Y. Zeng, W. Lv and G. Liu, *Appl. Catal.*, *B*, 2018, **229**, 96–104.
- 89 T. Xu, R. Zou, X. Lei, X. Qi, Q. Wu, W. Yao and Q. Xu, Appl. Catal., B, 2019, 245, 662–671.
- 90 Y. Hong, C. Li, B. Yin, D. Li, Z. Zhang, B. Mao, W. Fan, W. Gu and W. Shi, *Chem. Eng. J.*, 2018, **338**, 137–146.
- 91 D. Jiang, P. Xiao, L. Shao, D. Li and M. Chen, Ind. Eng. Chem. Res., 2017, 56(31), 8823–8832.
- 92 C. Zhou, C. Lai, P. Xu, G. Zeng, D. Huang, Z. Li, C. Zhang, M. Cheng, L. Hu, J. Wan, F. Chen, W. Xiong and R. Deng, *ACS Sustain. Chem. Eng.*, 2018, 6(5), 6941–6949.
- 93 Q. Liu, J. Shen, X. Yang, T. Zhang and H. Tang, *Appl. Catal.*, B, 2018, 232, 562–573.
- 94 M. Yan, Y. Hua, F. Zhu, W. Gu, J. Jiang, H. Shen and W. Shi, *Appl. Catal., B*, 2017, **202**, 518–527.
- 95 W. Wang, J. Fang, S. Shao, M. Lai and C. Lu, *Appl. Catal., B*, 2017, **217**, 57–64.
- 96 J. Lyu, J. Shao, Y. Wang, Y. Qiu, J. Li, T. Li, Y. Peng and F. Liu, *Chem. Eng. J.*, 2019, **358**, 614–620.
- 97 L. Ren, W. Zhou, B. Sun, H. Li, P. Qiao, Y. Xu, J. Wu, K. Lin and H. Fu, *Appl. Catal.*, B, 2019, **240**, 319–328.
- 98 R. Hailili, Z.-Q. Wang, M. Xu, Y. Wang, X.-Q. Gong, T. Xu and C. Wang, *J. Mater. Chem. A*, 2017, 5(40), 21275–21290.
- 99 X. Yuan, D. Shen, Q. Zhang, H. Zou, Z. Liu and F. Peng, *Chem. Eng. J.*, 2019, **369**, 292–301.
- 100 F. Chen, Q. Yang, J. Sun, F. Yao, S. Wang, Y. Wang, X. Wang, X. Li, C. Niu, D. Wang and G. Zeng, ACS Appl. Mater. Interfaces, 2016, 8(48), 32887–32900.
- 101 T. Wang, W. Quan, D. Jiang, L. Chen, D. Li, S. Meng and M. Chen, *Chem. Eng. J.*, 2016, **300**, 280–290.
- 102 M. Yan, Y. Wu, F. Zhu, Y. Hua and W. Shi, *Phys. Chem. Chem. Phys.*, 2016, 18(4), 3308–3315.
- 103 C. Chen, H. Zeng, M. Yi, G. Xiao, S. Xu, S. Shen and B. Feng, *Appl. Catal., B*, 2019, **252**, 47–54.
- 104 N. Nasseh, L. Taghavi, B. Barikbin and M. A. Nasseri, *J. Clean. Prod.*, 2018, **179**, 42–54.
- 105 D. Wang, F. Jia, H. Wang, F. Chen, Y. Fang, W. Dong,
 G. Zeng, X. Li, Q. Yang and X. Yuan, *J. Colloid Interface Sci.*, 2018, 519, 273–284.
- 106 D. B. Hernandez-Uresti, A. Martinez-de la Cruz and L. M. Torres-Martinez, *Ceram. Int.*, 2016, **42**(2), 3096–3103.
- 107 W. Shi, H. Ren, M. Li, K. Shu, Y. Xu, C. Yan and Y. Tang, *Chem. Eng. J.*, 2020, **382**, 122876.
- 108 A. O. Oluwole and O. S. Olatunji, *Environ. Sci. Eur.*, 2022, **34**, 5.

- 109 S. Ghosh, K. Chakraborty, T. Pal and S. Ghosh, *Sci. Rep.*, 2023, **13**, 19028.
- 110 M. Sharma, M. K. Mandal, S. Pandey, R. Kumar and K. K. Dubey, *ACS Omega*, 2022, 7, 33572–33586.
- 111 B. Zhu, Q. Dong, J. Huang, M. Yang, X. Chen, C. Zhai, Q. Chen, B. Wang, H. Tao and L. Chen, *ACS Omega*, 2023, 8, 13702–13714.
- 112 Y. M. Hunge, A. A. Yadav, S.-W. Kang and H. Kim, *J. Colloid Interface Sci.*, 2022, **606**, 454–463.
- 113 S. Li, C. Wang, Y. Liu, M. Cai, Y. Wang, H. Zhang, Y. Guo,
 W. Zhao, Z. Wang and X. Chen, *Chem. Eng. J.*, 2022, 429, 132519.
- 114 L. Biswal, B. P. Mishra, S. Das, L. Acharya, S. Nayak and K. Parida, *Inorg. Chem.*, 2023, **62**, 7584–7597.
- 115 (a) T. B. Nguyen, P. N. T. Ho, C. W. Chen, C. P. Huang, R. Doong and C. D. Dong, *Environ. Sci.: Nano*, 2022, 9, 229; (b) S. Li, C. Wang, Y. Liu, M. Cai, Y. Wang, H. Zhang, Y. Guoc, W. Zhaod, Z. Wange and X. Chen, *Chem. Eng. J.*, 2022, 429, 132519; (c) S. Li, J. Chen, S. Hu, H. Wang, W. Jiang and X. Chen, *Chem. Eng. J.*, 2020, 402, 126165; (d) S. Li, C. Wang, Y. Liu, B. Xue, W. Jiang, Y. Liu, L. Mo and X. Chen, *Chem. Eng. J.*, 2021, 415, 128991.
- 116 Q. Chen, S. Wu and Y. Xin, *Chem. Eng. J.*, 2016, **302**, 377–387.
- 117 W. Zhao, J. Duan, B. Ji, L. Ma and Z. Yang, *J. Environ. Chem.* Eng., 2020, **8**(1), 102206.
- 118 N. Shao, J. Wang, D. Wang and P. Corvini, *Appl. Catal., B*, 2017, **203**, 964–978.
- 119 H. Chen, Y. P. Peng, K. F. Chen, C. H. Lai and Y. C. Lin, *J. Environ. Sci.*, 2016, **44**, 76–87.
- 120 Y. Yang, G. Zeng, D. Huang, C. Zhang, D. He, C. Zhou, W. Wang, W. Xiong, X. Li, B. Li, W. Dong and Y. Zhou, *Appl. Catal.*, B, 2020, 272, 118970.
- 121 R. Hassandoost, S. R. Pouran, A. Khataee, Y. Orooji and S. W. Joo, *J. Hazard. Mater.*, 2019, 376, 200–211.
- 122 B. Zhou, Y. Li, J. Bai, X. Li, F. Li and L. Liu, *Appl. Surf. Sci.*, 2019, **464**, 115–124.
- 123 X.-J. Wen, C.-G. Niu, L. Zhang and G.-M. Zeng, *ACS Sustain. Chem. Eng.*, 2017, 5(6), 5134–5147.
- 124 Y. Gao, W. Yang, F. Wang, Y. Li, S. Cui, X. Liao and J. Yang, J. Taiwan Inst. Chem. Eng., 2023, **152**, 105160.
- 125 S. Zhang, S. Zhao, S. Huang, B. Hu, M. Wang, Z. Zhang, L. He and M. Du, *Chem. Eng. J.*, 2021, 420, 130516.
- 126 J. Shan, X. Wu, C. Li, J. Hu, Z. Zhang, H. Liu, P. Xia and X. Huang, *Mater. Today Commun.*, 2022, **33**, 104941.
- 127 J. Mehralipour, S. Darvishali, S. Bagheri and M. Kermani, *Sci. Rep.*, 2023, **13**, 11113.
- 128 H. Sun, T. Zhou, J. Kang, Y. Zhao, Y. Zhang, T. Wang and X. Yin, *Sep. Purif. Technol.*, 2022, **299**, 121771.
- 129 J. H. Kim, H. Y. Jang, S. B. Kim, J. W. Choi and J. A. Park, *Water, Air, Soil Pollut.*, 2022, 233, 480.
- 130 K. Ouyang, C. Yang, B. Xu, H. Wang and S. Xie, *Colloids Surf.*, *A*, 2021, **625**, 126978.
- 131 J. Y. Chin, A. L. Ahmad and S. C. Low, *J. Environ. Manage.*, 2023, 343, 118231.
- 132 Y. Li, S. Wang, H. Guo, J. Zhou, Y. Liu, T. Wang and X. Yin, *Chemosphere*, 2024, **352**, 141371.

- 133 J. Gao, Y. Gao, Z. Sui, Z. Dong, S. Wang and D. Zou, *J. Alloys Compd.*, 2018, **732**, 43–51.
- 134 X.-J. Wen, C.-H. Shen, C.-G. Niu, D.-C. Lai, M.-S. Zhu, J. Sun, Y. Hu and Z.-H. Fei, *J. Mol. Liq.*, 2019, **288**, 111063.
- 135 W. Liu, Z. Li, Q. Kang and L. Wen, *Environ. Res.*, 2021, **197**, 110925.
- 136 F. Berdini, J. O. Otalvaro, M. Avena and M. Brigante, *Results Eng.*, 2022, **16**, 100765.
- 137 W. Liu, J. Zhang, J. Jia and C. Yuan, *Powder Technol.*, 2024, 433, 119201.
- 138 K. Wang, X. Yu, F. Yang, Z. Liu, T. Zhang, J. Niu and B. Yao, *Adv. Powder Technol.*, 2023, **34**, 104157.
- 139 Y. Zhao, Y. Wang, E. Liu, J. Fan and X. Hu, *Appl. Surf. Sci.*, 2018, **436**, 854–864.
- 140 C.-c. Hao, F.-y. Chen, K. Bian, Y.-b. Tang and W.-l. Shi, *Beilstein J. Nanotechnol.*, 2022, **13**, 1038–1050.
- 141 W. Baran, E. Adamek, J. Ziemianska and A. Sobczak, *J. Hazard. Mater.*, 2011, **196**, 1–15.
- 142 Q. Dinh, E. Moreau-Guigon, P. Labadie, F. Alliot, M. J. Teil, M. Blanchard, J. Eurin and M. Chevreuil, *Sci. Total Environ.*, 2017, 575, 758–766.
- 143 R. Yin, W. Guo, N. Ren, L. Zeng and M. Zhu, *Water Res.*, 2020, **171**, 115374.
- 144 W. Yan, L. Yan and C. Jing, *Appl. Catal., B*, 2019, **244**, 475–485.
- 145 T.-B. Nguyen, C. Huang, R.-a. Doong, C.-W. Chen and C.-D. Dong, *Chem. Eng. J.*, 2020, **384**, 123383.
- 146 M. Chen, C. Guo, S. Hou, L. Wu, J. Lv, C. Hu, Y. Zhang and J. Xu, *J. Hazard. Mater.*, 2019, 366, 219–228.
- 147 M. Ren, Y. Ao, P. Wang and C. Wang, *Chem. Eng. J.*, 2019, 378, 122122.
- 148 W. Zhu, F. Sun, R. Goei and Y. Zhou, *Appl. Catal., B*, 2017, 207, 93–102.
- 149 S. Naraginti, Y.-Y. Yu, Z. Fang and Y.-C. Yong, *Chem. Eng. J.*, 2019, **375**, 122035.
- 150 P. Karaolia, I. Michael-Kordatou, E. Hapeshi, C. Drosou, Y. Bertakis, D. Christofilos, G. S. Armatas, L. Sygellou, T. Schwartz, N. P. Xekoukoulotakis and D. Fatta-Kassinos, *Appl. Catal.*, B, 2018, 224, 810–824.
- 151 H. Zhang, Z. Wang, R. Li, J. Guo, Y. Li, J. Zhu and X. Xie, *Chemosphere*, 2017, **185**, 351–360.
- 152 E. Ioannidou, Z. Frontistis, M. Antonopoulou, D. Venieri, I. Konstantinou, D. I. Kondarides and D. Mantzavinos, *Chem. Eng. J.*, 2017, **318**, 143–152.
- 153 M. Jahdi, S. B. Mishra, E. N. Nxumalo, S. D. Mhlanga and A. K. Mishra, *Appl. Catal.*, *B*, 2020, 267, 118716.
- 154 J. Yang, Z. Li and H. Zhu, Appl. Catal., B, 2017, 217, 603–614.
- 155 A. Mirzaei, L. Yerushalmi, Z. Chen, F. Haghighat and J. Guo, *Water Res.*, 2018, **132**, 241–251.
- 156 A. Yazdanbakhsh, A. Eslami, M. Massoudinejad and M. Avazpour, *Chem. Eng. J.*, 2020, **380**, 122497.
- 157 O. Mertah, A. Gómez-Avilés, A. Slassi, A. Kherbeche, C. Belver and J. Bedia, *Catal. Commun.*, 2023, **157**, 106611.
- 158 X. Gan, Y. Song, G. Liu, H. Zhang and J. Yang, Front. Environ. Sci., 2023, 11, 1314536.
- 159 J. Musial, D. T. Mlynarczyk and B. J. Stanisz, *Sci. Total Environ.*, 2023, **856**, 159122.

- 160 J. Dang, W. Pei, F. Hu, Z. Yu, S. Zhao, J. Hu, J. Liu, D. Zhang,Z. Jing and X. Lei, *Toxics*, 2023, 11(10), 818.
- 161 X. Lin, H. Fang, L. Wang, D. Sun, G. Zhao and J. Xu, *Water*, 2024, **16**, 218.
- 162 J. Zhang, S. Gou, Z. Yang, C. Li and W. Wang, *Water Cycle*, 2024, **5**, 1–8.
- 163 D. Yongheng, Y. Huayu, L. Jiang, S. Qia, Y. Qianwena and Z. Yuntao, *RSC Adv.*, 2023, **13**, 5957–5969.
- 164 J.-Y. Zhang, J. Ding, L.-M. Liu, R. Wu, L. Ding, J.-Q. Jiang, J.-W. Pang, Y. Li, N.-Q. Ren and S.-S. Yang, *Environ. Sci. Ecotechnology*, 2024, 17, 100308.
- 165 N. Le-Duy, L.-A. T. Hoang, T. D. Nguyen and T. Lee, *Chemosphere*, 2023, **321**, 138118.
- 166 A. A. Ioannidi, J. Zappa, A. Petala, M. Souliotis, D. Mantzavinos and Z. Frontistis, *Water*, 2023, 15(7), 1370.
- 167 L. Pan, C. Jiao, Y. Liang, J. Xiong, S. Wang, H. Zhu, G. Chenc and H. Song, *New J. Chem.*, 2021, **45**, 5645–5653.
- 168 A. Adewuyi, O. A. Ogunkunlec and R. A. Oderinde, *RSC Adv.*, 2023, **13**, 9563–9575.
- 169 Y. Fang, H. Chen, T. Sheng, S. Lv, S. Cai, Y. Liu and K. Zhang, Surface. Interfac., 2024, 45, 103848.
- 170 H. Chen, Y. Fang, P. Duan, X. Zhang and K. Zhang, *ChemistrySelect*, 2023, **8**, e202300658.
- 171 N. Le-Duy, L.-A. T. Hoang, T. D. Nguyen and T. Lee, ACS Appl. Nano Mater., 2023, 6(16), 14798–14809.
- 172 P. Wang, X. Gu, S. Li, J. Shen, J. Liu, C. Gong and Y. Chen, *Environ. Technol.*, 2023, 1–16.
- 173 V. K. Parida, S. K. Srivastava, S. Chowdhury and A. K. Gupta, *Langmuir*, 2023, **39**(51), 18846–18865.
- 174 X. Liu, J. Xu, T. Zhang, J. Zhang, D. Xia, Y. Du, Y. Jiang and K. Lin, *J. Colloid Interface Sci.*, 2023, **629**, 989–1002.
- 175 B. Zhang, C. Fang, J. Ning, R. Dai, Y. Liu, Q. Wu, F. Zhang, W. Zhang, S. Dou and X. Liu, *Carbon Neutralization*, 2023, 2, 646–660.
- 176 C.-S. Lu, H.-Y. Tsai, J. Shaya, V. B. Golovko, S.-Y. Wang, W.-J. Liug and C.-C. Chen, *RSC Adv.*, 2022, **12**, 29709–29718.
- 177 N. Roy, K. Kannabiran and A. Mukherjee, *Chemosphere*, 2023, **333**, 138912.
- 178 Y. Li, W. Zhu, Q. Guo, X. Wang, L. Zhang, X. Gao and Y. Luo, *Sep. Purif. Technol.*, 2021, **276**, 119403.
- 179 B. Yang, X. Mao, L. Pi, Y. Wu, H. Ding and W. Zhang, *Environ. Sci. Pollut. Res. Int.*, 2017, **24**(9), 8658-8670.
- 180 C. Zhou, P. Xu, C. Lai, C. Zhang, G. Zeng, D. Huang, M. Cheng, L. Hu, W. Xiong, X. Wen, L. Qin, J. Yuan and W. Wang, *Chem. Eng. J.*, 2019, **359**, 186–196.
- 181 C. Zhou, Z. Zeng, G. Zeng, D. Huang, R. Xiao, M. Cheng, C. Zhang, W. Xiong, C. Lai, Y. Yang, W. Wang, H. Yi and B. Li, *J. Hazard. Mater.*, 2019, **380**, 120815.
- 182 C. Zhou, C. Lai, D. Huang, G. Zeng, C. Zhang, M. Cheng, L. Hu, J. Wan, W. Xiong, M. Wen, X. Wen and L. Qin, *Appl. Catal.*, B, 2018, 220, 202–210.
- 183 H. Ji, P. Du, D. Zhao, S. Li, F. Sun, E. C. Duin and W. Liu, *Appl. Catal.*, B, 2020, 263, 118357.
- 184 T.-W. Tzeng, S.-L. Wang, C.-C. Chen, C.-C. Tan, Y.-T. Liu, T.-Y. Chen, Y.-M. Tzou, C. C. Chen and J. T. Hung, *RSC Adv.*, 2016, 6(73), 69301–69310.

- 185 X.-J. Wen, X.-X. Lv, J. Sun, J. Guo, Z.-H. Fei and C.-G. Niu, *J. Hazard. Mater.*, 2020, **385**, 121508.
- 186 S. Dong, X. Ding, T. Guo, X. Yue, X. Han and J. Sun, *Chem. Eng. J.*, 2017, **316**, 778–789.
- 187 S. Dong, L. Cui, C. Liu, F. Zhang, K. Li, L. Xia, X. Su, J. Feng, Y. Zhu and J. Sun, *J. Taiwan Inst. Chem. Eng.*, 2019, **97**, 288– 296.
- 188 M.-A. Edaala, L. E. Mersly, A. A. Tahiri, P. Wong-Wah-Chung, L. E. Blidi, M. M. Alrashed and S. Rafqah, *Water*, 2023, 15(23), 4058.
- 189 X. Zeng, S. Shu, Y. Meng, H. Wang and Y. Wang, *Chem. Eng. J.*, 2023, **456**, 141105.
- 190 S. Shu, H. Wang, X. Guo, Y. Wang and X. Zeng, Sep. Purif. Technol., 2023, 323, 124458.
- 191 D. Liang, Z. Lin, Y. Wu, D. Li, J. Chen, X. Jin, Y. Chen, J. Zhang, H. Liu, P. Chen, W. Lv and G. Liu, *Environ. Sci.*: *Nano*, 2023, **10**, 1053–1064.
- 192 Y. M. Bakier and H. M. El-Bery, J. Environ. Chem. Eng., 2023, 11, 111493.
- 193 W. Zhu, J. Liu, S. Yu, Y. Zhou and X. Yan, *J. Hazard. Mater.*, 2016, **318**, 407–416.
- 194 R. Wang, J. Tang, X. Zhang, D. Wang, X. Wang, S. Xue,
 Z. Zhang and D. D. Dionysiou, *J. Hazard. Mater.*, 2019,
 375, 161–173.
- 195 Y. Wu, H. Ji, Q. Liu, Z. Sun, P. Li, P. Ding, M. Guo, X. Yi, W. Xu, C.-C. Wang, S. Gao, Q. Wang, W. Liu and S. Chen, *J. Hazard. Mater.*, 2022, 424, 127563.
- 196 Q. Li, Z. Guan, D. Wu, X. Zhao, S. Bao, B. Tian and J. Zhang, ACS Sustain. Chem. Eng., 2017, 5(8), 6958–6968.
- 197 X. Xu, L. Meng, Y. Dai, M. Zhang, C. Sun, S. Yang, H. He, S. Wang and H. Li, *J. Hazard. Mater.*, 2020, **381**, 120953.
- 198 M. Liu, D. Zhang, J. Han, C. Liu, Y. Ding, Z. Wang and A. Wang, *Chem. Eng. J.*, 2020, **382**, 123017.
- 199 X. Xin, H. Liu, J. Sun, K. Gao and R. Jia, *Int. J. Environ. Sci. Technol.*, 2023, 20, 11865–11876.
- 200 N. Wang, X. Li, Y. Yang, Z. Zhou, Y. Shang and X. Zhuang, *J. Water Process Eng.*, 2020, **36**, 101335.
- 201 X. Liu, Y. Liu, S. Lu, W. Guo and B. Xi, *Chem. Eng. J.*, 2018, 350, 131–147.
- 202 D. Li, N. Zhang, R. Yuan, H. Chen, F. Wang and B. Zhou, *J. Environ. Chem. Eng.*, 2021, **9**, 106243.
- 203 Q. Li, H. Y. Yang, P. Z. Zhong, N. J. Jiancong, W. Yang, J. Chen, Y. Zhang and L. Jianmin, *Sep. Purif. Technol.*, 2022, **299**, 121814.
- 204 C. P. Silva, D. Pereira, V. Calisto, M. A. Martins, M. Otero,
 V. Esteves and D. L. D. Lima, *J. Environ. Manag.*, 2021,
 294, 112937.
- 205 W. Yang, C. Bu, M. Zhao, Y. Li, S. Cui, J. Yang and H. Lian, Small, 2024, 2309972.
- 206 M. Feng, Z. Wang, D. D. Dionysiou and V. K. Sharma, J. Hazard. Mater., 2018, **344**, 1136–1154.
- 207 D. M. Whitacre, *Reviews of Environmental Contamination and Toxicology*, Springer, 2009, vol. 217.
- 208 N. Janecko, L. Pokludova, J. Blahova, Z. Svobodova and I. Literak, *Environ. Toxicol. Chem.*, 2016, 35(11), 2647–2656.
- 209 X. Van Doorslaer, J. Dewulf, H. Van Langenhove and K. Demeestere, *Sci. Total Environ.*, 2014, **500–501**, 250–269.

- 210 M. Feng, Z. Wang, D. D. Dionysiou and V. K. Sharma, J. *Hazard. Mater.*, 2018, **344**, 1136–1154.
- 211 M. Golmohammadi, H. Hanafi-Bojd and M. Shiva, *Ceram. Int.*, 2023, **49**, 7717–7726.
- 212 I. Mukherjee, V. Cilamkoti and R. K. Dutta, *ACS Appl. Nano Mater.*, 2021, 4(8), 7686–7697.
- 213 R. Noroozi, M. Gholami, V. Oskoei, M. H. Arani, S. A. Mousavifard, B. N. Le and M. Fattahi, *Sci. Rep.*, 2023, 13, 16287.
- 214 H. Alshaikh, A. Shawky, R. M. Mohamed, J. K. Knight and L. S. Roselin, *J. Mol. Liq.*, 2021, **334**, 116092.
- 215 M. Manasa, P. R. Chandewar and H. Mahalingam, *Catal. Today*, 2021, **375**(375), 522–536.
- 216 N. Moghni, H. Boutoumi, H. Khalaf, N. Makaoui and G. Colon, J. Photochem. Photobiol., A, 2022, **428**, 113848.
- 217 C. Gherasim, P. Pascariu, M. Asandulesa, M. Dobromir,
 F. Doroftei, N. Fifere, A. Dascalu and A. Airinei, *Ceram. Int.*, 2022, 48, 25556–25568.
- 218 C. H. Shen, X. J. Wen, Z. H. Fei, Z. T. Liu and Q. M. Mu, *Chem. Eng. J.*, 2020, **391**, 123612.
- 219 S. A. Abdulrahman, Z. Y. Shnain, S. S. Ibrahim and H. S. Majdi, *Catalysts*, 2022, **12**, 1663.
- 220 P. Pascariu, C. Cojocaru, M. Homocianu, P. Samoila, A. Dascalu and M. Suchea, *Ceram. Int.*, 2022, **48**, 4953–4964.
- 221 P. Pascariu, C. Cojocaru, M. Homocianu and P. Samoila, J. Environ. Manag., 2022, **316**, 115317.
- 222 P. Pascariu, C. Cojocaru, P. Samoila and C. Romanitan, *Int. J. Mol. Sci.*, 2023, **24**, 6436.
- 223 B. Zhu, D. Song, T. Jia, W. Sun, D. Wang, L. Wang, J. Guo,
 L. Jin, L. Zhang and H. Tao, ACS Omega, 2021, 6(2), 1647– 1656.
- 224 T. J. Al-Musawi, N. Mengelizadeh, A. I. Alwared, D. Balarak and R. Sabaghi, *Environ. Sci. Pollut. Res.*, 2023, **30**, 70076– 70093.
- 225 J. Zuo, X. Ma, C. Tan, Z. Xia, Y. Zhang, S. Yu, Y. Li, Yu. Li and J. Li, *Anal. Methods*, 2023, **15**, 519–528.
- 226 L. Wolski, K. Grzelak, M. Muńko, M. Frankowski, T. Grzyb and G. Nowaczyk, *Appl. Surf. Sci.*, 2021, **563**, 150338.
- 227 Z. Nasari and M. Taherimehr, *Langmuir*, 2023, **39**(40), 14357–14373.
- 228 N. Kumar, R. Gusain, M. Masukume and S. S. Ray, *Sol. RRL*, 2023, 7, 2300475.
- 229 M. Xu, Y. Wang, E. Ha, H. Zhang and C. Li, *Chemosphere*, 2021, **265**, 129013.
- 230 Y. Zhao, Y. Zuo, G. He, Q. Chen, Q. Meng and H. Chen, J. *Alloys Compd.*, 2021, **869**, 159305.
- 231 Z. Chen, J. Liang, X. Xu, G. He and H. Chen, *J. Mater. Sci.*, 2020, 55, 6065.
- 232 J. V. Kumar, R. Karthik, S.-M. Chen, V. Muthuraj and C. Karuppiah, *Sci. Rep.*, 2016, **6**, 34149.
- 233 H. Zhu, B. Yang, J. Yang, Y. Yuan and J. Zhang, Chemosphere, 2021, 276, 130217.
- 234 M. Manjunatha and H. Mahalingam, *Sci. Rep.*, 2013, **13**, 14631.
- 235 S. Kaushal, V. Kumari and P. P. Singh, *Environ. Sci. Pollut. Res.*, 2023, **30**, 65602–65617.

- 236 A. R. Dash, A. J. Lakhani, D. D. Priya, T. V. Surendra,
 M. M. R. Khan, E. J. J. Samuel and S. M. Roopan, *J. Cluster Sci.*, 2023, 34, 121–133.
- 237 N. A. A. M. Azan, S. Sagadevan, A. R. Mohamed, A. H. N. Azazi, F. B. M. Suah, T. Kobayashi, R. Adnan and N. H. M. Kaus, *Catalysts*, 2020, 12(10), 1269.
- 238 P. Rajiv, N. Mengelizadeh, G. McKay and D. Balarak, *Int. J. Environ. Anal. Chem.*, 2023, **103**, 2193–2207.
- 239 H. Qin, Y. Yang, W. Shia and Y. She, *RSC Adv.*, 2021, **11**, 13731–13738.
- 240 H. Zhang, Z. Fan, Q. Chai and J. Li, *Catalysts*, 2023, 13(3), 469.
- 241 S. Uruş, M. Çaylar, H. Eskalen and Ş. Özgan, J. Mater. Sci.: Mater. Electron., 2022, 33, 4314–4329.
- 242 Y. Peng, J. Lin, J.-L. Niu, X. Guo, Y. Chen, T. Hu, J. Cheng and Y. Hu, *ACS Appl. Mater. Interfaces*, 2024, **16**(2), 2351– 2364.
- 243 M. Murugalakshmi, K. Govindan, M. Umadevi, C. B. Breslin and V. Muthuraj, *Environ. Sci.: Water Res. Technol.*, 2023, **9**, 1385–1402.
- 244 C. Chuaicham, T. Inoue, V. Balakumar, Q. Tian, B. Ohtani and K. Sasaki, *J. Environ. Chem. Eng.*, 2022, **10**, 106970.
- 245 H. Qin, Y. Yang, W. Shia and Y. She, *RSC Adv.*, 2021, **11**, 13731–13738.
- 246 J. Cheng, Z. Deng, X. Zheng, C. Chu and Y. Guo, *J. Alloys Compd.*, 2024, **971**, 172779.
- 247 S. G. Khasevani, D. Nikjoo, C. Chaxel, K. Umeki, S. Sarmad, J.-P. Mikkola and I. Concina, *ACS Omega*, 2023, **8**(46), 44044–44056.
- 248 Z. Jia, T. Li, Z. Zheng, J. Zhang, J. Liu, R. Li, Y. Wang, X. Zhang, Y. Wang and C. Fan, *Chem. Eng. J.*, 2020, **380**, 122422.
- 249 S. Wu, Y. Su, Y. Zhu, Y. Zhang and M. Zhu, *Appl. Surf. Sci.*, 2020, **520**, 146339.
- 250 Y. Li, Y. Fu and M. Zhu, Appl. Catal., B, 2020, 260, 118149.
- 251 S. Dong, L. Cui, W. Zhang, L. Xia, S. Zhou, C. K. Russell, M. Fan, J. Feng and J. Sun, *Chem. Eng. J.*, 2020, **384**, 123279.
- 252 S. Dong, L. Cui, Y. Tian, L. Xia, Y. Wu, J. Yu, D. M. Bagley, J. Sun and M. Fan, *J. Hazard. Mater.*, 2020, **399**, 123017.
- 253 S. L. Prabavathi, K. Saravanakumar, C. M. Park and V. Muthuraj, *Sep. Purif. Technol.*, 2021, **257**, 117985.
- 254 A. Machín, L. Soto-Vázquez, D. García, M. C. Cotto, D. Ortiz,
 P. J. Berríos-Rolón, K. Fontánez, E. Resto, C. Morant,
 F. Petrescu and F. Márquez, *Catalysts*, 2023, 13(3), 538.
- 255 H. Qi, M. Wu, J. Wang, B. Zhang, C. Dai, F. Teng, M. Zhao and L. He, *ChemistrySelect*, 2023, **8**, e202204121.
- 256 X. Zhong, K.-X. Zhang, D. Wu, X.-Y. Ye, W. Huang and B.-X. Zhou, *Chem. Eng. J.*, 2020, **383**, 123148.
- 257 L. Wen, P. Liu, Z. Zhou, K. Wang and Y. Zhou, *Chem.–Asian J.*, 2023, **18**, e202300161.
- 258 B. Trifi, A. Nahdi, A. Othmani, Z. Aloui, M. Essid and H. Dhaouadi, Int. J. Environ. Sci. Technol., 2024, 21, 3747– 3760.
- 259 J. Li, Z. Yin, J. Guo, W. Gan, R. Chen, M. Zhang and Z. Sun, *RSC Adv.*, 2024, 14, 4975–4989.
- 260 C.-K. Tsai, Y.-C. Lee, T. T. Nguyen and J.-J. Horng, *Chemosphere*, 2022, **298**, 134285.

View Article Online **RSC** Advances

- 261 H. Wei, F. Meng, W. Yu, J. Li and H. Zhang, Sep. Purif. Technol., 2023, 318, 123940.
- 262 L. Zhang, L. Tan, Z. Yuan, B. Xu, W. Chen, Y. Tang, L. Li and J. Wang, Chem. Eng. J., 2023, 452, 139327.
- 263 Q. Su, J. Li, H. Yuan, B. Wang, Y. Wang, Y. Li and Y. Xing, Chem. Eng. J., 2022, 427, 131594.
- 264 Q. Shang, X. Liu, M. Zhang, P. Zhang, Y. Ling, G. Cui, W. Liu, X. Shi, J. Yue and B. Tang, Chem. Eng. J., 2022, 443, 136354.
- 265 G. Gupta, S. K. Kansal, A. Umar and S. Akbar, Chemosphere, 2023, 314, 137611.
- 266 M. Malhotra, A. Garg and M. Rawat, Chem. Eng. Technol., 2024, 47, 683-691.
- 267 Z. Xiao, J. Xiao, L. Yuan, M. Ai, F. Idrees, Z.-F. Huang, C. Shi, X. Zhang, L. Pan and J.-J. Zou, J. Mater. Chem. A, 2024, 12, 5366-5376.
- 268 L. Shi, X. Zou, T. Wang, D. Wang, M. Fan and Z. Gong, Chin. Chem. Lett., 2022, 33, 442-446.
- 269 B. Wang, K. Qian, W. Yang, W. An, L.-L. Lou, S. Liu and K. Yu, Front. Chem. Sci. Eng., 2023, 17, 1728-1740.
- 270 H. Yin, H. Shi, L. Sun, D. Xia and X. Yuan, Environ. Sci. Pollut. Res., 2021, 28, 11650-11664.
- 271 X. Liu, Y. Zhong, H. Feng, Y. Zhao, Q. Li and T. Huang, New J. Chem., 2024, 48, 800-810.
- 272 Z. Shan, F. Ma, M. Xu, X. Shan, L. Shan, Ch. Cui and H. Guo, Chem. Eng. J., 2023, 466, 143229.
- 273 J. Xu, Z. Ren, X. Qiu, P. Zhu, D. Chen, L. Xie and C. Zhang, ChemistrySelect, 2021, 6, 7295-7305.
- 274 X. Liu, Y. Zhong, H. Feng, Y. Zhao, Q. Li and T. Huang, New J. Chem., 2024, 48, 800-810.
- 275 A. A. Mashentseva, D. T. Nurpeisova and M. Barsbay, RSC Adv., 2024, 14, 4424-4435.
- 276 Q. Chen, Y. H. Z. Song, M. Liu, D. Chen, B. Zhu, J. Chen and Z. Chen, Ecotoxicol. Environ. Saf., 2021, 225, 112742.
- 277 S. Kar, T. Pal and S. Ghosh, ACS Appl. Nano Mater., 2024, 7, 6516-6524.
- 278 S. Kar, T. Pal and S. Ghosh, ChemistrySelect, 2023, 8, e202300878.
- 279 H. Cai, Y. Ma, J. Li, Y. Jin, P. Zhu and M. Chen, Ind. Eng. Chem. Res., 2022, 61(30), 11237-11248.
- 280 M. Passi and B. Pal, Chem. Eng. J., 2024, 479, 147685.
- 281 C. Feng, Y. Wang, Z. Lu, Q. Liang, Y. Zhang, Z. Li and S. Xu, Sep. Purif. Technol., 2022, 282, 120107.
- 282 (a) W. Zhang, Z. Huang, L. Zhang, Y. Meng, Z. Ni, H. Tang and S. Xia, J. Environ. Chem. Eng., 2023, 11, 109979; (b) S. Li, K. Dong, M. Cai, X. Li and X. Chen, eScience, 2024, 4, 100208.
- 283 H. Guo, J. Cui, X. Chai, Y. Shi, S. Gao and J. Gao, Environ. Sci. Pollut. Res., 2023, 30, 68403-68416.
- 284 K. Wang, S. Zhan, D. Zhang, H. Sun, X. Jina and J. Wang, RSC Adv., 2021, 11, 4723-4739.
- 285 T. Li, J. Liu, F. Shi, H. Zhang, H. Zhang, C. Ma and M. Wasim, J. Environ. Chem. Eng., 2023, 11, 109301.
- 286 Z. Gong, J. Xie, J. Liu, T. Liu, J. Chen, J. Li and J. Gan, Environ. Sci. Pollut. Res., 2023, 30, 38700-38712.
- 287 H. Rahmani, A. R. Mahjoub and Z. Khazaee, ACS Appl. Nano Mater., 2023, 6(6), 4554-4566.

- 288 P. Zhou, Y. Wang, L. Jing, X. Yan, Y. Gan, C. Xia, M. Xie and Y. Xu, Colloids Surf., A, 2024, 686, 133380.
- 289 J. Huang, D. Li, R. Li, P. Chen, Q. Zhang, H. Liu, W. Lv, G. Liu and Y. Feng, J. Hazard. Mater., 2020, 386, 121634.
- 290 (a) Y. Xiao, H. Lyu, J. Tang, K. Wang and H. Sun, Chem. Eng. *I.*, 2020, **384**, 123311; (*b*) S. Li, C. Wang, K. Dong, P. Zhang, X. Chen and X. Li, Chin. J. Catal., 2023, 51, 101-112.
- 291 V. Homem and L. Santos, J. Environ. Manage., 2011, 92(10), 2304-2347.
- 292 C. S. McArdell, E. Molnar, M. J.-F. Suter and W. Giger, Environ. Sci. Technol., 2003, 37(24), 5479-5486.
- 293 S. M. Mitchell, J. L. Ullman, A. L. Teel and R. J. Watts, Chemosphere, 2015, 134, 504-511.
- 294 C.-H. Huang, J. E. Renew, K. L. Smeby, K. Pinkston and D. L. Sedlak, J. Contemp. Water Res. Educ., 2011, 120, 4.
- 295 C. Guo and P. Li, Environ. Monit. Assess., 2023, 195, 1423.
- 296 P. Zhao, Y. Yang, Y. Pei and X. Luo, Cellulose, 2023, 30, 1133-1147.
- 297 A. Ounnar, A. Bouzaza, L. Favier and F. Bentahar, Rev. Energ. Renouv., 2017, 20, 683-691.
- 298 H. Dong, X. Guo, C. Yang and Z. Ouyang, Appl. Catal., B, 2018, 230, 65-76.
- 299 G. Li, R. Wang, B. Wang and J. Zhang, Appl. Surf. Sci., 2020, 517, 146212.
- 300 G. Li, B. Wang, J. Zhang, R. Wang and H. Liu, Chem. Eng. J., 2019, 391, 123500.
- 301 H. Dong, X. Guo and Y. Yin, Res. Chem. Intermed., 2018, 44(5), 3151-3167.
- 302 L. L. Albornoz, S. W. da Silva, J. P. Bortolozzi, E. D. Banús, P. Brussino, M. A. Ulla and A. M. Bernardes, Chemosphere, 2021, 268, 128858.
- 303 M. Mohsin, I. A. Bhatti, M. Iqbal, S. Naz, A. Ashar, J. Nisar, F. F. Al-Fawzan and S. A. Alissa, J. Water Proc. Eng., 2021, 44, 102433.
- 304 P. Karaolia, I. Michael-Kordatou, E. Hapeshi, C. Drosou, Y. Bertakis, D. Christofilos, G. S. Armatas, L. Sygellou, T. Schwartz, N. P. Xekoukoulotakis and D. Fatta-Kassinos, Appl. Catal., B, 2018, 224, 810-824.
- 305 N. P. Xekoukoulotakis, N. Xinidis, M. Chroni, D. Mantzavinos, D. Venieri, E. Hapeshi and D. Fatta-Kassinos, Catal. Today, 2010, 151(1-2), 29-33.
- 306 G. Li, B. Wang, J. Zhang, R. Wang and H. Liu, Appl. Surf. Sci., 2019, 478, 1056-1064.
- 307 B. Gao, S. Dong, J. Liu, L. Liu, Q. Feng, N. Tan, T. Liu, L. Bo and L. Wang, Chem. Eng. J., 2016, 304, 826-840.
- 308 R. Hendili, A. Alatrache, M. Ben-Attia and M.-N. Pons, C. R. Chim., 2017, 20(7), 710-716.
- 309 D. Tassalit, N. Chekir, O. Benhabiles, F. Bentahar and N. A. Laoufi, Green Energy and Technology, Springer, Cham, 2016, pp. 695-706. DOI: 10.1007/978-3-319-30127-3_51.
- 310 V. Vaiano, O. Sacco, D. Sannino and P. Ciambelli, Chem. Eng. J., 2015, 261, 3-8.
- 311 L. Chen, W. Ma, J. Dai, J. Zhao, C. Li and Y. Yan, J. Photochem. Photobiol., A, 2016, 328, 24-32.
- 312 P. Karaolia, I. Michael-Kordatou, E. Hapeshi, C. Drosou, Y. Bertakis, D. Christofilos, G. S. Armatas, L. Sygellou,

Open Access Article. Published on 27 June 2024. Downloaded on 8/12/2024 5:59:43 PM

Review

RSC Advances

T. Schwartz, N. P. Xekoukoulotakis and D. Fatta-Kassinos, *Appl. Catal.*, *B*, 2018, **224**, 810–824.

- 313 S. Naraginti, Y.-Y. Yu, Z. Fang and Y.-C. Yong, *Process Saf. Environ. Prot.*, 2019, **125**, 39–49.
- 314 M. H. Sayadi, S. Sobhani and H. Shekari, *J. Clean. Prod.*, 2019, **232**, 127–136.
- 315 G.-I. Lupu, C. Orbeci, C. Bobirică, L. Bobirică, E. S. Lazăr, J. Pandele-Cusu, M. N. Verziu, C. Pîrvu and R.-G. Irodia, *Sustainable Environ. Res.*, 2023, 33, 36.
- 316 A. Mehrdoost, R. J. Yengejeh, M. K. Mohammadi, A. Haghighatzadeh and A. A. Babaei, *Environ. Sci. Pollut. Res.*, 2022, 29, 33514–33527.
- 317 B. Loder, G. Newton and E. Abraham, *Biochem. J.*, 1961, **79**, 408–416.
- 318 Y. Wang, R. L. Tennyson and D. Romo, *Heterocycles*, 2004, 64, 605–658.
- 319 V. Vaiano, O. Sacco, D. Sannino and P. Ciambelli, *Chem. Eng. J.*, 2015, **261**, 3–8.
- 320 S. Fallahizadeh, M. Gholami, M. R. Rahimi, A. Esrafili, M. Farzadkia and M. Kermani, *Sci. Rep.*, 2023, **13**, 16185.
- 321 R. M. B. Ramos, L. C. Paludo, P. I. Monteiro, L. V. M. da Rocha, C. V. de Moraes, O. O. Santos, E. R. Alves and T. L. P. Dantas, *Talanta*, 2023, 260, 124658.
- 322 E. T. Wahyuni, R. N. Cahyono, M. Nora, E. Z. Alharissa and E. S. Kunarti, *Results Chem.*, 2024, 7, 101302.
- 323 F. Beshkar, A. Al-Nayili, O. Amiri, M. Salavati-Niasari and M. Mousavi-Kamazani, J. Alloys Compd., 2022, 892, 162176.
- 324 D. Balarak, N. Mengelizadeh, P. Rajiv and K. Chandrika, Environ. Sci. Pollut. Res., 2011, 28, 49743–49754.
- 325 I. F. Silva, I. F. Teixeira, R. D. F. Rios, G. M. do Nascimento,
 I. Binatti, H. F. V. Victória, K. Krambrock, L. A. Cury,
 A. P. C. Teixeira and H. O. Stumpf, *J. Hazard. Mater.*, 2021, 401, 123713.
- 326 N. Zulfiqar, R. Nadeem and O. A. Musaimi, *ACS Omega*, 2024, **9**(7), 7986–8004.
- 327 Z.-H. Diao, J.-C. Jin, M.-Y. Zou, H. Liu, J.-Q. Qin, X.-H. Zhou,
 W. Qian, P.-R. Guo, L.-J. Kong and W. Chu, *Sep. Purif. Technol.*, 2021, 278, 119620.
- 328 G. Rana, P. Dhiman, J. Sharma, A. Kumar and G. Sharma, *Inorg. Chem. Commun.*, 2023, **158**, 111596.
- 329 P. Debnath, K. Sen, A. Mondal, A. Mondal and N. K. Mondal, *Int. J. Environ. Res.*, 2021, **15**, 571–583.
- 330 F. M. d. Rosa, J. Papac, S. Garcia-Ballesteros, M. Kovačić, Z. Katančić, H. Kušić and A. L. Božić, *Adv. Sustainable Syst.*, 2021, 5, 2100119.
- 331 A. Fawzy, H. Mahanna and M. Mossad, *Environ. Sci. Pollut. Res.*, 2022, **29**, 68532–68546.
- 332 Y. T. Gaim, S. M. Yimanuh, Z. G. Kidanu and J. Compos, *Science*, 2022, 6(10), 317.
- 333 T. T. Nguyen, S.-N. Nam, J. Son and J. Oh, *Sci. Rep.*, 2019, **9**, 9349.
- 334 M. Verma and A. K. Haritash, *Environ. Technol. Innovation*, 2020, **20**, 101072.
- 335 T. D. N. Thi, L. H. Nguyen, X. H. Nguyen, H. V. Phung,T. H. T. Vinh, P. V. Viet, N. V. Thai, H. N. Le, D. T. Pham,H. T. Van, L. H. T. Thi, T. D. P. Thi, T. L. Minh,

H. H. P. Quang, H. P. N. Vu, T. T. Duc and H. M. Nguyen, *Mater. Sci. Semicond. Process.*, 2022, **142**, 106456.

- 336 M. Dou, J. Wang, B. Gao, C. Xu and F. Yang, *Chem. Eng. J.*, 2020, **383**, 123134.
- 337 B. Gao, J. Wang, M. Dou, C. Xu and X. Huang, *Environ. Sci.* Pollut. Res., 2020, 27(7), 7025–7039.
- 338 M. Chahkandi and M. Zargazi, *J. Hazard. Mater.*, 2020, **389**, 121850.
- 339 S. Le, W. Yang, G. Chen, A. Yan and X. Wang, *Environ. Pollut.*, 2020, **263**, 114550.
- 340 M.-M. Fang, J.-X. Shao, X.-G. Huang, J.-Y. Wang and W. Chen, *J. Mater. Sci. Technol.*, 2020, **56**, 133–142.
- 341 N. Pugazhenthiran, P. Sathishkumar, O. Albormani, S. Murugesan, M. Kandasamy, M. Selvaraj, S. Suresh, S. K. Kumar, D. Contreras, H. Váldes and R. V. Mangalaraja, *Chemosphere*, 2023, 313, 137515.
- 342 N. Pugazhenthiran, S. Murugesan, H. Valdés, M. Selvaraj, P. Sathishkumar, P. G. Smirniotis, S. Anandan and R. V. Mangalaraja, *J. Ind. Eng. Chem.*, 2022, **105**, 384–392.
- 343 K. Portillo-Cortez, J. E. Romero-Ibarra, D. Dominguez,
 G. Alonso-Nuñez and U. Caudillo-Flores, *J. Photochem. Photobiol.*, A, 2023, 445, 115090.
- 344 J. Yang, L. Fang, Z. Li, G. Meng, Y. Jia, Y. Jiang, J. Lian and X. Gan, *Chemosphere*, 2023, **314**, 137618.
- 345 N. AttariKhasraghi, K. Zare, A. Mehrizad, N. Modirshahla and M. A. Behnajady, *J. Inorg. Organomet. Polym.*, 2021, 31, 3164–3174.
- 346 M. Zhou, L. Cheng, Z. Chen, L. Chen and Y. Ma, *J. Alloys Compd.*, 2021, **869**, 159322.
- 347 J. He, Y. Zhang, Y. Guo, G. Rhodes, J. Yeom, H. Li and W. Zhang, *Environ. Int.*, 2019, 132, 105105.
- 348 A. Almasi, R. Esmaeilpoor, H. Hoseini, V. Abtin and M. Mohammadi, J. Environ. Health Sci. Eng., 2020, 18, 1359–1373.
- 349 N. S. Nguyen, T. D. Pham, H. T. Vo and K. D. Ngo, *Environ. Technol.*, 2019, 42(8), 1292–1301.
- 350 S. Wang, J. Liu, I. Albaijan, A. Shawabkeh, H. Lin, I. Ahmad,
 S. O. Rab and M. Y. Alshahrani, *J. Ind. Eng. Chem.*, 2024, 135, 213–231.
- 351 A. Bendesky, D. Menendez and P. Ostrosky-Wegman, Mutat. Res. Rev. Mutat. Res., 2022, 511(2), 133-144.
- 352 S. Dong, J. Sun, Y. Li, C. Yu, Y. Li and J. Sun, *Appl. Catal.*, *B*, 2014, **144**, 386–393.
- 353 J. Li, W. Zhao, Y. Guo, Z. Wei, M. Han, H. He, S. Yang and C. Sun, *Appl. Surf. Sci.*, 2015, **351**, 270–279.
- 354 M. Malakootian, N. Olama, M. Malakootian and A. Nasiri, Int. J. Environ. Sci. Technol., 2019, 16(8), 4275–4284.
- 355 F. S. Mustafa and A. A. Oladipo, *J. Water Proc. Eng.*, 2021, **42**, 102132.
- 356 M. S. H. Shuvo, R. A. Putul, K. S. Hossain, S. M. Masum and M. A. I. Molla, *Toxics*, 2024, 12(1), 36.
- 357 Y. Zhang and W. Chu, Sep. Purif. Technol., 2022, 291, 120900.
- 358 T. J. Al-Musawi, N. S. M. Moghaddam, S. M. Rahimi, M. Amarzadeh and N. Nasseh, *J. Environ. Manage.*, 2022, 319, 115697.

- 359 M. Yeganeh, H. R. Sobhi and A. Esrafili, *Environ. Sci. Pollut. Res.*, 2022, **29**, 25486–25495.
- 360 Y.-L. Wang, A. Gómez-Avilés, S. Zhang, J. J. Rodriguez, J. Bedia and C. Belver, *J. Environ. Chem. Eng.*, 2023, 11, 109744.
- 361 A. Seidmohammadi, Y. Vaziri, A. Dargahi and H. Z. Nasab, *Biomass Conv. Bioref.*, 2023, **13**, 9057–9073.
- 362 Z. M. Niaki, M. Ghorbani and S. A. Ghoreishi, J. Environ. Health Sci. Eng., 2021, 19, 1583–1596.
- 363 H. Cai, D. Zhang, X. Ma and Z. Ma, Sep. Purif. Technol., 2022, 288, 120633.
- 364 V. Balakumar, K. Sekar, C. Chuaicham, R. Manivannan and K. Sasaki, *Environ. Sci.: Nano*, 2021, 8, 2261–2276.
- 365 A. Kubiak, Sci. Rep., 2023, 13, 12075.
- 366 G. S. Sales, A. A. C. França, J. F. Cruz-Filho, C. A. F. Moraes, A. R. S. Neto, A. G. C. Sales, R. S. Santos and G. E. Luz Jr, *J. Environ. Chem. Eng.*, 2023, **11**, 110335.
- 367 F. Ghribi, M. Sehailia, L. Aoudjit, F. Touahra, D. Zioui,
 A. Boumechhour, D. Halliche, K. Bachari and
 Z. Benmaamar, *J. Photochem. Photobiol.*, A, 2020, 397, 112510.
- 368 B. Farahani, M. Giahi, M. H. Ghorbani, R. Fazaeli and O. Moradi, J. Nanostruct. Chem., 2023, 13, 303–320.
- 369 H. Pasdar, N. E. Fard and M. Rezvani, *Appl. Phys. A*, 2023, **129**, 380.
- 370 R. Sheikhsamany, H. Faghihian and R. Fazaeli, *Mater. Sci.* Semicond. Process., 2022, **138**, 106310.
- 371 B. Kakavandi, E. Dehghanifard, P. Gholami,
 M. Noorisepehr and B. MirzaHedayat, *Appl. Surf. Sci.*, 2021, 570, 151145.
- 372 S. Akter, M. S. Islam, M. H. Kabir, M. A. A. Shaikh and M. A. Gafur, *Arabian J. Chem.*, 2022, **15**, 103900.
- 373 F. S. Arghavan, T. J. Al-Musawi, G. A. Rumman, R. Pelalak, A. Khataee and N. Nasseh, *J. Environ. Chem. Eng.*, 2021, 9, 105619.
- 374 S. Fakhravar, M. Farhadian and S. Tangestaninejad, J. Environ. Chem. Eng., 2020, 8, 104136.
- 375 S. Sohani, B. Ara, H. Khan, K. Gul and M. Khan, *Environ. Res.*, 2022, 215, 114262.

- 376 Z. Li, S. Yuan, Z. Zhang, S. Liu, H. Guo, X. Qi, Z. Wu and J. Guo, *Mater. Res. Bull.*, 2024, 175, 112755.
- 377 S. R. Mishra, V. Gadore and M. Ahmaruzzaman, J. Clean. Prod., 2023, 427, 139221.
- 378 W. Ahmad, A. Singh, K. K. Jaiswal and P. Gupta, *J. Inorg. Organomet. Polym.*, 2021, 31, 614–623.
- 379 J. Zhao, B. Yao, Q. He and T. Zhang, J. Hazard. Mater., 2012, 229–230, 51–158.
- 380 L. N. Skvortsova, K. I. Kazantseva, K. A. Bolgaru, A. A. Reger, I. A. Artyukh and K. A. Dychko, *Inorg. Mater.*, 2023, 59, 321– 328.
- 381 K. Leeladevi, J. Vinoth Kumar, M. Arunpandian, M. Thiruppathi and E. R. Nagarajan, *Mater. Sci. Semicond. Process.*, 2021, **123**, 105563.
- 382 Z. Zhu, F. Guo, A. Li, W. Xu and X. Zhang, J. Environ. Sci., 2023, 134, 65–76.
- 383 C. Zhu, J. Li, Y. Chai, Y. Zhang, Y. Li, X. Zhang, J. Liu and Y. Li, Front. Chem., 2022, 10, 964008.
- 384 C.-W. Chien, N. Dhenadhayalan and K.-C. Lin, *J. Environ. Chem. Eng.*, 2023, **11**, 110613.
- 385 T. L. Palma, B. Vieira, J. Nunes, J. P. Lourenço, O. C. Monteiro and M. C. Costa, *J. Iran. Chem. Soc.*, 2020, 17, 2013–2031.
- 386 K. O. Sodeinde, S. O. Olusanya, O. S. Lawal, M. Sriariyanun and A. A. Adediran, *Sci. Rep.*, 2022, **12**, 17054.
- 387 H. Singh, A. Ahlawat, T. K. Dhiman and P. R. Solanki, *Mater. Lett.*, 2023, 346, 134504.
- 388 M. Baneshi, S. Jahanbin, A. Mousavizadeh, S. Sadat, A. Rayegan-Shirazi and H. Biglari, *Pol. J. Environ. Stud.*, 2018, 27(4), 1433–1439.
- 389 Y. Deng, J. Liu, Y. Huang, M. Ma, K. Liu, X. Dou, Z. Wang, S. Qu and Z. Wang, *Adv. Funct. Mater.*, 2020, **30**, 2002353.
- 390 T. Do, D. Q. Nguyen, K. T. Nguyen and P. H. Le, *Materials*, 2019, **12**(15), 2434.
- 391 F. Dehghani, S. Yousefinejad, M. Dehghani, S. M. Borghei and A. H. Javid, *Int. J. Environ. Sci. Technol.*, 2022, 19, 8957–8968.
- 392 F. Dehghani, S. Yousefinejad, M. Dehghani, S. M. Borghei and A. H. Javid, *Int. J. Environ. Anal. Chem.*, 2022, 1–9.